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Abstract: Aiming at the difficulties of the health status recognition of yellow feather broilers in large-scale broiler farms and
the low recognition rate of current models, a novel method based on machine vision to achieve precise tracking of multiple
broilers was proposed in this paper. Broilers’ behavior in the breeding environment can be tracked to analyze their behaviors
and health status further. An improved YOLOvV3 (You Only Look Once v3) algorithm was used as the detector of the Deep
SORT (Simple Online and Realtime Tracking) algorithm to realize the multiple object tracking of yellow feather broilers in the
flat breeding chamber, which replaced the backbone of YOLOvV3 with MobileNetV2 to improve the inference speed of the
detection module. The DRSN (Deep Residual Shrinkage Network) was integrated with MobileNetV2 to enhance the feature
extraction capability of the network. Moreover, in view of the slight change in the individual size of the yellow feather broiler,
the feature fusion network was also redesigned by combining it with the attention mechanism to enable the adaptive learning of
the objects’ multi-scale features. Compared with traditional YOLOvV3, improved YOLOV3 achieves 93.2% mAP (mean
Average Precision) and 29 fps (frames per second), representing high-precision real-time detection performance. Furthermore,
while the MOTA (Multiple Object Tracking Accuracy) increases from 51% to 54%, the IDSW (Identity Switch) decreases by
62.2% compared with traditional YOLOv3-based objective detectors. The proposed algorithm can provide a technical reference
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for analyzing the behavioral perception and health status of broilers in the flat breeding environment.
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1 Introduction

Growing global demand for broilers requires large-scale
breeding!!. Yellow feather broiler enjoys a reputation for its fast
growth, robust characteristics, and delicacy meat. The consumption
of yellow feather broilers in 2020 reached 4.5 billion, which is
equivalent to that of white feather broilers. In recent years, the
continuous expansion of yellow feather broiler breeding has posed
more challenges for refined management. Real-time perception of
yellow feather broilers’ behaviors and their movement status will
help detect abnormalities in time®, thus improving broiler quality
and yield. Multiple object tracking is significant to the yellow
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feather broiler breeding industry as the basis of real-time behavior
perception.

Multiple object tracking is more complicated than single object
tracking. In multiple object tracking, in addition to object
deformation and background interference, the following problems
need to be solved: (1) the appearance of new objects and the
disappearance of old objects, (2) object re-identification, that is,
accurately distinguishing each object, (3) the interaction and
occlusion between objects, (4) the
disappearing object when it appears again. The complex scenarios
of livestock breeding, unstable lighting conditions, the gathering

re-recognition of the

behavior of livestock, and the similarity between the livestock of the
same species make it difficult to track multiple objects accurately
and attract considerable attention in the application of multi-
objective tracking in animal research areas. Fujii et al.”! developed a
poultry tracking system based on a particle filtering algorithm for
analyzing the behavior of poultry infected with avian influenza.
Based on the support maps pointing to preliminary pig segments,
Ahrendt et al. built a 5D-Gaussian model of the individual pigs for
the real-time tracking of pigs in loose-housed stables. Nakarmi et
al.”! used 3D computer vision and RFID (Radio Frequency
Identification) technologies to develop an automated tracking and
behavior quantification system for individual broilers housed in
groups. Mittek et al.' presented a system that used depth images to
track individual pigs in a group-housed environment. The tracking
method used by this system applied expectation maximization as a
policy for fitting an ellipsoid to each pig.
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The tracking effect of the multiple object tracking algorithm
mainly depends on the accuracy of object detection. The
performance of object detection algorithms improves significantly
with the rapid development of deep learning. The deep learning-
based object detection algorithms can be divided into one-stage
detection algorithms and two-stage detection algorithms. One-stage
algorithms detect objects in images using a single deep neural
network. In contrast, two-stage algorithms propose a set of regions
of interest by selecting a search or regional proposal network first
and then using a classifier to process the region candidates. One-
stage algorithms mainly include YOLO (You Only Look Once)
algorithms”™, SSD (Single Shot MultiBox Detector)!*'?,
RetinaNet), etc. Qin et al.'! proposed a robust online multiple pig
detection and tracking method. This method used SSD to achieve
detection, a correlation filtering algorithm to achieve tracking, and a
novel hierarchical data association algorithm to match detection and
tracking results. Sun et al.'” used the foreground detection method
based on color features and the YOLOV3 algorithm to quickly
identify the yellow feather broilers and then used SORT (Simple
Online and Realtime Tracking) to track the yellow feather broilers
in a flat breeding chamber. Compared with the foreground detection
method, the precision and recall of the YOLOvV3 algorithm were
improved by 11.3% and 17.5%, respectively. Two-stage algorithms
mainly include R-CNN (Region-based Convolutional Neural
Network)"?, Fast R-CNN!"”, Faster R-CNN!", etc. Based on Faster
R-CNN, Sun et al."” solved the problem of target tracking frame
loss in the visual tracking of pigs. Lin et al.”” used Faster R-CNN to
detect and track broilers. The activity level of broilers was
calculated from the tracking results and combined with the THI
(Temperature and Humidity Index) value as a new predictive index
to avoid heat stress in broilers. However, the methods proposed
above tend to run slowly in practical applications. To solve this
issue, the backbone of the YOLOV3 detector was replaced with the
lightweight MobileNetV2, aiming to reduce computational load and
thereby accelerate the model’s inference speed. Additionally,
considering the need to perform multi-object tracking in the
complex scene, attention mechanisms were introduced to enhance
the network’s feature extraction capability.

