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Recognition of field roads based on improved U-Net++ Network
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Abstract: Unmanned driving of agricultural machinery has garnered significant attention in recent years, especially with the
development of precision farming and sensor technologies. To achieve high performance and low cost, perception tasks are of
great importance. In this study, a low-cost and high-safety method was proposed for field road recognition in unmanned
agricultural machinery. The approach of this study utilized point clouds, with low-resolution Lidar point clouds as inputs,
generating high-resolution point clouds and Bird's Eye View (BEV) images that were encoded with several basic statistics.
Using a BEV representation, road detection was reduced to a single-scale problem that could be addressed with an improved U-
Net++ neural network. Three enhancements were proposed for U-Net++: 1) replacing the convolutional kernel in the original U-
Net++ with an Asymmetric Convolution Block (ACBlock); 2) adding a multi-branch Asymmetric Dilated Convolutional Block
(MADC) in the highest semantic information layer; 3) adding an Attention Gate (AG) model to the long-skip-connection in the
decoding stage. The results of experiments of this study showed that our algorithm achieved a Mean Intersection Over Union of
96.54% on the 16-channel point clouds, which was 7.35 percentage points higher than U-Net++. Furthermore, the average
processing time of the model was about 70 ms, meeting the time requirements of unmanned driving in agricultural machinery.
The proposed method of this study can be applied to enhance the perception ability of unmanned agricultural machinery
thereby increasing the safety of field road driving.
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1 Introduction

The scarcity of labor in agricultural production currently
hinders its expansion on a broad scale, and unmanned and
intelligent agricultural technology is increasingly seen as a key
solution to this issue!”. During the busy farming season, the
lighting conditions in agricultural production settings fluctuate
drastically, and agricultural machinery must travel between hangars
and farmland day and night. Unlike structured urban roads, field
roads lack clear boundaries, and there are various obstacles such as
tree shadows and weeds on both sides of the road, which make
identifying road sections more challenging. Lidar has anti-
not affected by
conditions®, making it a popular choice for obstacle detection”,

interference characteristics and is lighting
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tracking', and road recognition” in unmanned driving. Road
recognition based on Lidar can be divided into traditional and deep
learning methods. Compared with the complex process of
traditional methods™”, 3D convolution of point clouds'” and 2D
convolution of point clouds projection views!"! have self-learning
capability and significantly improve the accuracy of road semantic
segmentation. The input data types for 3D convolution in road
semantic segmentation are points and voxels. Although the original
point clouds as input to a neural network preserve 3D properties,
they are computationally demanding and unsuitable for real-time
segmentation'>", The representation of point clouds as standard 3D
voxel grids can result in empty voxel grids", which leads to
redundant calculations in voxel-based 3D convolutional road
segmentation and a long average inference time, negatively
impacting real-time performance. By contrast, 2D convolution
methods of point cloud projection views transfer point clouds into
Bird’s Eye View (BEV)!'! or Front View (FV)™, reducing
computational costs.

Other existing Lidar-based road recognition methods!"*'”
usually require height differences or regular features at the
boundaries when extracting road features. However, they are
limited in their ability to extract field roads with slight height
changes around the road boundary, and they typically require the
use of high-channel Lidar or 16-channel Lidar for a certain type of
road recognition (straight type). To address these limitations and
build a low-cost unmanned system for agricultural machinery, we
selected a 16-channel Lidar as the road sensing device. The
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proposed method of this study started from an unstructured low-
resolution point cloud, which is then super-resolved and generates a
Bird’s Eye View (BEV) image of the agricultural machinery’s surroun-
dings"*"”\. An improved U-Net++ neural network was trained to
carry out road detection in the BEV image, which achieves a
balance between accuracy and computational cost. The road
recognition process is depicted in Figure 1. The sensor parameter

settings of the unmanned simulation platform CARLA were used,
which correspond to those of the actual Miyun scene, to compile a
dataset. This dataset included 64-channel point cloud simulated
field road data obtained in CARLA and 16-channel point cloud field
road data collected in the actual scene. The dataset was then super-
resolved, and BEV images were generated for two resolutions,
which were used to train and test the road recognition model.
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Note: GNSS: Global Navigation Satellite System; IMU: Inertial Measurement Unit; CARLA is an open-source simulator for autonomous driving research; BEV: Bird’s
Eye View; ACBlock: Asymmetric Convolution Block; MADC: Multi-branch Asymmetric Dilated Convolutional Block; AG: Attention Gate; MIOU: Mean Intersection

over Union.

Figure 1

2 Materials and methods

2.1 Dataset construction
2.1.1 Miyun field roads dataset construction

In this study, field road data were collected in Henanzhai town,
Miyun District, Beijing, China in June 2021 using a data acquisition
platform mounted on a John Deere 1204 tractor. The platform
consisted of three modules: point cloud data acquisition, image data
acquisition, and vehicle position and posture acquisition. Figure 2
shows a schematic of the data acquisition platform.

