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Promising real-time fruit and vegetable quality detection technologies
applicable to manipulator picking process
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(1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China,
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Abstract: In recent years, worldwide research on fruit and vegetable quality detection technology includes machine vision,
spectroscopy, acoustic vibration, tactile sensors, etc. These technologies have also been gradually applied to fruit and vegetable
grading and sorting lines in recent years, greatly improving the income of farmers. There have been numerous reviews of these
techniques. Most of the published research on fruit and vegetable quality detection technology is still carried out in the
laboratory. The emphases have been on quality feature extraction, model establishment and experimental verification. The
successful application in the fruit and vegetable sorting production line proves that these studies have high application potential
and value, and we look forward to the performance of these sensing technologies in the fruit and vegetable picking field.
Therefore, in this paper, based on the future highly automated fruit and vegetable picking mode, we will focus on three kinds of
fruit and vegetable quality detection technologies including machine vision, tactile sensor and spectroscopy, to provide some
reference for future research. Since there are currently limited cases of detecting quality during the fruit and vegetable picking,
experiments performed on prototypes of manipulator, or devices such as Nanocilia sensors, portable spectrometers, etc., which
are compact and convenient to mount on manipulator will be reviewed. Several tables and mosaics showing the performance of
the three technologies in the detection of fruit and vegetable quality over the past five years have been listed. The performance
of each sensing technology was relatively satisfactory in the laboratory in general. However, in the picking scenario, there are
still many challenges to be solved. Different from industrial environments, agricultural scenarios are complex and changeable.
Fragile and vulnerable agricultural products pose another challenge. The development of portable devices and nanomaterials
have become important breakthroughs. Optical and tactile detection methods, as well as the integration of different quality
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detection methods, are expected to be the trends of research and development.
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1 Introductions

Fruits and vegetables are increasing in production and
consumption due to their good taste, appearance and health benefits.
There are differences in the quality demands of fruits and
vegetables among people with different consumption capacity. The
demands for different grades of fruits and vegetables have led to the
development of fruit and vegetable sorting and grading
technologies. The emphases of sorting and grading technology have
been in the non-destructive perception, extraction and evaluation of
fruit and vegetable quality. In recent years, many commercial fruit

and vegetable grading lines using these detection technologies have
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been put into production. These production lines are efficient but
also require higher initial costs and maintenance costs!'. Taking the
current production process of some orchards as an example, after
large-scale harvesting in the orchard, fruits are transported to the
facility for further commercial processing such as storage, grading
and packing. During these processes, some secondary damages will
occur, such as bruises and infections from squeezing and bumping®.
Especially with the current production process, low quality or
diseased products can take up a lot of transportation and storage
costs®l. If the quality detection and grading can be completed in the
orchard, the cost of indoor construction will be greatly reduced, and
the loss caused by damage to fruits and vegetables can also be
reduced. The quality parameters of the fruit can be used as the
criterion for picking. The information and grading results can be
used for yield monitoring and quality traceability, as well as provide
guiding suggestions for regional farming". Compared with the
traditional labor-intensive fruit production mode, the integrated
production mode of picking, quality detection and grading in the
field in the future can greatly improve the efficiency of production.
Figure 1 shows the comparison of traditional and future fruit
production mode.

Judging from the research trends in recent years, the real-time
detection of fruit and vegetable quality is becoming a research
hotspot. Through the application of machine vision, spectroscopy,
proximity sensors and chemistry sensors”™, fruit and vegetable
quality parameters including external parameters and internal
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parameters can be detected®. Among these technologies, detection
methods based on machine vision, spectroscopy and tactile sensors
are more likely to be used in the process of picking’*. Recognition
and location are first needed, and machine vision is an effective tool
to evaluate the external properties of fruits. With the development
of portable devices in recent years, the combination of miniaturized
spectroscopy devices and tactile sensors with end-effectors also has
a broad development prospect. At the same time, the two
technologies can also detect the internal quality of fruit and
vegetable such as firmness and soluble solids content (SSC), which
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is a complement to the machine vision technology. Currently, most
of the researches on fruit and vegetable quality detection
technologies mounted on picking robots are conducted in the
laboratory and are still in the testing phase, especially tactile and
spectroscopic techniques. However, after reviewing numerous
papers, the results of these studies were found to be promising.
Most of the experimental results have a high correlation with the
fruit and vegetable quality parameters detected by the sensing
technology, that is, the sensing technology has a high potential to be
applied to the future robotic picking process.
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This article provides a review of the research on fruit and
vegetable quality detection using machine vision, tactile sensors and
spectral sensors, with particular attention to the experiments
performed on the prototype of the manipulator, as well as nanocilia
sensors, portable spectrometers that are compact and convenient to
mount on the manipulator. Over the past five years, the fruit and
vegetable targets to which these techniques have been applied have
varied. Most of the research has targeted fresh fruits, such as apples,
blueberries, and bananas, which change color significantly after
ripening, and mangoes and papayas, which change firmness
significantly after ripening. There are also a few researches for
Solanaceous vegetables like tomatoes and sweet peppers. Yet there
are many challenges for these technologies to be applied in the
picking infield. Different from the relatively closed and repetitive
work environment and work requirements of industrial robots, the
picking environment is often open and changeable®. This is a
challenge for the stability of fruit and vegetable quality detection.
Common challenges will be addressed in the discussion, and the
challenges and possible solutions specific to each technology will
be highlighted.

