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Abstract: Laser-induced breakdown spectroscopy (LIBS) can be used for the rapid detection of heavy metal contamination of
Tegillarca granosa (T. granosa), but an appropriate classification model needs to be constructed. In the one-class classification
method, only target samples are needed in training process to achieve the recognition of abnormal samples, which is suitable for
rapid identification of healthy 7. granosa from those contaminated with uncertain heavy metals. The construction of a one-class
classification model for heavy metal detection in 7. granosa by LIBS has faced the problem of high-dimension and small
samples. To solve this problem, a novel one-class classification method was proposed in this study. Here, the principal
component scores and the intensity of the residual spectrum were combined as extracted features. Then, a one-class classifier
based on Mahalanobis distance using the extracted features was constructed and its threshold was set by leave-one-out cross-
validation. The sensitivity, specificity and accuracy of the proposed method were reached to 1, 0.9333 and 0.9667 respectively,
which are superior to the previously reported methods.
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1 Introduction

In recent years, heavy industries have been developing rapidly
and discharging numerous polluting heavy metals into rivers,
oceans, and other water bodies. The pollution, consequently, results
in heavy metal contamination of aquatic products and creates
serious problems!. Heavy metals mainly include Hg, Cd, Pb, Zn,
Cu, Co, Sn, etc. Harmful heavy metals not only disturb the natural
system of aquatic animals but also lead to the poisoning and death
of aquaculture species. In addition, heavy metals accumulate in the
human body by eating food contaminated with heavy metals. When
heavy metals interact with enzymes, they can cause acute, subacute
or chronic poisoning, which seriously affects human health and
safety”. Therefore, it is very important to improve the detection
ability of heavy metal contamination in aquatic products to ensure
quality and safety.
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Tegillarca granosa (T. granosa) has become one of the most
important commercial seafood products in eastern Asia due to its
delicious taste, high nutritional value and health care effect?.
However, T. granosa is a heavy metal accumulating organism,
which is mainly due to the mudflat aquaculture and non-selective
filter-feeding habits. 7. granosa absorbs heavy metals from the
water around its gills. Heavy metal ions are then transferred to
different parts of 7. granosa through its blood. 7. granosa can be
used as an indicator organism for the determination of heavy metal
contamination in sea areas because 7. granosa can well reflect the
content and species of heavy metals in their surrounding area'*’.

At present, there are many methods to detect heavy metals.
Traditional heavy metal detection methods include biochemical
detection and chemical spectroscopic detection such as flame
atomic absorption spectroscopy (FAAS)®, inductively coupled
plasma atomic emission spectrometry (ICP-AES)" and graphite
furnace atomic absorption spectrometry (GFAAS)®¥. Though these
methods have high sensitivity and accuracy, they are time-
consuming, require high professional
knowledge and ability. Compared with these traditional detection
methods, laser-induced breakdown spectroscopy (LIBS) technology
does not require time-consuming and labor-intensive pretreatment
of samples and involves simple equipment. The principle of LIBS is
that the atoms in the sample are excited by high power pulse laser to
form a high-temperature plasma spark, and the excited atoms and
ions emit characteristic spectral lines in the process of de-
excitation”. Due to the sample matrix effect, laser energy
instability, element spectral line collapse and overlapping, the
collected laser-induced breakdown spectral curves may have some
deviation. The composition characteristics of 7. granosa samples
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are complex, changeable and have a large number of elements.
Therefore, the detection of heavy metal contamination in 7. granosa
by LIBS needs to apply chemometrics methods to construct analysis
models with thousands of spectral variables.

Currently, there are some published studies on using traditional
supervised classification methods for heavy metal detection in 7.
granosa by LIBS. For example, Ji et al.'” used the algorithms of
wavelet and information gain for features selection to construct a
random forest classifier and achieved a classification accuracy of
93.3%. Xie et al.'" combined linear regression classification and
threshold feature selection to construct classifiers, and the best
classification accuracy was 90.67%. For the actual heavy metal
contamination detection in 7. granosa, the state is uncertain, such as
single heavy metal contamination and multiple heavy metal cross-
contamination. However, the traditional supervised classification
method needs to know all the information of samples to ensure a
satisfactory accuracy rate. This leads to great limitations in the
actual heavy metal contamination detection of 7. granosa by LIBS.