The accuracy of the tracking results and the real-time ability are
important for the multiple objective tracking algorithms. In terms of
object detection, the one-stage detection algorithm has a faster
inference speed than the two-stage detection algorithm, which
matches the requirements of multiple object tracking. Among the
one-stage detection algorithms, the detection accuracy of the
YOLOV3 algorithm is higher than that of most other algorithms’. In
terms of multiple object tracking algorithms, tracking algorithms
based on the Hungarian algorithm, such as SORT"'" and Deep
SORT™., can meet the requirements of real-time tracking.
Moreover, as an improvement of SORT, Deep SORT extracts the
appearance information of targets through a small CNN. Therefore,
Deep SORT realizes the re-tracking after the target disappears for a
short time, improving the tracking effect of multiple objects.

The combination of improved YOLOv3 and Deep SORT-based
tracking algorithm of yellow feather broilers was proposed in this
paper. The proposed algorithm can also be modified, considering
the size of the yellow feather broiler in the flat breeding chamber
does not change much, and they often aggregate together. This
research improved the detection accuracy of YOLOvV3 by
introducing the DRSN (Deep Residual Shrinkage Network),
modifying the feature fusion network, and using the attention
mechanism to strengthen the target feature. Moreover, by replacing
the backbone of YOLOvV3, the complexity of the network was

simplified, and the detection speed was improved. As a result, the
tracking effect and tracking speed of the entire algorithm were
improved. This method could achieve real-time and accurate
tracking of the broilers’ movement, providing data support for
analyzing the health status of broilers.

2 Materials and methods

2.1 Data acquisition

The broiler house used in this experiment was built in Jinniuhu
Subdistrict, Luhe District, Nanjing City, Jiangsu Province, China.
The broiler house has two chambers with symmetrical structures.
Each chamber has a width of 1.9 m, a length of 2.9 m, and a total
area of 5.51 m**\. Forty-five yellow feather broilers were raised in
each chamber. The video surveillance system comprised
HIKVISION’s CS-C4W-3C2WFR dome network camera,
monitoring host, and network hard disk video recorder. The camera
has a focal length of 2.8 mm and a pixel of 2 million.

2.2 Overall technical route

This paper used a deep learning-based multiple object tracking
algorithm to track the yellow feather broilers in the flat breeding
chamber. The technical route of this experiment (shown in Figure 1)
includes four main parts:

(1) Construction of the object detection dataset and multiple
object tracking dataset.

(2) Training of the object detection module. Train the improved
YOLOV3 algorithm with the object detection dataset and use it as a
detector of multiple object tracking.

(3) Realization of multiple object tracking of yellow feather
broilers. Combine the improved YOLOv3 and Deep SORT to
realize the tracking of yellow feather broilers.

(4) Result analysis. Evaluate the proposed tracking algorithm
based on some key performance parameters (e.g., mAP (mean
Average Precision), FPS (Frames Per Second), MOTA (Multiple
Object Tracking Accuracy), and IDSW (Identity Switch)) of
multiple objective tracking algorithms.
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Figure 1 Technical route of this experiment

2.3 Dataset production
2.3.1 Object detection dataset
Two datasets were constructed to train the object detection
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algorithm and verify the effect of multiple object tracking. The
object detection dataset is shown in Figure 2. The image data used
in the object detection dataset were collected every 10 s, and the
collection periods included 10:30 a.m., 2:00 p.m., and 9:30 p.m.
The Labellmg was used to label the yellow feather broilers, and the
corresponding label information was stored in XML format. The
label information includes the coordinates of the two ends of the
rectangular box’s diagonal, which reflects the size and position of a
yellow feather broiler. A total of 500 images were used to construct
the dataset. There were 45 yellow feather broilers in each image.
The training dataset and the testing dataset were divided by 9:1, so
the number of objects in the training dataset was 20,250, and the
number of objects in the testing dataset was 2,250.

