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Abstract: In order to realize the intelligent identification of maize leaf diseases for accurate prevention and control, this study

proposed a maize disease detection method based on improved MobileNet V3-small, using a UAV to collect maize disease

images and establish a maize disease dataset in a complex context, and explored the effects of data expansion and migration

learning on model recognition accuracy, recall rate, and F1-score instructive evaluative indexes, and the results show that the

two approaches of data expansion and migration learning effectively improved the accuracy of the model. The structured

compression of MobileNet V3-small bneck layer retains only 6 layers, the expansion multiplier of each layer was redesigned,

32-fold fast downsampling was used in the first layer, and the location of the SE module was optimized. The improved model
had an average accuracy of 79.52% in the test set, a recall of 77.91%, an Fl-score of 78.62%, a model size of 2.36 MB, and a
single image detection speed of 9.02 ms. The detection accuracy and speed of the model can meet the requirements of mobile or

embedded devices. This study provides technical support for realizing the intelligent detection of maize leaf diseases.
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1 Introduction

Maize is a major food crop in the world for both grain and feed
purposes'l. Safeguarding the quality and increasing the yield of
maize is of great practical importance for world food security.
Prevention of maize pests and diseases is an important part of field
management. Precise treatment and scientific decision-making have
become important indicators in smart agriculture. In maize leaf
diseases, traditional methods often rely on experienced experts and
laborers on the spot to identify manually. This method is highly
subjective and labor-intensive. Thus, the use of image processing
technology for rapid and accurate diagnosis of maize diseases is of
great importance for maize production. Therefore, the rapid and
accurate diagnosis of maize diseases by image processing
technology is of great significance to maize production.

With the rapid development of machine vision technology,
scholars from domestic and international have done a lot of research
in plant disease recognition by using deep learning and image
processing techniques. Common deep learning classification models
include Convolutional Neural Network (CNN)?, Visual Geometry
Group (VGG)®, Residual Neural Network (RestNet)* and
lightweight MobileNet V3P, Inception V3, etc. In the neural
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network model, as the number of convolution layers increases, the
recognition accuracy of the model will increase, but at the same
time the volume of the model will also increase the running speed
will decline, such as VGG16 compared to VGG19 volume is
smaller, but the recognition accuracy has declined. The RestNet
increases the residual structure, the network layer can be deeper
without degradation, the network layer of RestNetl52 was 152
layers, and the recognition accuracy has been greatly improved
compared to RestNe50. However, the large size of the model is
difficult to deploy. The lightweight model significantly reduces the
model size, while the accuracy is slightly reduced to speed up the
model operation so that it can run on mobile phones and embedded
devices, which has become a hot spot for many scholars to study.
For the study of the MobileNet V3 deep learning model in
agriculture, Ying et al.”’ detected various weeds in carrot fields,
replacing the original YOLO-V4 backbone
MobileNetV3-Small. Combining deep separable convolution,
inverted residual structure, introducing lightweight attention

network with

mechanism, and reducing the memory required to process images,
making the detection model more efficient. Tarek et al.l®
investigated various deep CNN techniques to detect and identify
tomato leaf diseases. CNN models including ResNet50,
InceptionV3, AlexNet, and three versions of MobileNet were
trained on the Plant-Village dataset. Each model was trained using
different optimization techniques such as Adam, Adagrad,
RMSProp, and SGD. MobileNetV3 Large achieved a maximum
accuracy of 99.81% using the Adagrad optimizer with a loss value
of 0.0088. Tang et al.”? dynamically collected images of leather
eggs on a three-row egg conveyor, trained several deep learning
classification models, and comprehensively compared the detection
speed and detection effectiveness of the models. The comparison
results showed that MobileNetV3-large was the best detection
model with a detection time of only 4.267 s for 300 images and a
detection accuracy of 96.3%.