In the field of spectral detection of food safety, some studies
based on one-class classification methods have been published!*".
For the one-class classification problem, only target class samples
are used to train the one-class classifier to achieve the purpose of
distinguishing abnormal class samples!®'®. Therefore, this study
deals with the heavy metal contamination detection of 7. granosa
by LIBS from the perspective of one-class classification. For the
problem studied, there are only a dozen samples used for training
the classification model, and the spectral variables have tens of
thousands of dimensions, which are high-dimensional and small
samples. Therefore, how to improve the generalization of
classification methods on high-dimensional and small sample data
is the key issue to be solved while using one-class classification
methods for the heavy metal detection in 7. granosa by LIBS.

In this study, a new one-class classification method is
proposed, which combines principal component analysis!” and
Mabhalanobis distance™, named PCAMA. Firstly, the principal
component scores of the global spectrum and the intensity of the
residual spectrum were obtained and combined as the extracted
features. Then, Mahalanobis distance was used to evaluate the
similarity of samples with the extracted features. The performance
of the proposed method was compared with classical one-class
classification methods including a data-driven version of soft
independent modeling of class analogy (DD_SIMCA)"', one-class
partial least squares (OCPLS)®*! and support vector data
description (SVDD)>*7,

2 The proposed one-class -classification method

(PCAMA)

The proposed one-class classification method includes two
parts, feature extraction and classifier construction. As this method
is to distinguish abnormal classes only by learning the target class,
so, the extracted features should preserve the information of the
target class as much as possible. Besides, features extraction
inevitably loses feature information and results in reduced
specificity for abnormal classes. Therefore, the information of the
global feature space should be preserved as much as possible. Based
on the above requirements for feature dimension reduction of one-
class classification, the following dimension reduction method was
adopted.

Let X be the (nxm) centralized matrix that represents a set of
values collected for n training samples at m variables. Principal
component analysis of X is performed according to the following

equation
X=TP+E (1)

where, T = {t,,} is the (N X A) scores matrix, P = {p,.} is the (MxA4)
loadings matrix, E = {e,,} is the (NxM) matrix of residuals and A is
the number of principal components (PCs). The first-order norm of
e, iIn E is calculated and spliced to form the (Nx1) residual
intensities matrix S' = {|e;,|}. 7 and S are spliced together to form the
[NX(A+1)] extracted feature matrix F =[t,,...,t.lewl]. For a
centralized test sample x, its extracted feature vector k = [z,le|] is
calculated by the equations

t=xP 2)
x=1tP (3)
e=x—% 4)

where, ¢ and e represent the feature information of sample x in main
space and residual space respectively. Therefore, the feature
extraction method proposed in this paper is oriented to the one-class
classification problem, while the traditional PCA method is oriented
to the unsupervised problem. Note the residual e is important for the
proposed method and it reflects the outlyingness of the
corresponding sample with respect to main space. For different
kinds of heavy metal contaminated samples. Their residuals can be
significantly different.

For the extracted features, Mahalanobis distance is used as the
one-class classifier. The Mahalanobis distance has the advantages of
not being affected by the dimension and elimination of the
interference of the correlation between variables. Moreover, it is an
effective indicator for evaluating the similarity between a sample
and a data set. The Mahalanobis distance from a sample v to a target
matrix D is calculated as

g= w—m}jw—mT %)

where, 1 and Z are the central vector and covariance matric of D
respectively; g indicates the similarity between the sample v and the
target matrix D, a smaller value represents a higher similarity of the
sample to the target class.

For the one-class classification problem, a threshold is needed,
which is set according to the type I error o (the probability of
misclassifying a sample belonging to the target class as an abnormal
class sample). The leave-one-out cross-validation method is used to
calculate the extracted features and Mahalanobis distance of training
samples. The (1-a)x100 quantile of Mahalanobis distance of the
training is set as the threshold #. The unknown sample can be
classified by comparing its Mahalanobis distance g with the
threshold @ according to the following equation.

1, ifg<6
h(g) = 6
(& {Qifgze (6)

where, 1 and 0 indicate the target class and abnormal class,
respectively.