In order to enhance the generalization ability of the model,
Mosaic data augmentation** was adopted after the object detection
dataset was constructed. Each time, four images were selected. The

Frame 1

selected images were processed by random flipping, random
zooming, color gamut change, etc., and finally stitched together into
one picture with a size of 416x416 pixels. Mosaic data
augmentation enriched the object detection dataset. The operation of
random scaling also added many small objects, which enhanced the
robustness of the model. The sample of the object detection dataset
after Mosaic data augmentation is shown in Figure 3.
2.3.2 Multiple object tracking dataset

This experiment used the surveillance video in the actual
scenario to verify the tracking effect of the proposed method. The
selected video clip had a high degree of activity and a significant
change in the position of the yellow feather broiler flock as the test
video. The length of the test video was 300 consecutive frames. The
DarkLabel was used to label the test video. Different individuals
were distinguished by different mark numbers in the labeling
process, as shown in Figure 4.

0

50

Figure 4 Multiple object tracking dataset
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2.4 Design of multiple object tracking of yellow feather
broilers

This study used Deep SORT to achieve multiple object tracking
of yellow feather broilers. Deep SORT is a multiple object tracking
algorithm based on object detection. Compared with SORT, which
is greatly affected by the influence of occlusion and reappearance™,
Deep SORT introduces a deep appearance descriptor. In the process
of tracking, Deep SORT extracts the apparent features of objects for
nearest neighbor matching, which improves the tracking effect in
the presence of occlusion and reduces the problem of ID switching.
As broilers in the broiler chamber are frequently occluded, Deep
SORT has a better tracking effect than other algorithms. The
flowchart of the multiple object tracking algorithm proposed in this
paper is shown in Figure 5, which mainly includes four steps.

Input
video

}

Object detection [«

}

Get bounding
boxes and features

}

Use NMS to remove the
overlapping boxes

!

Use kalman filter to
predict the object’s
motion state

!

Matching cascade

}

IOU assignment

}

Output results

Update

End
Figure 5 Flowchart of the multiple object tracking algorithm

(1) Use OpenCV to process the video into video frames, then
use the improved YOLOV3 algorithm to obtain the object’s position
and depth feature. Use NMS (Non-Maximum Suppression) to
remove the overlapping boxes and get the final detection result. The
improved YOLOv3 algorithm will be introduced in detail in
Section 2.5.

(2) Construct a motion model through a Kalman filter to predict
the object’s motion state. The center coordinates of the bounding
box (u,v), the aspect ratio y, the height s, and their respective
velocities in image coordinates (%,y,7,/1) were used as eight
parameters to describe the position and motion information of the
object.

(3) Based on the obtained appearance information and
movement used for

information, Matching Cascade was

measurement-to-track association.

Motion information association: Mahalanobis distance was
used to calculate the distance between predicted Kalman states and
newly arrived measurements, as shown in Equation (1).

dVG, j)= (dj—yi)TS,-’l (a’,—y,-) @)

where, the projection of the i track distribution is denoted into
measurement space by (y;, S;), and the j” bounding box detection
by d;. If the obtained Mahalanobis distance is less than the specified
threshold 7", then the motion state association could be regarded as
successful.

Appearance information association: For each bounding box
detection d; an appearance descriptor r; with |[|rj|l=1 was

computed. A gallery R, = {r,f)}? of the last L,=100 associated

=1
appearance descriptors for each track k was kept. When the smallest

cosine distance between the i track and j*

space is less than the specific threshold #®, then the appearance
information could be considered to be successfully associated. The

detection in appearance

calculation of the smallest cosine distance is shown in Equation (2).
d®(, j)=min{l - 1| ¥ € R} )

The result of linear weighting of the two metrics is used as the
final measurement c;;. Only when c¢;; was within the gating region
of both metrics, the association could be called admissible, as
shown in Equation (3).

¢y =d (i, ) +(1=Dd? G, j) 3)

(4) After Matching Cascade, perform the IoU (Intersection over
Union) assignment for unmatched detection, unconfirmed tracks,
and unmatched tracks. If the matching is successful, the Kalman
filter will be updated. Otherwise, a new track will be established for
the unmatched detections, while a maximum age will be set for the
unmatched tracks. After three consecutive hits within the maximum
age, the tracks will be changed from an unconfirmed state to a
confirmed one.