Based on deep learning and image processing, the study of
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maize leaf disease recognition has also been done by scholars.
Priyadharshini et al.'® proposed a deep CNN-based structure
(modified LeNet) for maize leaf disease classification, and
experiments were conducted using maize leaf images from the
PlantVillage dataset for training and testing. The results showed that
the final model achieved 97.89% accuracy of the final model.
Mingjielv et al.""! presented an image-enhanced and DMS robust
Alexnet-based method for identifying maize leaf disease, which
demonstrated the ability to recognize and distinguish healthy leaves
from six different maize leaf diseases. First, the maize leaf disease
features were enhanced. Then the DMS robust Alexnet was
constructed for recognition and classification with 98.62%
recognition precision. Zeng et all'” proposed a SKPSNet-50
convolutional neural network model. Firstly, the 3x3 convolutional
kernels in the backbone network ResNet-50 were replaced with the
Selective Kernel-Point-Swish B (SKPS), and the ReLU activation
function was replaced with the Swish BB activation function.
Compared with the original, the average recognition accuracy of the
final model was 92.9%. The average recognition accuracy of the
final model was 92.9%, which was 6% higher than that of the
original model. It can be seen that scientists in maize leaf disease
identification mostly use large networks, focusing on the accuracy
of the network to achieve excellent detection accuracy. But
lightweight networks of maize leaf disease rapid identification of
research is relatively small.

The former obtained high accuracy rates in plant disease
identification with the help of machine vision technology, which
can provide technical support for intelligent disease judgment™. For
the field maize crop, due to the complex field environment, the
model generalization ability is poor and the accuracy is low. The
model is not suitable for practical application if the disease images
are studied in a single background. Therefore, this study proposed
an improved MobileNet V3-small-based maize leaf disease
detection method. Firstly, a drone was used to acquire maize disease
images, classify the images acquired by the drone to create a maize
leaf disease dataset, and expand the dataset. Data expansion and
transfer learning techniques were trained to improve the recognition
accuracy of the model in this study.

2 Experiments and methods

2.1 Image acquisition
The image data acquisition site for this experiment was the

Science and Technology Innovation Experimental Field of
Shandong Agricultural University, China in late August 2020, and
the DJI Mavic 2 Zoom 12-megapixel UAV was used for image
acquisition. As shown in Figure 1, the cruise video acquisition was
conducted at a height of 0.5 m above the maizefield and the camera
was adjusted for different angles, and the total duration of the final
five video segments was 15 min. This method does not need to enter
the maizefield for manual filming, which greatly improves the
working environment of the filmmaker and reduces the work
intensity.

b,

1.UAV 2. Maizefield

Figure 1 Schematic diagram of the picture collection site

2.2 Data pre-processing

After the video acquisition, the open source computer vision
library OpenCV-python in python 3.8 was used to take frames and
save one image every 10 frames, and the saved images were
cropped and classified to select four common maize diseases, maize
small spot, maize large spot, maize rust, and healthy maize leaves
and number each species, totaling 2034 images were selected. When
the test sample was not rich enough, it would cause the recognition
rate in the field environment to be lower than that in the laboratory
condition by about 30%!"". Therefore, in this study, the existing data
set was expanded by rotating, flipping, and changing the brightness
of the images. The effect of the image data before and after
expansion was shown in Figure 2, and the total number of images
after expansion was 8134, and the distribution was listed in Table 1.
The expanded dataset was divided into 80% for model training,
10% for model validation, and 10% for model testing.

'3

a. Original drawing b. Horizontal flip

c. Enhanced contrast

d. Gaussian noise e. Translation

Figure 2 Data enhanced image of maize leaf disease data

2.3 MobileNet deep learning network

The final application of the maize leaf disease recognition
model was piggybacked on mobile and embedded devices, and this
study used MobileNet V3, a lightweight neural network suitable for
mobile and embedded devices. MobileNet V3 was a next-generation

lightweight network proposed by Google after MobileNet V2 model
using a combination of search technology and architectural design,
which had a certain performance improvement compared with
V2o,

The core unit of MobileNet was depthwise separable
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Table 1 Distribution of maize disease samples

. Number of Number of samples
Name of disease - .
original samples after expansion

Southern blight of maize 0 504 2515
Northern leaf blight of maize 1 505 2518
Puccinia polysora 2 520 2596
Normal blade 3 505 505
Totaling - 2034 8134

convolution, which was an operation that decomposes the standard
convolution into two parts: depthwise convolution, which applies
each convolution kernel to all channels, and point-wise convolution,
which turns the standard convolution into a 1x1 convolution kernel.
Point-wise convolution was used to combine the output of all the
convolution channels, which greatly reduces the number of
parameters and the computational effort of the model®..