2 Detection method based on machine vision

2.1 Introduction of machine vision
The main quality parameters of most fruits and vegetables are

related to the appearance (color, presence of epidermal wax, size
and shape) and texture'®. Machine vision is an effective tool to
evaluate the optical properties of heterogeneous materials!”. By
using machine vision system, external characteristics such as shape,
color, size, texture and defects can be detected and graded”.
Besides, changes in appearance parameters have a profound impact
on consumer acceptability. Therefore, machine vision technology
has received early attention from researchers to detect the
characteristics of produce.

In recent years, fruit and vegetable classification models based
on traditional feature extraction combined with machine learning
algorithm have good performance. However, the establishment of
the model depends on the types of produce used for training and
testing, and the data sets used to build the model are generally
small, which will directly lead to the reduction of model robustness.
In addition, the method based on hand-craft feature extraction is
relatively time-consuming!". Deep learning technology deals well
with the problems encountered by traditional machine learning
algorithms. The model based on deep learning can automatically
extract the relevant fruit features without intervention. Therefore,
the bias in traditional feature extraction is avoided!”. Gongal et al.[""
noted that the method of deep learning would be limited by
hardware computing resources, but with the emergence of high-
performance GPU and the update of deep learning framework such
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as Faster Regional Convolutional Neural Network (Faster R-
CNN)™. Single Shot multibox Detector (SSD)!"”, and You Only
Look Once (YOLO)", this problem has been gradually solved.

Table 1 presents a summary of literature on the detection technology
of fruit and vegetable quality using machine vision technology
(traditional machine learning/deep learning) in the past five years.

Table 1 Summary of literature on the detection technology of fruit and vegetable quality using machine vision technology
(traditional machine learning / deep learning) in the past five years

Types Fm}t Parameters Methods/Classifier* Accuracy Reference
species
Color, texture, shape K-means, SVM - Dubey et al."”
Apple 89.20% (SVM)
Defect, texture and size SVM, MLP, KNN 86.60% (MLP) Moallem et al.l'
85.80% (KNN)
Citus Color Distance transform and marker-controlled watershed 93.00% Dorj et al.™
algorithms
Papaya Color RF 94.30% Santos et al.””
Orange Surface defect Sliding comparison window local segmentation algorithm 97.00% Rong et al.?"
Mango 17 shape, and surface SVR 87.00% Nandi et al.*
defect
Traditional machine 86'00,%(}/01“15) N
learnin: Blueberry Color HOG, SVM, KNN 94.20%(intermediate) Tan et al.™
2
96.00%(mature)
Surface defects ANN, RF 88.95% Hadimani et al.?¥
Mandarin 94.28% (ANN-HS),
Texture, color, shape ANN-HS, ANN-ABC, KNN 96.70% (ANN-ABC),  Sabzi et al.™”!
70.90% (KNN)
Color BPNN 99.31% Wan et al.?!
97.78%-99.81%
Tomato Color SVM, KNN, ANN (SVM) de Luna et al.””
’ ’ 93.78%-99.32% (KNN) ’
91.33%-99.32% (ANN)
Potato Disease SIFT-SVM, HOG-BOVW-BPNN, CNN 97.00% Korchagin et al.”®
Cassava Disease MobileNetV2 97.70% Abay(;rlnllzglAlh et
Aol Surface lesion CycleGAN, DenseNet-YOLO v3 - Tian et al.™”
e
i Bruise CNN, SVM-VGG19, SVM-Inceptionv3 97.67% Hu et al.'"
Deep learning Tomato Surface defects ResNet50 91.70% da Costa et al.”"
Banana  C°lOF (exture, and surface YOLO v3-SVM 96.40% Zhu ct al. =
defects
ResNet101, ResNet50, ResNet18, VGG19, VGG16, N .
Papaya Color GoogleNet, AlexNet 100%(VGG19) Behera et al.
Citrus Surface defects STA-CNN 98.00% Zhang et al.™

Note: *, Abbreviations: SVM, support vector machines; KNN, K-Nearest Neighbors; MLP, Multi-Layer Perceptron; RF, Random forests; SVR, support vector regression;
HOG, histogram oriented gradients; BPNN, backpropagation neural network; ANN-HS, hybrid artificial neural network-harmony search; ANN-ABC, hybrid artificial
neural network-artificial bee colony; SIFT, Scale Invariant Feature Transform; BOVW, Bag of Visual Words; STA-CNN, state transfer algorithm-convolutional neural

network

2.2 Applications of machine vision

The size of the fruit and vegetable can be used as a standard for
picking, and the weight prediction based on the size can also help
estimate the yield of the orchard™. Qiao et al.* developed a mobile
pepper grading robot to predict the weight of sweet pepper by
processing the image information of a single sweet pepper, and got
information about sweet peppers’ size, color and fruit shape.
Disease and insect damage can also be obtained by the use of the
images from five cameras. With the application of depth cameras,
imaging equipment is gradually streamlined and more efficient. Bac
et al.”” developed a sweet pepper harvesting robot based on a nine
degrees of freedom manipulator in a complex environment, as
shown in Figure 2b. The use of the depth camera helps to predict
the size of the fruit, thus guiding the end-effector to open to an
appropriate size. In a complex environment (light changes,
occlusion, and dense obstacles), the harvest success rates of the two
end effectors reached 26% and 33%. The Hsieh et al.?® recorded the
actual size information of tomatoes by Mask R-CNN and
information from binocular vision depth camera. The average error
of XY direction was 0.48 cm, and the average error of depth Z

direction was 0.67 cm. Whether tomatoes can be harvested depends
on their color. This color threshold is determined by experts and
converted into HSV values.