3 Experiment

3.1 Sample preparation

The T. granosa samples were provided by the Zhejiang
Mariculture Research Institute (Wenzhou, China). High purity
chemical reagents (PbCH;COO-3H,0, CdCl,, Zn SO, 7H,0) were
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purchased from the Chemical Reagent Co. Ltd., Shanghai, China for
heavy metal solutions. The 7. granosa samples were divided into
five groups, labeled as groups I, II, III, IV and V. The samples were
preserved in a water tank with seawater (at pH 8.05+0.10,
temperature 22.4°C+5.6°C, dissolved oxygen content >6 mg/L and
salinity 21%o). Groups [, II, and IIl were fed in water dissolved
with highly concentrated PbCH;COO-3H,0 (1.833 mg/L), CdCl,
(1.634 mg/L), Zn SO, TH,0 (4.424 mg/L), respectively. Group IV
was fed in the water evenly mixed with the above three chemicals.
Group V was fed in seawater without adding any heavy metal. The
T. granosa samples from each group were fed for 10 d to
accumulate heavy metals. After the incubation period, 30 samples
of T. granosa were taken from each group and placed in a
refrigerator at —4°C for 30 min for execution. Then, they were
frozen, dried and ground for spectral analysis.
3.2 Collection of spectral data

The LIBS experimental device system mainly consists of a
laser and a spectrometer. The laser used in this experiment was a
pulsed Nd: YAG laser (Litron Nano SG 150-10, Litron Lasers,
Warwickshire, England) with a wavelength of 1064 nm, pulse
duration of 6 ns, energy of 150 mJ and pulse repetition frequency of
5 Hz. The high-energy, short-pulse laser beam emitted by the laser
was vertically focused onto the surface of the sample through a
convex lens with a diameter of 30 mm and a focal length of 100
mm. A beam splitter was used to split a small portion (10%) of the
pulse energy into an energy meter for monitoring. The optical fiber
probe was used to collect the emission spectra at different
wavelengths. The emission spectra were transmitted to the
spectrometer analysis and processed by computer software. To
reduce the fluctuations caused by the instability of the laser pulse,
the laser was excited 20 times during the collection of spectral
signals. Then, the 20 spectral signals were accumulated and
averaged. A total of 150 T. granosa samples (30 samples from each

group) were collected for this study and the obtained LIBS data was
a (150 30 267) matrix.

4 Results and discussion

4.1 LIBS analysis of T. granosa samples

The LIBS analysis (200-800 nm) of 7. granosa healthy group
and heavy metal contaminated groups is shown in Figure 1. The
spectra of the samples were quite complex, having many
characteristic spectral lines which represented different elements.
According to the data from the Atomic Spectra Database of the
American Institute of Standards and Technology, atomic and ion
spectral lines of Al, C, Ca, Cd, Pb, Fe, K, Mg, Na, Si, Sr, and Zn
were mainly included in the spectral range of 200-800 nm. The
prominent spectral lines for Ca [ (422.7 nm), Ca II (393.3 nm,
396.8 nm), Na [ (588.9 nm, 589.5 nm), Mg [ (285.2 nm, 517.3
nm, 518.4 nm), Mg II (279.5 nm, 280.3 nm) and K 1 (766 nm,
770 nm) were observed. Similarly, less prominent spectral lines for
C I (247.8 nm), Sr I (460.7 nm), Zn I (330.3 nm), Si [ (288.2
nm), Al 1 (394.4 nm, 396.2 nm) and Fe [ (438.4 nm, 440.5 nm)
were noted. Although many characteristic spectral lines were found
in LIBS spectra of 7. granosa samples, it was difficult to distinguish
the healthy group and heavy metal contamination groups only by
naked eyes. This is because 7. granosa samples are organisms and
their emission lines in LIBS spectra are complex. Most significant
lines belong to atomic like Ca I (422.7 nm), Ca II (393.3 nm, 396.8
nm), Na I (588.9 nm, 589.5 nm), Mg I (285.2 nm; 517.3 nm; 518.4
nm). However, affected by the heavy metal, the emission lines of
these atomic have strong relevance with the concentration of target
heavy metal. One possible reason for the relevance is that biological
tissues of the contaminated samples are stressed by heavy metals to
generate various metal oxides. In this case, it is possible for
chemometric approach to fulfill the classification task. Therefore, it
is necessary to do further analysis with chemometrics methods.
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4.2 Analysis of one-class classification results

The LIBS of T. granosa were preprocessed,
eliminating spectral variables with intensity less than 0. The spectra
were denoised with wavelet filtering, and a 15029 620 matrix was

samples

500

700

Wavelength/nm

Average LIBS spectra of 7. granosa samples in each group

obtained. The healthy and heavy metal contaminated 7. granosa
samples were regarded as the target class and abnormal class
respectively. The LIBS of T. granosa was studied by principal
component analysis. The projection direction was determined by the
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target class samples and the first 8 principal components were
retained for analysis, which contained 99.57% variation information
of target classes. The principal component scores of all 7. granosa
groups are shown in Figure 2. It could be seen that there was
significant overlap between different groups in the first 8 principal
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component scores. Therefore, it was not feasible to directly use the
principal component scores as the extracted features when using a
one-class classification method for heavy metal detection of T.
granosa by LIBS. Therefore, we introduced the residual of each
sample into the feature set as supplementary information.
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Figure 2 Principal component scores of LIBS spectra of T. granosa samples