MobileNet V3 introduces a lightweight attentional squeeze and
excitation (SE) model™ based on a compressed reward and
punishment network based on V2. The SE model could assign its
own weights on the feature map through the training process so that
the network selectively amplifies valuable feature channels from
global information and suppresses useless feature channels"”. The H-
Swish function was utilized in the model activation function, which

Bottleneck
3*3

mainly prunes the input x by ReLU6 (x) was a function that ensures
that the output was in the range of 0 to 6 to reduce the responsibility
of the additive calculations, which was given by

ReLUG6(x+3) 0
6
where, x is the input value; y is the output value; ReLU6 is the
trimming function.
In this study, MobileNet V3-small was used as the basic
network for network model design. As shown in Figure 3, the
network structure of MobileNet V3-small consists of six parts, each

of which includes "blocks". First, the sampled image passes through
a 3x3 convolutional layer to generate partial features of sample
images, and then further extract rich details in several bottleneck
structures. Finally, a convolutional layer was applied to pool
convolutional layer operations instead of a classifier to distinguish
objects and foregrounds. In these operations, the two bottleneck
structures are combined by connecting the front and end of a few
identical moving inversion bottleneck DIRC (MBCONYV) outputs,
adding Squeeze and Excitation (SE) and nonlinear H-shapes for
optimization. Using a bottleneck structure in the network allows
shallow neural networks to capture image features through a global
receptive field and provide a description for the image.

Pooling
7*

Figure 3 Network structure and process flow diagram of MobileNet V3-small

2.4 Transfer learning

As shown in Figure 4, transfer learning is a machine learning
and deep learning approach that takes a convolutional neural
network model on one task and makes it applicable to a new task
with simple adjustments”. Unlike traditional machine learning, the
source and target domains, source and target tasks of migration
learning can be different®, which can speed up the convergence
speed of new network models when training to improve detection
accuracy. The dataset studied in this study was relatively limited,
and in order to improve the generalization ability of this model to
speed up the training of the model and obtain good training results.
The training weight parameters on the ImageNet dataset with about
1.2 million images were used to guide the training of the dataset for

Source domain

Transfer learning

Figure 4 Schematic diagram of transfer learning

maize leaf diseases.

2.5 Improvements to MobileNet V3-small deep learning model

Although MobileNet deep learning network was suitable for
embedded devices and mobile, there was still room for
improvement in applying the model to maize disease identification.

Therefore, the speed and accuracy of the MobileNet V3-based
maize disease identification model should be improved to make the
model obtain the best performance.

2.5.1 Network model structured compression

The classification accuracy of MobileNet V3-small tested on
the public ImageNet dataset was about 65%. The ImageNet dataset
was huge, with about 1.2 million images and 1000 classes of
images®!. The dataset in this study has only about 8000 images and
4 classifications, which is a small dataset in comparison. The
original network model was bound to produce redundant
parameters, so the model was structured to be compressed to reduce
the model computation.

There were various ways to compress the model. The
unstructured compression had a different operation for each layer of
the convolutional kernel, making the convolutional kernel irregular,
which made it extremely difficult to perform model transformation
later to make it suitable for embedded device computation. Hence,
this study adopted a structured compression approach to lightweight
the MobileNet V3-small by changing the size of the convolutional
kernel and removing the convolutional layers. Only 6 layers of the
bneck layer of the model were retained, and four layers of the 5x5
convolutional kernel module were deleted. The expansion multiplier
of each layer was redesigned, and the number of channels of the
first convolutional 16 layer in the bneck was doubled to 32 channels
in order to speed up the downsampling rate. The final compressed
MobileNet V3-small network structure was listed in Table 2.