In addition to characteristics such as size, the color of the fruit
is the most commonly used criterion to distinguish between ripe and
unripe produce. Hayashi et al.?” realized strawberry picking based
on a cylindrical coordinate manipulator in a field test, as shown in
Figure 2a. The success rate of picking in the two separation modes
reached 41.3% and 34.9%, respectively. The images were acquired
by the color CCD camera and mature and immature pixels were
distinguished by a hand-craft threshold. Xiong et al.*” also used the
color threshold method combined with the depth range of the target
area to screen mature strawberries, as shown in Figure 2e. After
optimizing the gripper, the robustness of grasping has been
improved. The average harvest rate in the field experiment has
increased to 53.6%, and the harvest time of a single strawberry has
been shortened to 7.5 s. Lehnert et al.*"! harvested sweet peppers in
the field combined with agronomy, as shown in Figure 2d. Based on
the algorithm of color segmentation, the sweet pepper is picked
after judging the ripeness, and the success rate can reach 58%.
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Figure 2 Fruit and vegetable harvesting manipulator with machine vision.

2.3 Challenges and possible solutions

1) The challenge of whole surface detection. Under the quasi-
static detection condition of the picking process, it is difficult for
the vision system to obtain the image of the back of the target. The
defects on the back are often ignored, and these defective fruits and
vegetables will cause subsequent waste of resources and hidden
dangers to the health of others. In the current study, the priority of
image collection on the back is after increasing the picking success
rate and picking speed.

While this may result in complex path planning and
significantly increase the time to process individual targets, the
overall cost is worth it if the obvious defects on the backside of the
target can be detected during the picking process. With the
development of agronomy, the cultivation and growth patterns of
fruit trees are becoming more suitable for mechanized picking, and
the occlusion of branches and leaves will be relatively reduced. In
other related research, the development of field fruit grading
equipment has the potential to realize whole fruit surface
inspection ™. Compared with the indoor grading equipment, the
classification performance and endurance have some disadvantages.
However, compared to manipulator with limited resource and
space, the use of multiple cameras to collect images™!, the use of
mirrors to assist in obtaining multi-view images“*’, and the use of
rollers to rotate fruits have greater advantages in obtaining whole

surface information”. Whole surface detection may present
challenges such as distortion of the reflected image and replicated
sampling of some surface regions. For qualitative problems such as
surface defect determination, the above-mentioned challenges can
be adapted by adjusting the rotation rate and the camera sampling
frequency.

2) The challenge of unobvious defect detection. Defects in fruit
and vegetable exhibit multiple patterns, including color, shape,
texture, size, and position'’. Common unobvious defects in fruits
and vegetables include early bruises, physical damage, early decay,
chills, and internal defects. Bruises and chills are prone to occur in
the process of transportation and storage after picking. Unobvious
defects such as early decay, physical damage, and internal defects
(including brown heart, disorders, watercore, black heart, and flesh
browning) have chances to be detected during the process of
picking. The crux of the problem lies in the insufficient ability of
machine vision to obtain information based on the three visible light
bands of RGB (Red, Green and Blue).

The combination of machine vision and spectroscopy
technology can enhance the perception of machine vision. With the
development of autonomous navigation and mobile robot platform,
the miniaturization of hyperspectral imaging (HSI) and
multispectral imaging (MSI) equipment and the improvement of
computing and data storage capacity®), some researchers have
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mounted spectral imaging equipment on the mobile platform to
inspect the quality of fruit and vegetable in the orchard to obtain
yield map and the best harvest time and other information. Wendel
et al."! used hyperspectral imaging sensors mounted on unmanned
ground vehicle (UGV) to predict dry matter (DM) content in
mangoes remotely in the field to efficiently estimate and map

mango ripeness. Benelli et al.®™ also used agricultural vehicles
equipped with Vis/NIR hyperspectral imaging system to predict the
soluble solid content (SSC) of grapes under natural light conditions
to judge the ripeness of grapes. Table 2 presents a summary of
literature on the detection technology of fruit quality using (mobile)
spectral imaging (HSI/MSI) device in the past five years.

Table 2 Summary of literature on the detection technology of fruit quality using (mobile) spectral imaging (HSI/MSI) device in the
past five years

Fruit species Parameters Types of spectral imaging ~ Methods/Classifier* Performance Reference

Peach Chlorophyll HSI PLSDA 98.75% Sun et al.®"

. Rpre=0.9560 . 521

Apple SSC, anthocyanin HSI CARS-PLS RMSEP=0 2528 Tian et al.

. RCV2=0.58, RMSECV=1.17%w/w (PLS) 5]

Mango Dry matter HSI (mobile) PLS, CNN RCV2=0.64, RMSECV=1.08%w/w (CNN) Wendel et al.

Strawberry Ripeness HSI AlexNet-CNN 98.6% Gao et al.>”
Grape SSC HSI (mobile) PLSDA 86%-91% Benelli et al.””