The effect of one-class classification methods on heavy metal
contamination detection of 7. granosa by LIBS was analyzed as
below. According to the Kennard-Stone algorithm™), two-third of
the target class samples were selected as the training set and the
remaining one-third of the target class samples and all abnormal
class samples were taken as the test set. The one-class classification
methods of DD _SIMCA, and SVDD were used to evaluate the
performance of the proposed method. Sensitivity (Sn), specificity
(Sp) and accuracy (4cc) were used as evaluation indexes, which
were defined as

TP
"TTPYFN )
TN
SP=TNTFP ®)
Acc = Sn;Sp 9

where, TP, TN, FP, and FN were true positive, true negative, false
positive, and false negative, respectively.

PCAMA, DD SIMCA and OCPLS dealt with high-
dimensional features by extracting potential variables, while SVDD
dealt with this problem by the kernel method. PCAMA and
DD_SIMCA extracted potential variables in similar ways, both of
which utilized the information of principal component and residual
spectrum. OCPLS performed feature extraction by projecting the
sample to the center of the training set, which only retained the
information of the main space and discards the information of the
residual space. Hence, OCPLS was significantly different from the
feature reduction strategies of PCAMA and DD_SIMCA.

The experimental results of the four one-class classification
methods for heavy metal contamination detection of 7. granosa by
LIBS are listed in Table 1. PCAMA had the best balance in
sensitivity and specificity, which were stable at about 1 and 0.9

respectively. Thus, PCAMA maintained a high accuracy rate above
0.9 and achieved the highest accuracy of 0.9667. For DD_SIMCA,
the increase in the number of extracted latent variables led to a
significant decline in sensitivity, though the specificity was
increased. In the optimal number of extracted latent variables,
DD_SIMCA achieved the highest accuracy of 0.8417, which was
far lower than the highest accuracy of PCAMA. The sensitivity of
OCPLS was maintained at the level of 0.9, but its specificity was at
a very low level, resulting in an accuracy of only about 0.5. This
was because, for the LIBS of T. granosa samples, there was little
difference between target class and abnormal class, which led to a
serious overlap between them in the main space. The discrimination
indicators of OCPLS were based on the main space, which severely
restricted the identification effect of 7. granosa contaminated by
heavy metals. For the PCAMA and DD_SIMCA, feature extraction
was performed on both the main space and the residual space,
which was the main reason why DD_SIMCA and PCAMA were
better than OCPLS. For the SVDD, the sensitivity and specificity
were changed dramatically with the change of the Gaussian kernel
parameter, but the balance between the two was not good. When the
Gaussian kernel parameter was set to 10°, the highest accuracy of
0.85 was achieved by the SVDD, which was equivalent to the best
result of DD_SIMCA. For SVDD, the kernel method was applied to
construct the one-class classifier on high-dimensional data, which
was easy to overfit and susceptible to interference from redundant
information and resulted in poor separability of the samples (target
class and abnormal class). Therefore, using one-class classification
methods for heavy metal contamination detection of 7. granosa by
LIBS, feature reduction was a necessary means to improve the
generalization of one-class classifiers. PCAMA and DD _SIMCA
can retain the feature information of the global feature space to a
greater extent than OCPLS to achieve better specificity for
abnormal samples.
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Table 1 One-class classification results on LIBS spectra of
Tegillarca granosa samples

Methods Parameters® Sn Sp Acc
1 1.0000 0.9333 0.9667
2 1.0000 0.9333 0.9667
PCAMA 3 1.0000 0.9167 0.9583
4 1.0000 0.9167 0.9583
5 1.0000 0.8667 0.9333
1 1.0000 0.0667 0.5333
3 1.0000 0.2417 0.6208
DD SIMCA 5 1.0000 0.4333 0.7167
- 7 0.9000 0.7833 0.8417
9 0.8000 0.7750 0.7875
11 0.7000 0.8167 0.7583
3 0.9000 0.0583 0.4792
OCPLS 4 0.9000 0.0417 0.4708
5 0.9000 0.0333 0.5167
10° 0.7000 1.0000 0.8500
SVDD 10? 0.1000 1.0000 0.5500
10° 1.0000 0.6000 0.8000
10° 1.0000 0.0667 0.5333

“Number of extracted latent variables for PCAMA, DD_SIMCA, and OCPLS or
Gaussian kernel parameter settings for SVDD.