2.5 Object detection

The object detection algorithm is a very important part of Deep
SORT, which is related to tracking accuracy and speed. The
YOLOV3 was chosen as the fundamental network and proposed an
object detection algorithm that was more suitable for detecting
yellow feather broilers in flat breeding chambers.

2.5.1 YOLOvV3

As a mature one-stage object detection algorithm, YOLOV3 has
a simple structure and good detection accuracy compared with the
two-stage detection algorithm. In the detection process, YOLOvV3
divides the input image into SXS grids. If the center coordinates of
the object to be measured fall on a certain grid, the grid is
responsible for detecting the object. Each grid predicts B bounding
boxes. Each bounding box corresponds to (4+1+C) predicted
values, where ‘4’ represents the width, height, and center
coordinates of the bounding box, ‘1’ represents the confidence that
the bounding box has an object, and ‘C’ represents the probability
that the object belongs to each of ‘C’ categories. The YOLOvV3
detection algorithm ultimately yields a tensor of size SxSx
[Bx(4+1+C)].

2.5.2 Improved YOLOv3 model

(1) MobileNetV2

The MobileNetV2™! is used to replace Darknet53 as the
backbone. MobileNetV1 uses DW (DepthWise convolutions) to
trade-off between computation and

accuracy effectively.
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MobileNetV2 is the upgraded version of MobileNetV1, with two
improvements:

a) Introduce inverted residual structure. The inverted residual
block takes a low-dimensional compressed representation as input
and expands it to a high dimension. It enhances the propagation of
the gradient and dramatically reduces the memory required in the

inference process.

b) Introduce the idea of a linear bottleneck where the last
convolution of a residual block has a linear output before it is added
to the initial activations.

The comparison of module structure between MobileNetV1
and MobileNetV2 is shown in Figure 6.

MobileNetV 1 Input > BII\)I\I)ZSEEI 6 B(;\;);\;ILE 6
) 4
MobileNetV2 Tnput o Convlxl o DW3x3 Conv1x1 b
stride=1 » BNReLU6 »| BN ReLU6 BN >
MobileNetV2 Input o Convl1xl | DW3x3 stride=2 .| Convixl
stride=2 p > BNReLU6 » BN ReLU6 > BN

Figure 6 Comparison of module structure between MobileNetV1 and MobileNetV2

(2) DRSN

DRSN® is a deep learning method for noisy data. It solves the
problem that the effect of the deep learning algorithm will be
reduced when the data contains noise or redundant information.
DRSN integrates the deep residual network, soft thresholding, and
attention mechanism. Soft thresholding removes the features whose
absolute value is less than a certain threshold and shrinks the
absolute value features from this threshold toward zero. Equation
(4) is shown as follows.

xX—T, X>T
y=<¢0, -1<x<7 4)
X+T, xX<-T

where, x represents the input feature, y represents the output
feature, and 7 represents the threshold. The threshold is adaptively
learned by the attention mechanism. The important features
extracted by the attention mechanism are retained through soft
thresholding, which strengthens the ability of the network to extract
useful features from noisy signals. The building unit of DRSN and
the inverted residual block of MobileNetV2 are combined to form a
new block entitled DRSN-Inverted residual. The structure of the
DRSN-Inverted residual is shown in Figure 7. As a result, a
lightweight backbone entitled DRSN-MobileNetV2 with a stronger
feature extraction capability was constructed.

(3) Feature fusion and attention mechanism

YOLOV3 uses K-means Clustering to obtain nine anchors.
Every three anchors are treated as a group, as the default anchors for
feature maps of three scales. Considering the size distribution of
yellow feather broilers is concentrated, the sizes of anchors obtained
by K-means Clustering will be similar. Therefore, the receptive
field may not fit the object since objects of similar size will be
forced to be sent to different layers for prediction. Thus, the CEM
(Context Enhancement Module) of ThunderNet'¥ was used to
create a feature fusion network with a single output that can
aggregate information of various scales. While fusing the feature
maps of the three output layers of YOLOV3, the receptive field of
the model was expanded as well. Feature maps of different scales
contain different semantic information, but the feature fusion

method used by CEM is to add the feature maps directly, ignoring
the differences in each output layer. Therefore, the attention
mechanism is introduced, including CBAM (Convolutional Block
Attention Module)®” and SE (Squeeze-and-Excitation)”® block. The
structures of CBAM and SE blocks are shown in Figure 8.