97.5% (sound/defects)

Loquat Defects HSI RF, XGBoost 96.7% (internal/external defects) Munera et al.™

95.9% (purple spot, bruising, scars, flesh browning)

Note: *, Abbreviations: PLSDA, partial least squares discriminant analysis; CARS, competitive adaptive reweighted sampling; RF, random forests; XGBoost, extreme

gradient boosting

3 Detection method based on tactile sensors

3.1 Introduction of tactile sensors

Fruits such as kiwi and blueberry do not differ significantly in
color between ripe and unripe individuals. Tactile sensors can
complement machine vision by providing information at the time
contact is made™. In previous research, tactile sensors are often
used to determine the grasping force of the gripper for non-
destructive grasping of fruit and vegetables. The relationship
between the force on the surface of the target and the amount of
deformation reflects the firmness, which provides a theoretical basis
for the tactile sensor to detect the firmness of the fruit and vegetable
when grasping it*. The combination of the manipulator and the
tactile sensor is the foundation for the realization of flexible and
precise grasping operation as well as firmness detection’™”.

In previous studies, tactile sensors based on different principles
have been proposed, mainly including optical (infrared or visible
light)®",  piezoresistive™, piezoelectric®), capacitive®,
gauges'™ and accelerator®™. Among them, capacitive tactile sensor
arrays have higher sensitivity and dynamic characteristics, while
piezoresistive tactile sensors are inexpensive. Table 3 shows the
relative advantages and disadvantages of tactile sensors.

strain

Table 3 The relative advantages and disadvantages of
different tactile sensors

Types of

tactile sensors Advantages

Disadvantages

High sensitivity Easy to wear

Optical ~ High spatial resolution Bulky

High repeatability Susceptibility to skin color and light
High spatial resolution

Piczoresistive Low cost Hysteresis
Low susceptibility to noise Low repeatability
interference

Piezoelectric H}gh SCl’lSltlYlty Poor Statlf) perform?mce
High dynamic range Poor spatial resolution
High sensitivity

Capacitive Good dynamic range Susceptibility to noise interference

Low susceptibility to
temperature

Complicated electronic design

Hysteresis
Nonlinear response
Susceptibility to temperature and

Good sensing range
Strain Gauges High sensibility

Low cost humidity
Accelerator LOW €0st Time-consuming
High sensibility Low repeatability

3.2 Applications of tactile sensors

Combining the grasping action of the end effector and
considering the fragile characteristics of the fruit and vegetable,
most applications use piezoresistive, capacitive tactile sensors and
accelerometers to evaluate the firmness of the target. Blanes et al.*!
embedded an accelerometer in a mechanical gripper to evaluate
eggplant firmness and mango ripeness, as shown in Figure 3a. The
non-destructive parameters extracted from the accelerometer
constructed and validated partial least-squares (PLS) models, with a
calibration regression coefficient of r=0.87 and a prediction
performance (=0.90). The firmness of the fruit is estimated by the
deceleration time during the grasping action, the severity of the
deceleration when the fruit comes into contact with the finger for
the first time, and the highest peak deceleration®”!. Bandyopadhyaya
et al.*¥ installed two piezoresistive sensors containing ultra-thin
flexible printed circuits on a two-finger mechanical gripper to detect
and classify tomato firmness, as shown in Figure 3c. Eight features
extracted from the data obtained from the sensors were used as
classification criteria and modeled by two machine learning
methods. It is concluded that the deterministic method (decision
tree) (90%) is superior to the probabilistic method (® Bayes
Classifier) (85%) in real-time implementation. Zhang et al.*
established a manipulator with piezoresistive tactiles to detect the
firmness of fruits, and compared the performance of PCA-KNN and
PCA-SVM in an online test, as shown in Figure 3d. It is verified
that the performance of PCA-SVM is better, and the accuracy of
online detection can reach 90%. Distributed piezoresistive tactile
sensor array increases the number of tactile sensing points and
improves the sensitivity of online measurement. Spiers et al."” used
an under-actuated two-finger manipulator to implement tactile
object recognition and feature extraction techniques during the
grasping process, as shown in Figure 3e. Each finger is equipped
with eight tactile sensing units, and multiple target features
including target size, stiffness, and posture are extracted with high
classification accuracy. Zhou et al.*® used tactile sensors with
piezoelectric films and strain gauges to evaluate and classify the
surface roughness of cucumbers, cantaloupes and apples with
93.737% accuracy. Scimeca et al.”) used a custom mechanical
gripper equipped with a capacitive tactile sensor array to palpate
mangoes to assess their firmness, as shown in Figure 3b. The
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classification accuracy reached 88%. For the firmness of mangoes,
the stiffness model established by the elastic deformation of

>

e ——

mangoes was used in the experiment to represent the peel firmness
value measured by the traditional penetrometer.
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Note: a. Accelerator sensors mounted on gripper to assess the firmness of eggplant*’; b. Capacitive tactile sensor array to assess the firmness of mango!®’;

c. Piezoresistive flexible tactile sensor to classify the fimness of vegetables; d. Distributed piezoresistive tactile sensor array on the two finger manipulator'®;

e. Under-actuated two-finger manipulator equipped with 8 tactile sensing units on each finger"”.