2.5.2  Squeeze and Excitation (SE) module appropriate location

The Squeeze and Excitation (SE) module mainly learns the
correlation between channels and extracts channel-specific
attention, which slightly increases the computational effort. But
improves the model accuracy significantly was improved. The SE
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module was added after the internal and deep convolution of the
bottleneck structure of the MobileNet V3-small network model. For
embedded devices, extensive use of SE module will increase the
running time of the model. Considering the balance between speed
and accuracy of the model, the SE module was added to the fourth
and last layer of the network bneck layer, which operation also
achieved similar accuracy. The final improved MobileNet V3-small
network structure was listed in Table 3.

Table 2 Structure of the compressed MobileNet
V3-small model

Input (WxHxNumber of channels) Operator exp size Out Stride
224x224x3 Conv2d, 3x3 - 32 2
112x112%32 Bneck, 3x3 32 32 2

56x56%32 Bneck, 3x3 64 32 2
28%28x32 Bneck, 3x3 120 40 1
28%28x40 Bneck, 5%5 240 48 2
14x14x48 Bneck, 5%5 288 96 2
7x7%96 Bneck, 5%5 288 112 1
7x7x112 Conv2d, 1x1 - 288 1
7x7%288 Pool, 7x7 - -- 1
1x1x288 Conv2d, 1x1.NBN - 1024 1
1x1x1024 Conv2d, 1x1.NBN - k 1

Note: W: Width; H: Height.

Table 3 Structure of the improved MobileNet V3-small
network model

Input (WxHXxNumber of channels) Operator exp size Out SE Stride
224x224%3 Conv2d, 3x3 - 32 - 2
112x112%32 Bneck, 3x3 32 32 - 2

56x56%x32 Bneck, 3x3 64 32 - 2
28%28x32 Bneck, 3x3 120 40 - 1
28%28x40 Bneck, 5x5 240 48 1 2
14x14x48 Bneck, 5x5 288 96 - 2

Tx7%96 Bneck, 5x5 288 112 1 1
TxTx112 Conv2d, 1x1 - 288 - 1
Tx7%288 Pool, 7x7 - |
1x1x288 Conv2d, IXI.NBN -~ 1024 -- 1
1x1x1024 Conv2d, IXI.NBN -~ k- 1

Note: SE: Squeeze and Excitation.

3 Results and discussion

3.1 Test environment

The hardware test environment in this study is a Lenovo laptop
(y9000p) with an Intel Pentium i5-12700H processor at 3.5 GHz
and GeForce GTX 30606 G GPU. The software test environment is
Windows 10, the computer programming language is python 3.8,
the machine learning library is pytorch 1.10.0, and the parallel
computing architecture is CUDA10.2.
3.2 Evaluative indicators

In this study, in order to analyze and evaluate the performance
of the trained model, recognition accuracy, recall, and Fl-score
were selected as valid indicators of the detection results, and the
average recognition speed during testing was used to reflect the
performance of the model together. The average recognition time is
the ratio of the total time consumed for sample testing to the
number of samples tested, and the average recognition accuracy,
recall, and F1-score (F1) are calculated as follows:

TP

P=7
TP+ FP

x 100% 2)
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TP
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PXR
F1=2 1009 4
x P+R % % “)

where, P means precision, is the proportion of all positive
predictions that are correct; R means Recall, is the proportion of all
real positive observations that are correct; TP means True Positive,
for example, where the true value of the model is 1 and the
predicted value is 1; TN means True Negative, for example, where
the true value of the model is 0 and the predicted value is 0; FP
means False Positive, for example, where the true value of the
model is 0 and the predicted value is 1; FN means False Negative,
for example, where the true value of the model is 1 and the
predicted value is 0; Fl-score (F1) is the harmonic mean of
precision and recall.
3.3 Experimental analysis
3.3.1 Analysis of migration training results

The training and validation datasets in the experiments were
expanded maize disease image datasets, and seven network models,
ResNet18“, ResNet50, MobileNet V222, MobileNet V3-small®,
MobileNet V3-large™, and Xception41*! were used to compare the
effects of migration training on the models. The experimental
results in the test set were listed in Table 4.