Input

|

Identity
residual

Identity
shortcut

Figure 7 Structure of DRSN-Inverted residual

CBAM was inserted into the three output layers: a channel
attention module and a spatial attention module were inserted in
series into the original network. CBAM blended cross-channel
information and spatial information to extract features. Meanwhile,
an SE block was used to fuse the information extracted from the
high level of the feature pyramid to the shallow layer in a
multiplying manner to realize the semantic extraction of the shallow
layer guided by the semantic information of the deep layer.

An improved YOLOV3 algorithm, which combined the above
three improvement measures, was proposed. The comparison
between the proposed model structure and the YOLOvV3 network
structure is shown in Figure 9.
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Figure 8 Structure of CBAM and SE block
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Figure 9 Comparison between the proposed model structure and the YOLOV3 network structure

3 Results and discussion

3.1 Experimental conditions and configuration
The software platforms wused in this experiment are
Pycharm2019.3, OpenCV-Python=4.5.1, torch1.7.0+cudal1.0, and

torch vision 0.8.1+cudal1.0.

The hardware platform is Dell Inspiron15-7572 (Intel Core i5
8th Gen, Computer Memory 8 GB). Connect to the cloud host
during training; the cloud host is GeForce RTX 2080 Ti with 11GB
Video Memory.
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3.2 Detection results
3.2.1 Network initialization parameters

The initialization parameters of the improved YOLOvV3
network are listed in Table 1. The network input size was set to
416x416 pixels. The batch size was set to 16, considering the
memory constraints of the server. Two hundred training steps were
used to train the proposed algorithm, and the parameters of the
backbone network were frozen in the first one hundred training
steps. To avoid the local minima in gradient descent, Cosine
Annealing®™ was used to adjust the learning rate during training.
Cosine Annealing is a type of learning rate schedule that has the
effect of starting with a large learning rate that is rapidly decreased
to a minimum value before being increased rapidly again.

Table 1 The initialization parameters of the improved
YOLOV3 network

Size of input
images
416 x 416 16 0.001

Batch Initiallearning rate Learning rate schedule Trainingsteps

Cosine Annealing 200

3.2.2 Evaluation metrics

This experiment selected seven indicators to quantitatively
evaluate the performance of the algorithm, of which there are four
accuracy indicators: P (Precision), R (Recall), F1 Score®, and
mAPP" three model complexity indicators: FPS, GFLOPs (Giga
Floating-point Operations) and Params.

(1) Pand R

In object detection, P and R are the basic evaluation indicators.
P is defined as the proportion of correctly detected objects in all
detected objects, whereas R refers to the proportion of correctly
detected objects in all positive samples. The equations of these two
indicators are as follows.

TP
P= 5 pp X 100% %)
TP

where, TP (True Positive) is the number of yellow feather broilers
correctly detected, FP (False Positive) is the number of the non-
yellow feather broilers that are identified as yellow feather broilers,
and FN (False Negative) is the number of yellow feather broilers
that are identified as the non-yellow feather broilers.

(2) mAP and F1 Score

mAP represents the average value of the AP (Average
Precision) of each category. The mAP evaluates the quality of the
model in all categories and is an indicator that considers P and R.
Here, since the detection objects belong to only one category,
mAP = AP, where AP is the area under the P-R curve, as shown in
Equation (7).

AP = L' P(R)dR (7)

The F1 Score is also an indicator to evaluate the performance
of the proposed model. The calculation equation is shown in
Equation (8). The higher the F1 Score is, the better the model
performance will be.

_2PxR

FI=37R ®)

(3) FPS

In addition to the accuracy of detection, FPS is another
commonly used indicator to evaluate the speed of object detection,
which represents the number of images that can be processed per

second.

(4) GFLOPs and Params

1 GFLOPs is equal to 1 billion floating-point operations, which
can be understood as the amount of calculation required by the
model. Params refer to the total number of parameters that the
model needs to train. GFLOPs and Params are used to measure the
complexity of the model.