Figure 3 Robot grippers with tactile sensor

The (Magnetic nanocomposite) cilia tactile sensor is another
kind of emerging tactile sensor in recent years, which is a bionic
device developed by imitating the extremely sensitive cilia
receptors found in nature. Cilia tactile sensors can transmit various
mechanical forces and provide excellent sensing performance,
mainly because they have a high aspect ratio and a high surface area
to volume ratio, and can interact with the environment as much as
possible™. The cilia of the cilia tactile sensor are often made of
permanent magnetic materials, so there is no need for external
which power
consumption to the greatest extent and contributes to the integration
of the system. In cases conducted in the laboratory, cilia sensors can
assess the stage of fruit ripeness. Ribeiro et al.’" used three different
configurations of magnetic cilia (A: single cilia with a diameter of
400 um and a height of 3 mm. B: nine cilia in a 3x3 array over the

magnetic field magnetization, reduces the

sensor, each with a diameter of 360 um and a height of 1.6 mm. C:
nine cilia in a 3%3 array over the sensor, each with a diameter of
400 um and a height of 3 mm.) for nondestructive detection of
Smoothness (S), Stiff®s (E) and ®ture (R) characteristics of apples
and strawberries (with different surface roughness), as shown in

Figure 4a. Since there is a paucity of publications on the correlation
between fruit surface analysis and quality, experiments were
conducted using a data-driven approach to test the classification
performance of two supervised classification algorithms: Random
Forest and Gaussian Parsimonious Bayesian methods. For the
combination of features, experimental results demonstrate a
significant improvement in model classification performance when
stiffness and texture parameters are combined for evaluation. Fruits
with smooth surfaces are more suitable for the cilia configuration
with higher spatial resolution using type A, because more
information can be conveyed, and the best classification accuracy
obtained from the experiments reached 96%. Fruits with protrusions
due to surface seeds like strawberries, where a larger contact area
can average out the surface texture features, achieved an optimal
classification accuracy of 83%. Carvalho et al.”™” proposed a cilia
tactile sensor to qualitatively assess the ripening stages of
blueberries and strawberries. The sensor is composed of up to 100
magnetized nanocomposite cilia, which are connected to a chip with
a magnetoresistive sensor and adopt a full Wheatstone bridge
structure. The average peak voltage provided by the contact



20 April, 2024 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 17 No. 2

between the cilia and the peel was confirmed to be related to the
ripeness of the fruit, the cilia sensor is shown in Figure 4b.

3 mm

a (D @

Note: a (1) Cilia sensor, with a 3x3 cilia matrix configuration;
(2) Microphotograph of the sensor die”". b. Optical image of the device wire
bonded to a chip carrier, with the giant-magnetoresistive (GMR) sensor chip
integrated with 100 artificial cilia™.

Figure 4 Novel nano cilia tactile sensors

3.3 Challenges and possible solutions

1) The challenge of low repeatability. Almost all cases of tactile
sensor detecting fruit and vegetable firmness are carried out in the
laboratory. This is because the repeatability of the tactile sensor is
not high enough, and this problem is caused by many factors. On
the one hand, it is because of the biological specificity of the fruit
and vegetable. Due to the uncertainty of the growth direction, the
angle at which the end effector grabs the target cannot be
completely consistent. The different grasping directions (parallel or
perpendicular to the equatorial plane) have an impact on the
firmness evaluation of fruit and vegetable. This is determined by the
growth characteristics of fruit cells, because the firmness of the fruit
reflects the ability of the cell wall to resist squeezing force on a
microscopic level. The grasping test in the laboratory can ensure
that the direction of grasping the same batch of target is as
consistent as possible to avoid unnecessary singular data. On the
other hand, various uncertain factors may appear in the environment
when picking. Fruits may be mixed with branches and leaves when
picking. Grasping damaged fruit may squeeze out the juice to
contaminate the surface of the sensor. These conditions will test the
robustness of the tactile sensor.

The high repeatability and high robustness of the sensing
device are necessary conditions for fruit and vegetable quality
detection in the picking field. In qualitative testing of fruit firmness
indoors, the nanocilia sensor should detect the surface of the fruit
multiple times to obtain data to eliminate accidental errors and
improve the credibility of the results. In quantitative detection,
tactile sensors capable of reflecting the force-deformation curve,
such as piezoresistive type, are often used to reflect the toughness of
the fruit skin to classify the fruit. The gripper should be grasped and

tested in different poses and a global model should be established to
improve the detection accuracy of fruit firmness in a complex
outdoor environment. In the case of misdetection of fruit firmness
caused by mixed obstacles and defects on the surface of the fruit,
the combination with optical methods can greatly reduce these
situations. When designing the structure of the end effector, the
function of removing the branches and leaves that may be mixed
during grasping should also be considered.

2) The challenge of high manufacturing cost of high spatial
resolution and high sensitivity tactile sensors. Currently commercial
and  distributed
piezoresistive tactile sensors developed in the laboratory have very
high spatial resolution (multi-contact array), sensitivity, and
response frequency. At the same time, the sensor is integrated in the

distributed  piezoresistive tactile  sensors

flexible film, which has good resistance to fracture and can adapt to
the deformation during the grasping process. However, the
manufacturing cost of these tactile sensors is generally high, and it
is still unrealistic to be applied to the actual picking process at
present.