The optimal models of PCAMA and DD _SIMCA were selected
for further analysis and the discrimination results of the samples are

vary greatly. To make it clear, we place three subplots in Figure 3.
The top subplot shows all the groups except for group Mixture,
whose Mahalanobis distances are generally the highest. The bottom
subplot on the left shows the Mahalanobis distances for group
Healthy while the right subplot is for group Zn. The PCAMA was
able to distinguish the distribution differences between different
groups. In particular, a big difference was observed between group
V (Healthy) and group IV (Mixture), which was cross-contaminated
by a variety of heavy metals and resulted in the most serious
abnormality. Except for group IV, the other groups are relatively
similar to each other. For this reason, DD_SIMCA has trouble
distinguishing groups I, 11, III from group V and consequently has a
high misclassification rate. Group II is closest to group V, which
explains why 8 samples from group II are misclassified as group V.
On the other hand, group IV is far different from group V. Hence,
even DD_SIMCA can easily tell them from each other. Also, from
Figure 3, it can be seen that PCAMA not only effectively
distinguished normal and abnormal samples but also reasonably
evaluated the abnormal degree of samples. For example, group IV
has the largest variance of the Mahalanobis distance. Hence, this
group is most outlying with respect to group V.

Table 2 Optimal discrimination results of PCAMA and
DD_SIMCA

Predicted class with PCAMA  Predicted class with DD SIMCA
(3 latent variables) (7 latent variables)

Actual class

. . .. Health, Outli Health, Outli
listed in Table 2. It can be seen that the PCAMA misjudged the Health 6?0 Y u01er eag Y ul <
. . .. ca
samples contaminated by Cd only, while DD _SIMCA misjudged cd Y X - 10 20
the samples of each group. Especially, DD SIMCA suffers a low 7 0 30 " 19
accuracy rate on the group I (Pb), II (Cd), and III (Zn). The Pb 0 30 1 19
similarity evaluation of these samples given by PCAMA is shown Mix 0 30 4 2%
in Figure 3. Because the Mahalanobis distances for each group can
x10°
T
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Figure 3 Box plot of similarity evaluation results of PCAMA (3 latent variables) on T. granosa samples by LIBS

The feature reduction methods of PCMA and DD SIMCA are
similar, but the difference in the way the classifier was constructed.
PCMA directly merged the features of the main space and the
residual space into new features to construct the one-class classifier
based on Mahalanobis distance. To avoid overfitting, the leave-one-
out cross-validation method was adopted to calculate extracted
features and Mahalanobis distance of training set, and the threshold
of the target class was estimated by quantile. However, DD_SIMCA
calculated the orthogonal score and residual score of the training set

directly and assumed that the two obey the chi-square distribution,
which was prone to large deviations in the case of small samples.
According to the experimental results in Tables 1 and 2, PCAMA
had better robustness than DD_SIMCA in the number of extracted
latent variables. Parameter optimization of the one-class classifier
was difficult due to the lack of abnormal class samples. Therefore,
for the PCAMA, the requirement for parameter optimization was
weakened to achieve better generalization than DD SIMCA.
Besides, the modeling complexity of DD_SIMCA was significantly
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higher than that of PCAMA. The extracted three latent variables
were taken to construct a model as an example. On the researcher's
computer (i7-8750H CPU @ 2.20 GHz, 16.0 GB RAM), the
PCAMA was constructed in 1.23 seconds, while the construction of
DD_SIMCA took 166.84 seconds and consumed 135.24 times as
long as PCAMA.

5 Conclusions

A novel one-class classification method was proposed based on
PCA and Mahalanobis distance and applied to detect heavy metal
contamination in 7. granosa by LIBS. In this method, the principal
component score and the intensity of the residual spectrum were
retained and combined as the extracted features. For the extracted
features, Mahalanobis distance was used as the evaluation index of
sample similarity. During the threshold setting, the leaving-one-out
cross-validation was used to calculate the extracted features and
Mabhalanobis of the training set
generalization. For the detection of heavy metal in 7. granosa by
LIBS, the detection accuracy of the proposed method was
significantly better than the reported one-class classification
methods. With a small number of extracted latent variables, a good
balance between sensitivity and specificity was achieved. In
summary, the proposed method is suitable for heavy metals
detection in 7. granosa by using LIBS and has reference
significance for one-class classification problems of other high-
dimensional and small sample data.

distance to ensure the
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