3.2.3 Comparison of different algorithms

The proposed model was compared with Faster R-CNN!',
SSDM' and YOLOV3™ to verify the performance of the model.
Faster R-CNN is a two-stage detection algorithm with higher
accuracy than one-stage detection algorithms, but it cannot meet the
real-time requirements. Faster R-CNN is an improvement of Fast R-
CNN, which integrates the acquisition of region proposals in the
CNN, realizes end-to-end training and testing, and dramatically
improves its efficiency. YOLOv3 and SSD are one-stage detection
algorithms. SSD draws on the idea that YOLO transforms the object
detection task from a classification problem into a regression
problem, eliminating the region proposal process, which
significantly reduces the inference time. At the same time, SSD
adds the feature pyramid to the network and makes predictions on
feature maps of different scales, which improves the performance of
detection. YOLOV3 is an improvement of YOLO and YOLO9000.
Compared with most one-stage detection algorithms, it has higher
detection accuracy. YOLOvV3 uses Darknet53 as the backbone to
extract image features. YOLOvV3 uses upsampling to fuse multi-
scale feature maps so that the feature maps have rich semantic
information. Meanwhile, the idea of multi-scale prediction is
introduced, which realizes prediction on feature maps of three
different scales. The comparison between the proposed model and
the three object detection models listed above could prove the
superiority of the proposed model in detection accuracy and
inference speed.

Figure 10 shows the curves of the total loss of YOLOV3 and the
proposed model with the number of iterations during training. The
initialization parameters of the two models are the same, as given in
Section 3.2.1.

50 F — Our algorithm
YOLOvV3

40

30

Loss

0 b i | I | I ; i i
0 25 50 75 100 125 150 175 200
Training steps

Figure 10 Curves of the total loss of YOLOv3 and the proposed
model with the number of iterations during training

It can be seen from Figure 10 that the model has a faster
convergence speed and lower convergence loss than YOLOv3. The
total loss of both models gradually decreases with the iteration of
the models and eventually stabilizes. The convergence loss of the
YOLOV3 model is stable at about 3.1, and the convergence loss of
the proposed model is stable at about 1.2, which is lower than that
of YOLOV3, indicating that the improvement measures have
improved the performance of the model.

The P-R curve of each model during testing is shown in
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Figure 11. In addition, Table 2 shows the various indicators of the
experimental results of each model, including P, R, F1 Score, mAP,
and FPS.
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Figure 11 P-R curve of each model during testing

The proposed model has the highest F1 Score and mAP based
on the above detection results, and it is the only model whose P and
R both reach more than 90%, indicating that the proposed model
has a better performance than the other three models. The P-R curve
in Figure 11 also confirms this conclusion. The F1 Score of the
proposed model is 0.07 higher than that of YOLOV3, reaching 0.91.

c. YOLOV3

Compared with YOLOvV3, P and R are 9.95% and 3.06% higher,
respectively, reflecting the overall performance improvement of the
model compared to the original network. In terms of inference
speed, the proposed model is the only model with an FPS exceeding
25 fps (frames per second), which means better real-time detection
performance on the GPU (Graphics Processing Unit).

Table 2 Comparison of the detection results of
different models

F1 Score P/% R/% mAP/%  FPS/fps
Faster R-CNN 0.90 88.57  91.84 88.98 0.59
SSD 300 0.89 95.84  82.81 90.89 11.32
YOLOV3 0.84 80.54  87.76 89.32 5.89

The proposed model 091 90.49  90.82 93.21 29.48

The detection results of each model on the testing dataset are
shown in Figure 12. The yellow boxes outline the missed detections
in the test results. Both the SSD model and the YOLOv3 model
have missed detections. Most of the missed broilers are those with a
more severe cover or smaller size. The phenomenon of missed
detection of the SSD model is more severe than YOLOv3. The
Faster R-CNN model and the proposed model have detected all
broilers without missing any detections.

d. Our algorithm

Figure 12 The detection results of each model on the testing dataset

3.2.4 Influence of the backbone

MobileNetV2 was used instead of Darknet53 as the backbone.
In the case of keeping the structure of the rest of the model
consistent, the complexity of the models with the backbone of
MobileNetV2 and Darknet53 was evaluated. The evaluation results
of model complexity are listed in Table 3.

Table 3 Evaluation results of the complexity of the models
with the backbone of MobileNetV2 and DarknetS3

fps after replacing it with MobileNetV2. At the same time, the
GFLOPs and Params of the model after the replacement are 6.49%
and 10.09% of the original model. It can be found from the further
analysis of the evaluation results in Table 3 and Table 4 that
although Darknet53 has a more complex structure, the accuracy of
the model after replacing the backbone has not significantly
decreased, and even the R and the mAP have increased slightly.