Table 4 Different models were used to identify maize diseases

Model Transfer Total test set Total test set
training accuracy/% recall/%

No 70.14 71.25

ResNet 18
Yes 73.61 73.68
No 74.28 72.38

ResNet 50
Yes 76.05 75.83
. No 64.02 63.87

MobileNet V2
Yes 65.06 65.07
. No 78.77 78.40
MobileNet V3-small
Yes 80.66 79.83
. No 80.36 80.12
MobileNet V3-large
Yes 82.45 81.28
No 65.48 63.14
DenseNet121

Yes 68.17 65.59
X No 69.29 68.38

Xception 41
Yes 72.25 72.20

From Table 4, it could be seen that whether the network model
uses migration training or not had an effect on the precision and
recall of the model, and there was more than a one percentage point
improvement in precision and recall in all models. Accuracy
improvement was most significant at 3.47% in model ResNet 18
after training with migration and at 1.04% in model MobileNet V2
after training with migration. In the MobileNet V3-small model, the
accuracy improvement of the model after training with migration
was 1.89%. The recall improvement was 1.43%, which proves that
migration training was an effective way to improve the recognition
accuracy of the model in this paper.

3.3.2 Data extension training results analysis

The purpose of data extension is to improve the grid model
recognition accuracy and prevent overfitting®. In this subsection,
the experimental results of training maize leaf disease recognition
models for three models, MobileNet V3-large, MobileNet V3-small,
and improved MobileNet V3-small, were shown in Figure 5.

From Figure 5, it could be seen that the data expansion had a
significant impact on the precision, recall, and F1 metrics of the
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three models, and the evaluation metrics of all three models showed
a 10 percentage points improvement after the data expansion. In the
P metric MobileNet V3-small model showed the smallest
improvement of 12.21% and the largest improvement was 13.24%
for the improved MobileNet V3-small model. In the R metric, the
MobileNet V3-large model has a minimum improvement of
11.73%, and the largest improvement was 12.82% for the improved
MobileNet V3-small model. The smallest improvement in F1 was
11.73% for the MobileNet V3-large model, and the largest
improvement was 14.53% for the improved MobileNet V3-small
model. This indicates that data expansion is an effective way to
improve model accuracy.

= MobileNet V3-large = MobileNet V3-small
Improved MobileNet V3-small

100
= 80
2 60
8 40
53
~ 20
P R Fl1 P R Fl1
Before expansion After expansion

Figure 5 Comparison of model metrics before and after expansion

3.3.3 Analysis of the location results of structured compression
and SE modules

The purpose of structured compression for the network model
was to reduce redundant parameters and to find a balance between
the recognition accuracy and computational effort of the network
model®. In order to find a suitable model for the maize disease
dataset in this study, the location and number of convolutional
kernels and convolutional layers removed from the MobileNet V3-
small network model were experimentally analyzed, as well as the
appropriate location of the SE module in the model. Three schemes
for the combination of structured compression and SE module
proper location were designed and counted as Schemes A, B, and C,
respectively. Scheme A retains only 8 layers for the bneck layer and
removes three layers of the 5x5 convolutional kernel module in size
while retaining the SE module in only the last two layers, and the
network structure was listed in Table 5. Scheme B was the final
model designed in this study, with the network structure listed in
Table 3. Scheme C retains only 8 layers for the bneck layer,
removes three layers of convolutional kernel modules of size 5x5,
uses a channel number of 32 in the first layer of bneck, doubles the
number of channels in this layer, increases the convolutional kernel
in the last layer from 5x5 to 7x7, while retains the SE module only
in the last two layers, with the network structure as listed in Table 6.