Modular design and production methods and the use of optical-
based tactile sensors can reduce production costs. By converting the
contact deformation signal into a high-resolution tactile image, the
optical tactile sensor can achieve higher spatial resolution and
sensitivity. In recent years, the research on optical tactile sensors
mainly includes TacTip", Gelsight” and Gelslim™. Although they
can achieve high spatial resolution and sensitivity, they are still
large in size and not easy for the dexterous movement of the
manipulator. At the same time, the gel surface is very easy to wear,
which may lead to measurement uncertainty. Lambeta et al.’
developed a new vision-based tactile sensor DIGIT based on
GelSight. The components of DIGIT are modular, which enhances
the versatility and interchangeability of parts. At the same time,
DIGIT has a compact design and can be installed on multiple
fingers at the end of the manipulator, greatly improving the tactile
perception ability. The gel is also specially designed to be more
resistant to wear. Combining with the latest manufacturing
technology, mass production can further reduce the production cost
of sensors.

4 Detection method based on spectroscopy

4.1 Introduction of spectroscopy

Machine vision technology can get the images of fruit and
vegetable and obtain external quality information such as their color
and size. Tactile sensors can perceive the texture of the surface and
detect the firmness of the fruit and vegetable, but neither of the two
technologies can detect internal qualities such as the sugar content
and dry matter content of the fruit. Machine vision and spectroscopy
are two important directions of optical technology. As another
detection method based on optical principles, the spectroscopy
method can obtain the internal chemical composition and part of the
physical properties of the fruit and vegetable by detecting the
reflection, transmission, and absorption information after the light
source radiates the surface of the target””, as shown in Figure 5.

As the more commonly used detection band in spectroscopy
technology, visible light and near-infrared (Vis/NIR) radiation
covers the 380-2500 nm wavelength range in the spectrum. First of
all, the effective path of visible-near infrared spectroscopy ranges
from millimeters to centimeters, which can effectively detect the
internal quality of fruit and vegetable. Secondly, the main structure
and functional group signals of almost all organic compounds can
be detected in the Vis/NIR spectrum, and have a fairly stable
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Figure 5 Working principle of spectroscopy equipment based on
different light propagation modes.

spectrum. Therefore, the spectrum in the Vis/NIR range is usually
used to analyze the content of organic compounds””. The visible
light band is more sensitive to pigments (chlorophyll, carotenoids
and anthocyanins), which can reflect the ripeness of fruit and
vegetable. Near-infrared spectroscopy is more sensitive to C-H
bonds and O-H bonds, and these chemical bonds are abundant in
pectin, cellulose and hemicellulose in fruit cell walls. Therefore,
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part of the band information in the spectrum can reflect the firmness
of the fruit and vegetable. In the Vis-NIR band detection mode, the
three most commonly used detection modes are transmission,
interactance, and reflection. Among them, the transmission mode
and the interactance mode have better performance in the detection
results than the reflection mode™. The interactance mode requires a
smaller light intensity because the area where the information is
is attached to the fruit,
consumption. The reflection mode has a relatively simple structure

received thereby reducing energy
and is relatively easy to use. Compared with hyperspectral, visible
and near-infrared spectroscopy contains more accurate band
information, avoiding a large amount of data redundancy, which
also provides a basis for practical operation of portable
spectrometers.
4.2 Applications of spectroscopy sensors

At present, the quality detection of spectral information in the
process of grasping by the manipulator is generally time-
consuming. Cortés et al.* attached two accelerometers and two Vis-
NIR spectrometer probes to the gripper to obtain the mechanical
and optical properties of the fruit while grabbing the mango, as
shown in Figure 6a. The prediction model established by the PLS
regression of the two sets of spectral signals and the two sets of
acceleration sensor signals has been verified to have the best
prediction performance in all signal selection combinations. It takes
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Note: a. Robot gripper with the accelerometers and the Vis-NIR spectrometer probes™; b. Schematic diagram of the system and the Vis/NIR module®™’; c. Portable NIR

spectrometer, used to develop predictive models for non-destructive evaluation of tomato quality attributes™; d. Portable Vis/NIR spectrometer, used to meassure the

soluble solid content (SSC) of apples™; e. Portable NIR spectrometer, used to meassure SSC of Korla fragrant pear, device schematic; f. Device appearance™;

g. Portable NIR spectrometer, used to meassure dry matter (DM) of mangoes™.

Figure 6 Applications in the process of picking and some portable devices
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nine seconds to process each mango, and further optimization is
needed for the actual picking situation. Although it is not realistic in
practical applications, it still demonstrates the advantages of fusion
of multiple sensing technologies in modeling accuracy. Zhao et al.*"!
detected the SSC of apples and classified with a portable
spectrometer on the manipulator, as shown in Figure 6b. In
independent verification, the classification accuracy rate was 90.0%,
and the Rp and RMSEP values were 0.952 and 0.393%, respectively.
It takes approximately 5.2 s for each apple to complete target
detection, grabbing, internal quality detection and classification.

With the development of electronic equipment and the rapid
improvement of computing power, palm-sized handheld/portable
spectrometers have increasingly appeared in orchards for on-site
detection of the internal and external quality of fruits. Figure 6
shows some handheld spectroscopic devices developed in recent
years. Portable equipment is not only an effective tool for rapid on-
site detection, but also has natural advantages when combined with
manipulator picking due to its small size and light weight. Table 4
summarizes the applications of handheld/portable spectrometers in
the past five years.