Table 4 Evaluation results of the accuracy of the models with

Backbone GFLOPs Params FPS/fps the backbone of MobileNetV2 and Darknet53
Darknet53 25.87 43.01M 9.31 Backbone F1 Score P/% R/% mAP/%
MobileNetV2 1.68 4.34M 29.48 Darknet53 0.90 92.96 89.38 92.23
MobileNetV2 0.90 89.90 89.94 92.56

The accuracy of the two models was also evaluated. The
evaluation results are listed in Table 4.

It can be seen from Table 3 that the FPS of the model whose
backbone is Darknet53 is only 9.31 fps, and the FPS rises to 29.48

3.2.5 [Influence of the DRSN
DRSN was introduced to enhance the backbone’s ability to
extract useful features. In order to study the impact of the DRSN on
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the model, the output features of the original model and the
modified model of the same image (Figures 13a and 13d) were
compared. The t-SNE algorithm®™ was used to reduce the

dimension of the output features, and then they were mapped to a
two-dimensional space for visualization. The results are shown in
Figures 13b, 13c, 13e and 13f.

t-SNE t-SNE drsn
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Figure 13 Visualization results of output features after dimensionality reduction: (a)(d) input images; (b)(e) feature visualization of the
model before the introduction of DRSN; (c)(f) feature visualization of the model after the introduction of DRSN

Comparing the visualized features in Figure 13, the distribution
of the output features after DRSN processing is closer so that it can
be better distinguished from the background information. In
addition, Figures 13b and 13e show that there is noise information
in the features before DRSN is introduced. DRSN eliminates part of

the noise information, reduces interference, and improves the
accuracy of the final detection results.

The models before and after the introduction of DRSN were
tested on the testing dataset to verify the improvement of the model
performance. Part of the test results are shown in Figure 14.

Figure 14 Test results of the models: (a)(c) the model before the introduction of DRSN; (b)(d) the model after the introduction of DRSN

The yellow boxes outline the missed detections in the test
results. According to the comparison of the test results after the
introduction of DRSN, due to the tighter distribution of features, the
features of the yellow feather broilers can be better distinguished
from other information. Therefore, the model has a better
recognition effect on some yellow feather broilers that are more
severely occluded than before. As a result, the number of missed
detections is reduced, and the detection accuracy of the model is
improved.

The accuracy of the detection results of the two models was
further evaluated, and the results are listed in Table 5.

Table 5 Evaluation results of the accuracy of the models
before and after the introduction of DRSN

FlScore  P/%  R/%  mAP/%  FPS/fs?)
Without DRSN 0.90 89.90  89.94  92.56 31.34
With DRSN 0.91 90.49 9082 9321 29.48

It can be seen from Table 5 that after the introduction of
DRSN, various indicators of the model have been improved, while
the detection speed is only reduced by 5.93%, which does not affect
the real-time performance of detection.
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3.2.6 Influence of attention mechanism

The feature maps output by different models were visualized as
CAM (Class Activation Maps)®* to verify the improvement of the
model performance by attention mechanism. CAM can clearly show
the region of the image that the model focuses on when making a
prediction.

The feature visualization results of the original model, the
model added with CBAM, and the model added with CBAM and
the SE block were compared, as shown in Figure 15.

High attention

Low attention

a. No attention mechanism

The detection results of the original model, the model with
CBAM, and the model with CBAM and the SE block were
evaluated, and the results are listed in Table 6.

Table 6 Accuracy comparison of models corresponding to
different attention mechanisms

F1 Score P/% R/% mAP/%
No attention mechanism 0.89 89.55 89.28 92.19
CBAM 0.90 89.90 89.94 92.70
CBAM+SE 091 90.49 90.82 93.21

Table 6 shows that with the addition of CBAM and the SE
block, the detection accuracy of the models is gradually improved.
Compared with the model with no attention mechanism, the mAP of
the final model increases by 1.02%, and the F1 Score increases by
0.2. Moreover, after the introduction of the attention mechanism,
the features extracted by the model cover more broilers, which
improves the accuracy of detection.

3.3 Tracking results
3.3.1 Evaluation metrics

This experiment selected five indicators to evaluate the effect
of multiple object tracking®*:

(1) IDSW represents the number of identity switches. The
lower the IDSW indicates, the better the model performance will be.

(2) MOTA combines three error sources: false positives,
missed targets, and identity switches. The higher the MOTA means,
the better the model performance will be. The calculation equation
is shown as Equation (9).

Z (AFP +AFN + A[D)
> Acr

where, Ag is the number of false positives, Agy is the number of
false negatives, A, is the number of ID Switch, and Agr is the
number of targets.