Table 5 Scheme A network model structure

Input (WxHxNumber of channels) Operator exp size Out SE Stride
224x224x3 Conv2d, 3x3 - 6 -- 2
112x112%x16 Bneck, 3x3 16 16 - 2

56x56x16 Bneck, 3x3 64 24 - 2
28x28%24 Bneck, 3x3 72 24 - 1
28x28x24 Bneck, 5x5 96 40 - 2
14x14x40 Bneck, 5x5 120 40 - 1
14x14x48 Bneck, 5x5 288 9% - 2
7x7%96 Bneck, 5x5 576 9% 1 1
TXTx96 Bneck, 5x5 576 9% 1 1
7x7%96 Conv2d, 1x1 - 576 - 1
Tx7x576 Pool, 7x7 - - - 1
1x1x576 Conv2d, 1x1.NBN - 1024 -- 1
1x1x1024 Conv2d, 1x1.NBN - k- 1

Table 6 Scheme B network model structure

Input (WxHxNumber of channels) Operator exp size Out SE Stride
224%224%3 Conv2d, 3x3 - 32 - 2
112x112%32 Bneck, 3x3 32 32 - 2

56x56%32 Bneck, 3x3 64 32 - 2
28%28x32 Bneck, 3x3 120 40 - 1
28%28x40 Bneck, 55 120 40 - 2
14x14x40 Bneck, 55 240 48 - 1
14x14x48 Bneck, 55 288 96 - 2

Tx7%96 Bneck, 55 576 9% - 1

TxT*x96 Bneck, 5x5 672 112 1 1
Tx7x112 Conv2d, 1x1 - 672 1 1
TXT%672 Pool, 7x7 - P |
1x1x672 Conv2d, IXI.NBN -~ 1024 -- 1
1x1x1024 Conv2d, IXI.NBN -~ k- 1

The recognition accuracy, recall, and F1 metrics were taken as
evaluative metrics in the experiment. The results were listed in
Table 7, while the model size (MB) and test set single test time
were taken as evaluative metrics, as shown in Figure 5. As can be
seen from Table 7, among the three metrics, the recognition
accuracy of Scheme B was 79.52%, the recall rate was 77.90%, and
the F1 metric was 78.62%. The recognition accuracy of Scheme A
was the lowest, and the recognition accuracy of Scheme C was the
highest. In Scheme C the recognition accuracy, recall rate, and F1
index of the model improved by more than five percentage points
compared with the original model. It shows that different strengths
of structured compression and different positions of SE modules
had significant effects on the precision, recall, and F1 metrics of the
model.

Table 7 Identification results of maize leaf diseases in
different scenarios

Scheme P/% R/% Fl-score/%
Scheme A 74.49 75.28 75.18
Scheme B 79.52 77.90 78.62
scheme C 85.67 85.02 85.36

As Figure 6 shows the maximum model of C among the three
schemes was 5.41 MB, which exceeded the original model, and the
test set single test time was 10.01 ms, while the model of Scheme B
was the smallest in the comparison at 2.36 MB and the minimum
single test time was 9.02 ms. The comparison found that the
recognition accuracy of Scheme A decreased by 5.03% compared
with Scheme B, but the model size was increased by 2.15 MB
compared with Scheme B.

Considering that the detection speed of 10 ms/image can
already meet the needs of real-time monitoring, the speed of
recognition was guaranteed and the solution with high recognition
accuracy was chosen as much as possible. Finally, it was considered
that Scheme B could be the most suitable solution.

3.3.4 Analysis of results before and after model improvement

The test indexes before and after model improvement were
listed in Table 8. By comparing the test indexes before and after
improvement, it was found that the size of the improved MobileNet
V3-small network model was reduced by 2.53 MB, which was
51.74% compared to the model size before improvement. It greatly
reduced the amount of computation for later porting to embedded
devices. The running time of each test image was reduced by 0.87
ms, while the average recognition accuracy of the model was
reduced by only 1.14%, the average recall was reduced by 1.92%,



230  May, 2023 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 16 No. 3
6 10.2
s 10.0 F
£ 98t
£
m L g L
s 4 = 9.6
N 2 94F}
‘% 3F g
o] 2 92F
g Rz}
s 2t S o90¢F
2 88}
1F n
8.6F
8.4
Scheme A Scheme B Scheme C Scheme A Scheme B Scheme C
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structures of different schemes
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Figure 6 Model size, single image test time comparison chart