Table 4 Summarizes the applications of handheld/portable spectrometers in the past five years

Fruit species Parameter® Optical geometry Wavelength Statistical methods® Performance* References
Chlorophyll (Ripeness) Absorption (UV fluorescence) 340-780 nm - - Das et al.™!
R2 =0.690
Apple SSC Interactance 400-1000 nm PLS RMSEP=0.604% Fan et al.”™
RPD=1.794
. R?=091 .
SSC, Pulp firmness Reflection 950-1650 nm PLS : Pissard et al.*
RMSECV=0.57
2 _
DM (Ripeness) Reflection 940-1798 nm PLS R®=0.654 Blakey'""
RMSECV=2.62
Avocado 310-1100 nm
DM (Ripeness) Interactance 908-1676 nm PLS R?2=0.82 Subedi et al.*
740-1070 nm
Pesticide residues Raman scattering UV-Vis - - Gong et al.®
Mixed RMSE=0.9% (Kiwiftuits)
SSC Diffuse reflection 650-1100 nm PLS RMSE=0.7% (Nectarines) ~ Guo et al."””
RMSE=0.8% (Apricots)
Kiwi SSC Interactance 310-1100 nm SVM - Sarkar et al.’V
iwi
SSC Interactance 350-1100 nm PLS RMSE=0.93% Yang, et al.®”
- R =0.67
Moisture & SSC Reflection 400-1000nm SO-PLS p Mishra et al.™
900-1700nm -
b RMSEP=0.83
ear
2 _
ssc Reflection 900-1700 nm RF-PLS R* =0.966, Yuetal ™
MRER=1.41%
. R%2=0.83 . ;
Melon SSC Reflection 750-950 nm CARS-PLS P Li et al.”
RMSEP = 0.73 Brix
2 _
. . . R, =0.75 . .
Mango Firmness Reflection 400-1130 nm iPLS P Mishra et al.”™
RMSEP=5.92 Hz?g?/3
2 _
Tomato SSC, TA Reflection 12952611 nm PLS R;, =0.86(SSC) Borba ct al
R2 =0.79(TA)
MAPE=6.95% (TSS)
Orange  Acidity, TSS, Vitamin C Reflection 610, 680, 730, 760, 810, 860 nm BPNN MAPE=11.5% (Vitamin C) Sulistyo et al.™

MAPE=1.38% (Acidity)

Note: a: Abbreviations: DM, dry matter; TA, titratable acidity; TSS, total soluble solids; b: Abbreviations: SO-PLS, sequential and orthogonalized partial leastsquares
regression; RF-PLS, random frog partial least square regression; CARS-PLS, competitive adaptive reweighted sampling partial least square regression; iPLS, interval
partial-least square; BPNN, backpropagation neural network; c: Abbreviations: R,’, the coefficient of determination of prediction; RMSEP, the root mean square error of
prediction; RPD, the ratio of the standard deviation of the reference destructive SSC to the RMSEP; R?, the coefficient of determination; RMSECYV, the root mean square
error of cross-validation; RMSE, the root mean square error; MRER, mean relative error rate; MAPE, mean absolute percentage error

4.3 Challenges and possible solutions

1) The challenge of extensive and overlapping spectral
information. The data collected by spectroscopy often presents high-
dimensional characteristics, and a large amount of band information
contains extensive and overlapping absorption characteristics. It is
difficult to interpret the raw absorption spectrum of fruits, and
further wavelength selection and data processing methods are
required””. In the NIR band, there are also short-wave near-infrared
(SWNIR) (780-1100 nm) and long-wave near-infrared (LWNIR)
(1100-526 nm). The common commercial portable spectrometers
usually cover the Vis-SWNIR of 380-1100 nm or the 900-1700 nm
of NIR. The narrow band range ensures the resolution and detection
accuracy of the device. However, the third overtone signal in the
SWNIR is weak and overlapping, which is not conducive to the
construction and optimization of the model. The LWNIR has less

overlap and stronger signal, but there is a problem of insufficient
penetration depth®.

Redundant band information and noise will complicate the
model and reduce the calculation speed. In previous studies, many
wavelength selection algorithms have been developed and used, and
CARS is very effective in constructing characteristic wavelength
models. In addition, the fusion of multiple wavelength selection
strategies can achieve better performance. Yun et al.”® made full
use of the combination of variable combination population analysis
(VCPA) with iterative retained information variables (IRIV) and
genetic algorithm (GA) to obtain new models VCPA-GA and
VCPA-IRIV with higher predictive power than the CARS model. In
addition, two portable spectrometers with different wavelength
ranges can effectively detect different spectral regions and then fuse
complementary information®. It has also been verified that a higher-
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precision prediction model can be obtained. This is also a way to
indirectly reduce the overlap of spectral information.

2) The challenge of establishing a highly robust model and
calibration model transfer. For fresh fruits, a high degree of
biological variability will cause the prediction model to fail.
Biological variability is related to different fruit varieties, harvest
seasons, storage conditions and fruit ripening stages”'*"!. Therefore,
the models in the current portable spectroscopy device need to be
adjusted or updated when they are applied to new environmental
conditions. In the field test, there will be more than one portable
device. Usually, the models developed by these devices are specific,
and their calibration models may fail when transferred to other
devices.