(3) IDF1(Identification F1 Score) represents the ratio of
correctly identified detections over the average number of ground-
truth and computed detections. It is the first default indicator used to
evaluate the quality of the tracker. The calculation equation is
shown as Equation (10).

MOTA = 1 - 9)

Through the comparison, a considerable part of the features
extracted by the original model is covered in the background, so the
feature extraction is not performed effectively. After adding
CBAM, the model’s attention to the background is reduced, but it
does not focus on the yellow feather broilers. Since the semantic
extraction of the shallow layer is guided by the semantic
information of the deep layer of the network after the SE block is
added, the features extracted by the model cover more of the objects
that need to be detected.

b. CBAM

Figure 15 Feature visualization results of the original model, the model added with CBAM, and the model added with CBAM and
the SE block

c. CBAM+SE

2IDTP
IDFl = S TP+ IDFP + IDEN (10)

where, IDTP is the positive sample that is correctly identified,

IDFP is the negative sample that is incorrectly identified, and IDFN
is the positive sample that is incorrectly identified.

(4) P and R. P represents the percentage of correctly matched
detections to total detections. R represents the percentage of
correctly matched detections to ground-truth detections.

3.3.2 Evaluation of tracking results

The proposed model was compared with the YOLOv3-Deep
SORT model in terms of five selected evaluation metrics for
tracking results. The evaluation results are shown in Table 7.

Table 7 Comparison of tracking results of different models
IDSW MOTA/% IDF1/% P/% R/%

YOLOV3-Deep SORT 37 51.1 68.0 79.0  70.1
The proposed model 14 54.0 72.7 79.9 723

The MOTA of the proposed model is 54%, and IDF1 is 72.7%,
which are respectively 2.9% and 4.7% higher than the YOLOv3-
Deep SORT model. IDSW is reduced by 23, which is 37.8% of the
YOLOv3-Deep SORT model. P and R have been improved as well.
Experimental data proves that the model is superior to the YOLOv3-
Deep SORT model in detection and tracking.

The tracking effect of the model on yellow feather broilers in
different states was further analyzed. Broilers with representative
behaviors in the test video were selected, including yellow feather
broilers in a flapping state, running state, gathering state, eating
state, and drinking state, to study the tracking results of the model
on them at different times. The tracking results are shown in
Figure 16.

Figure 16 shows that no matter what state the yellow feather
broiler is in, there is no target loss during the tracking, and the ID
number of the target has not changed, indicating that the proposed
model can track the yellow feather broilers in different states stably
and maintain good robustness in the complex flat breeding
environment. It can provide technical support to perceive the
behavior of yellow feather broilers and study the relationship
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Figure 16 Tracking effect of the proposed model on yellow feather broilers in different states

4 Conclusions

(1) In this paper, an improved YOLOvV3 algorithm was
proposed. MobileNetV2 was used to replace the backbone of
YOLOV3 to improve the inference speed of the detection module.
The DRSN was integrated with the feature extraction module of
MobileNetV2 to enhance the feature extraction capability of the
backbone. The feature fusion network was redesigned, combined
with the attention mechanism, to realize the adaptive learning of
multi-scale features of the objects. Experimental results show that
the improved YOLOV3 algorithm has an mAP of up to 93.2%,
which exceeds other object detection algorithms, and has an FPS
reached 29 fps, which is almost five times that of YOLOV3.

(2) The improved object detection algorithm was combined
with Deep SORT to realize the multiple object tracking of yellow
feather broilers. Experimental data prove that the proposed
algorithm is superior to the YOLOv3-Deep SORT algorithm
regarding detection and tracking: MOTA and IDF1 are increased by

2.9% and 4.7%, respectively. The IDSW of the proposed algorithm
is 37.8% of the YOLOv3-Deep SORT.

(3) The algorithm can achieve stable tracking of yellow feather
broilers in different states by analyzing the tracking results of the
test video. The behavior of a yellow feather broiler can reflect its
health status. In the future, the tracking results can be further
analyzed to establish the quantitative relationship between health
status and behavior statistics to find the abnormalities of yellow
feather broilers in time. The proposed algorithm realizes the
multiple object tracking of yellow feather broilers, which can be
used as the basis of behavior perception and provide technical
support for the behavior analysis of yellow feather broilers, which is
of great significance to the breeding of yellow feather broilers.

(4) This algorithm will be recommended to be used in the
system of flat breeding chambers to realize real-time and dynamic
detection and tracking of yellow feather broilers. Since the GFLOPs
and Params of the improved model are 6.49% and 10.09% of the
original model, respectively, its calculation speed is enough to run
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on the real system.
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