Table 8 Comparison test results before and after model

improvement
Speed of
Model Model single image Typp s of P/% R/% Fl-score/%
size/MB i leaf diseases
recognition/ms
0 79.13 88.91 83.73
1 78.02 75.59 76.79
MobileNet ¢ 9.89 2 7821 7597 81.23
V3-small
3 87.26 78.85 69.49
Average  80.66 79.83 77.81
0 80.85 85.5 83.11
Improved 1 74.81 77.15 75.96
MobileNet  2.36 9.02 2 85.74 77.82 81.59
V3-small 3 7667 7115 7381

Average  79.52 7791 78.62

and the average F1 index was increased by 0.81%. Among them,
the recognition accuracy of different maize leaf disease types had

Loss per epoch

—e— Validation set
0.010 —o— Training set
0.008 -
2 0.006 -
]
=
0.004 -
0.002 +
O, i i i i i
0 20 40 60 80 100
Epoch

a. MobileNet V3-small loss

improved and decreased, such as the accuracy of the improved
model to recognize leaf disease type 0 increased by 1.73%, and the
Fl-score of the improved model to recognize leaf disease type 1
decreased by 0.83%.
3.4 Loss and accuracy of model training and validation sets
The loss curve consisting of the loss function values of each
training round could measure the goodness of the model prediction.
In this study, before and after improving the model, the loss curves
of the training and validation datasets were compared as shown in
Figure 7. The loss values of the model training set decreased rapidly
in the first 20 rounds of iteration, and the loss values of the model
decreased slowly and approached 0 value gradually and smoothly
after 20 rounds. It was found from the loss values of the validation
set before and after the model improvement that the jump of the
improved loss value was significantly smaller than that of the model
before the improvement indicating that the improved model was
more robust, which was proved by the change of the loss curve that
the improved model training was effective.
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Note: val: Validation set; train: Training set.

Figure 7 Comparison of model loss curves before and after improvement

After each round of training, the recognition accuracy was
calculated for both the training and validation sets to measure the
goodness of the model prediction. As shown in Figure 8, this study
compared the recognition accuracy curves of the training and
validation datasets of the model before and after the improvement.
The recognition accuracy of the training and validation sets of the
model increases rapidly in the first 20 rounds of iterations, and the
recognition accuracy of the training and validation sets of the model
increases slowly and tends to level off in the second 20 rounds. The
accuracy of the training set gradually approaches 1, and the
accuracy of the validation set gradually approaches 0.95. The

comparison of the accuracy of the model before and after the
improvement in different rounds proves that the recognition
accuracy of the improved model meets the requirements.
3.5 Confusion matrix for the test set

A confusion matrix is a specific matrix used to visualize the
performance of an algorithm for supervised learning, indicating the
presence or absence of confusion in multiple categories in an NxN
square matrix, where each column represents the predicted value
and each row represents the actual category. In this study,
MobileNet V3 was used with modified MobileNet V3 for the test
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Figure 8 Accuracy diagram of the model before and after improvement

set to identify maize leaf diseases and produce a confusion matrix
with numbers 0, 1, 2, and 3 corresponding to the four maize small
spot diseases, maize large spot disease, maize rust, and healthy
maize leaf labels, respectively. As shown in Figure 9, it was
observed that the MobileNet V3 model made the most errors in
identifying Label 1 for maize small spot disease and the least errors
in identifying Label 3 for healthy maize leaves. The number of
errors for all classifications identified by the improved MobileNet
V3 model increased slightly compared to the original model,

- 200
0- 218 30 3
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150
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125
100
2 4 18 212 75
50
y g g ; 0
0 1 2 3

a. MobileNet V3-small

indicating a slight decrease in the accuracy of classification
identification. The same improved model has the most errors for
Label 1 and the least errors for Label 3, indicating that the model is
most difficult to identify the small spot disease in the maize leaf
disease, while the model is least difficult to identify the healthy
maize leaf with obvious characteristics. The number of confusion
matrix error tiles in the test set before and after the overall
improvement met the requirements and effectively proved the
effectiveness of the model in this study.
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b. Improved MobileNet V3-small