Recently, deep learning (DL) has performed better than PLS
methods in predicting single fruit traits. This is due to the huge data
set generated by the widespread use of low-cost spectrometers!'""),
and the robustness of the prediction model established by DL on the
basis of large data sets is much higher than that of regression
methods such as PLS, which can greatly improve the performance
of portable devices. At present, there are some cases in which deep
learning is used to improve spectrum prediction'”'*, In addition,
many new calibration model transfer strategies have also been
verified to have certain application prospects. In previous studies,
spectral response adjustment methods such as piecewise direct
standardization (PDS), spectral space transformation (SST), and
calibration model transformation based on canonical correlation
analysis (CTCCA) have been proposed and achieved good
results'®”.  Slope/Bias correction (S/B) is suitable for many
application environments by adjusting the final predicted value
instead of correcting the spectral response. Li et al.'™ used the
combination of PDS and S/B method to prove that PDS has better
performance than SST and CTCCA. The high accuracy of R;=0.926
and RMSEP=0.778% is achieved when predicting SSC.

5 Discussion

Robotics and sensing technologies are developing rapidly, and
the agriculture is also enjoying dividends. Robot picking has always
been a hot research direction in the agriculture field. The focus of
the research starts from how to harvest fruits, and gradually
develops to how to harvest fruits quickly and without damage, and
then to detect the quality of fruits in future harvests. Therefore, the
fruit and vegetable quality detection in the picking field has
gradually been paid attention to. In recent years, the research on the
non-destructive inspection technology of fruit and vegetable quality
has also been in full swing. The more popular ones are optics-based
technologies (Machine vision, Spectroscopy), acoustics-based
technologies, tactile-based technologies, and chemical-based
technologies (Artificial nose, Artificial tongue), etc. However, these
technologies are generally still in the laboratory stage, and some of
them are not suitable for picking scenes and are more suitable for
indoor grading systems temporarily. Among the publications
reviewed in this article, only a few cases have been successfully
carried out outdoors, such as spectral imaging equipment mounted
on UAVs and portable spectral equipment. Many experiments
conducted indoors rely on powerful hardware devices and deep
learning algorithms, and have achieved good results, but the tests in
the picking scene need further follow-up.

The combination of picking patterns and agronomy to create
controlled cultivation environments (including crop -cultivation
patterns and controlled artificial environmental light sources) is the
direction in which many companies developing picking robots are

currently working. We believe this is also the basis for the future
realization of fruit and vegetable quality detection in picking
scenarios. In the case of apples, for example, apple trees have
gradually evolved from a tall, disorderly shape to various new
growth patterns adapted to mechanized harvesting. The use of new
canopy structures and layered harvesting strategies can effectively
reduce the problems associated with branch shading. In the
picking period, both effectiveness and efficiency need to be
considered. Therefore, the quality detection sensing technology
combined with robotic picking in the future needs a combination of
qualitative and quantitative detection to ensure effectiveness and
efficiency. Compared with the two detection methods mentioned in
the article based on optical principles, the tactile sensor receives
relatively less interference from light and temperature. Tactile
sensors can perform both qualitative and quantitative detection.
Tactile sensors for quantitative analysis are highly accurate, but are
less repeatable and susceptible to environmental disturbances.
Vision-based tactile sensors are a breakthrough direction that can be
made in recent years. In addition, cilia-based tactile sensors that can
qualitatively analyze the surface quality of fruits and vegetables
based on the research of nanomaterials are another promising
research area. Two other optical based non-contact quality detection
methods cause less damage to fruits and vegetables. RGB-based
imaging is more sensitive to color and texture, and therefore has an
advantage in detecting size, color, and surface defects. However, it
performs poorly for defects that are not visible to the naked eye
(e.g., bruises, early mold, etc.). Combining RGB bands with other
bands of imaging techniques can enhance the information
acquisition capability. Compared with hyperspectral imaging,
multispectral imaging technology can acquire data faster and is
more suitable for picking scenarios. Spectral technology can obtain
information such as SSC of fruits and vegetables, however, it is
influenced by external factors such as temperature and equipment,
and the calibration of the spectrum needs to be further optimized.
With the support of big data, researchers can share the collected
data, including image data as well as spectral data. Through model
training, deep learning detection models with higher robustness can
be obtained for detecting external quality (size, color, surface
defects, etc.) as well as internal quality (SSC, internal lesions, etc.)
of fruits and vegetables. Also, the lightweight deep learning models
researched in recent years help models to be deployed on edge
devices with limited computational capability, which provides a
research basis for quality detection during robotic picking. The
development of portable devices provides new ideas for the
integration of multiple sensing devices on manipulators and the
design of manipulators. The integration of multi-sensor and multi-
sensing modes in the future will also be an important guide for the
development of quality detection technology.

6 Conclusions

In this study, we focused on reviewing the quality inspection
techniques used in the fruit-picking process, and analyzed the
techniques based on optical principles (Machine vision,
Spectroscopy) and technologies based on tactile sensing. Starting
from some existing application cases of various technologies, each
chapter introduces the more prominent problems and challenges of
this kind of sensing technology, and gives some possible solutions,
some related technologies that have the potential to be applied in the
future are also introduced in the article. In the discussion, we also
discussed the current research status, some common challenges and
future prospects.
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