Figure 9 Confusion matrix of the model before and after improvement

3.6 Analysis of public data set test results

The Plant-village dataset includes more than 50 000 healthy
and diseased images divided into 38 categories, and this subsection
extracts the dataset of maize leaf diseases in a single context for the
validation of the improved before-and-after model. The extracted
dataset was classified in the same way as the dataset in this study,
with 433 images of maize small spot disease, 354 images of maize
large spot disease, 187 images of maize rust disease, and 432
images of healthy maize leaves, totaling 1406 images, and the
classification labels were indicated by the numbers 0, 1, 2, and 3.
This dataset was partitioned using the same way of making the
dataset of this study, and the model was trained and tested in the
same software environment. MobileNet V3-large, IMobileNet V3-
small, and modified MobileNet V3-small were used to test this
dataset without any other optimization methods, and the results
were listed in Table 9.

From Table 9, it could be seen that training and testing the
model on the public dataset achieved excellent results, and the
improved MobileNet V3-small model P, R, and F1 metrics
generally outperformed the unimproved MobileNet V3-small

model, with P improving by 2.75 percentage points. Compared with
the MobileNet V3-large model, the improved model reduces P by
2.12 percentage points, R by 0.15 percentage points, and F1 by 1.14
percentage points, but the size of the model was only 15.24% of that
of the MobileNet V3-large model. The superiority of the improved
model is fully demonstrated.

Table 9 Experimental results of the public data set model

Model Model size/MB ~ P/% RI% F1/%

MobileNet V3-large 15.3 95.12 9450 9481
MobileNet V3-small 4.89 90.25 91.16  90.70
Improved MobileNet V3-small 2.36 93.00 9435 93.67

4 Conclusions

In this study, maize disease image acquisition of maize fields
by UAV was used to establish a maize disease dataset in a complex
context, and the lightweight convolutional neural network
MobileNetV3 was improved by keeping only 6 layers in the bneck
layer of the model, redesigning the expansion multiplier of each

layer, using a 32-fold fast downsampling method in the first layer,
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optimizing the position of the SE module in the structure, and using
only two SE module operations. The improved model was subjected
to migration learning on the expanded dataset to obtain the maize
disease classification model, and the recognition accuracy, recall,
F1 index, operation speed, and model size of the model in this study
were compared with other models for experimental analysis, and the
following conclusions were obtained.

In comparing the model accuracies of data expansion and
migration learning for the self-built dataset, the detection accuracy
of the model with data expansion improved by 10 percentage points
on average, while the best accuracy of the model trained with
migration learning improved by 3 percentage points, proving that
both treatments can improve the recognition accuracy of the model.

This model had an average accuracy of 79.52% in the test set of
the self-built dataset, which was 1.14 percentage points less than the
average accuracy of the unimproved model, a single test time of
9.02 ms, which was 0.87 ms less than the original model test time,
as well as a model size of 2.36 MB which was 51.74% less than the
original model, greatly improving the overall performance of the
model. The results demonstrate that the detection accuracy and
detection speed of the convolutional neural network-based maize
disease identification model could meet the usage requirements.

In this study, the model was trained and tested on a maize leaf
disease dataset in a single context in the public Plant-village dataset,
and the improved model improved P by 2.75 percentage points, R
by 3.19 percentage points, and F1 by 2.97 percentage points
compared with the unimproved model, and the size of the model
was only 15.24% of the MobileNet V3-large model. The
generalized and superiority of the improved model were fully
demonstrated.

In this study, an improved MobileNetV3 maize leaf disease
recognition method was proposed based on the improved
MobileNetV3 through training and testing, which can quickly and
accurately classify maize leaf diseases, and can further study the use
of recognition models to guide maize leaf disease control on this
basis. In the future, the multimodal recognition method is planted to
further use to detect the disease at the early stage of maize leaf
disease, so as to make disease judgments and control earlier.
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