~~—

CGI-610 GNSS

Nuvo-8108GC

FLIR BFS-PGE-
2383

Velodyne VLP-16| [

Figure 2 Agricultural scene field roads dataset collection platform

To ensure the safe operation of agricultural machinery, the
minimum recognition distance for obstacles should exceed 15 m,
taking into account the opposing driving of agricultural machines
and a tractor’s braking distance of around 7.5 m when the average
speed was 25 km/h. The relationship between the Lidar height
above the ground and discernible distance is presented in Figure 3
and Equation (1).

1= h/tan() (D

where, / and / represent the height of the Lidar above the ground
and the identifiable distance, respectively, m; a is the angle between
the farthest point cloud on the ground and the horizontal, (°).

Based on the minimum recognition distance criterion, the point
cloud data acquisition model included a 3D Lidar (Velodyne VLP-
16 (VLP-16)) mounted at a height of 1.28 m above the ground,
enabling the recognition of objects up to a maximum distance of

Road recognition process

Note: X is the forward direction of the vehicle; / and / represent the height of the
Lidar above the ground and the identifiable distance, respectively, m; a is the
angle between the farthest point cloud on the ground and the horizontal, (°).
Figure 3  Schematic diagram of Lidar height above ground and
identifiable distance

36.50 m when A=1.28 m. The 3D Lidar can rotate 360° in the
horizontal direction with 16 channels in the vertical direction to
collect point clouds. The image data acquisition module included an
industrial camera mounted 1.78 m above the ground, with a
resolution of 1920%1200 pixels and an acquisition frequency of
20 Hz. The wvehicle position and posture acquisition module
comprised a high-precision MEMS integrated navigation receiver
(CHCNAV CGI-610) mounted 1.78 m above the ground. The
receiver provided real-time high-precision carrier position, attitude,
speed, and sensor information. Its antennas were tightly mounted on
the roof of the platform to ensure data reliability.

During data collection, the driving speed of the agricultural
machinery was around 10 km/h. Figure 4 illustrates the road data
captured under different lighting conditions, including semi-
structured and unstructured roads. The Miyun agricultural scene
field roads dataset contained a total of one thousand frames.

a. Normal light conditions

b. Poor light conditions

Figure 4 Camera images of Miyun field roads under different
lighting conditions

The field roads data collection platform employed in this study
allowed for the collection of high-quality and comprehensive data
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for agricultural machinery research, thereby advancing the
development of autonomous agricultural machinery.
2.1.2 CARLA unmanned driving simulation dataset construction

Various open-source software packages, such as CARLA,
Autoware, Gazebo, and Unity, are available for simulating different
types of Lidar systems on ground vehicles. For this study, the
CARLA simulator was utilized since the point cloud super-
resolution model required 64-channel point clouds for training, and
CARLA simulation maps contain an agricultural production
landscape that closely resembles the real-world Henanzhai
agricultural scene, including farmland, field roads, pedestrians, and
vehicles.

The simulated data acquisition platform consisted of an RGB
camera, a “VLP-64” Lidar, and an integrated navigation system.
The horizontal and vertical views of the “VLP-64” Lidar with 64
channels in the vertical direction were identical to those of the VLP-
16. The parameter settings of other sensors were consistent with
those of their real-world counterparts.

To construct datasets, a vehicle was manually driven on the
CARLA agricultural production simulation map and gathered 2000
frames of data, which was recorded in the KITTI dataset format.
Figures 5a and 5b show the scene map of Henanzhai and the entire
CARLA agricultural production landscape, respectively. Figures Sc
and 5d depict the point cloud schematic and RGB camera image in
the same frame.

2.2 Point cloud super-resolution
In this study, an point cloud super-resolution model was

Low-resolution
Range Image

Low-resolution
Point Cloud

e ooff

Image Super-resolution
Neural Network

a. Scene map of Henanzhai  b. CARLA agricultural map overview

c. CARLA field roads point clouds

d. CARLA field roads image

Figure 5 Henanzhai and CARLA agricultural scenes

employed that was trained using the CARLA simulated field roads
dataset. The model treats the point cloud super-resolution problem
as an image super-resolution problem, as shown in Figure 6. First,
the 16-channel point cloud is projected onto a low-resolution range
image with a resolution of 16-by-1024, which can be processed by
an image neural network. The encoder consists of a sequence of
convolutional blocks and average pooling layers, while the decoder
has a reversed structure with transposed convolutions for
upsampling the feature spatial resolutions. The output layer
produces the final high-resolution range image, which has a
resolution of 64-by-1024. The high-resolution range image in 2D
space is then converted to a 64-channel high-resolution point cloud
in 3D space.

High-resolution
Point Cloud

High-resolution
Range Image

64

Figure 6 Point cloud super-resolution process

For the experiments of this study, the trained model was used to
generate one thousand frames of high-resolution 64-channel point
clouds from one thousand frames of sparse 16-channel point clouds
from the real Miyun scene.

2.3 Point cloud BEV images generation

Before feeding the unstructured, unordered point clouds to the
U-Net++ network, they need to be converted into an appropriate
image form"". In this work, a region of interest (ROI) was utilized
30 m wide (yE[—15 m, +15 m]) and 40 m long (x €[0 m, +40 m]),
as shown in Figure 7, to account for the existence of many forks in
the field roads and the recognition range of Lidar. Firstly, a grid is
created in the x-y plane of the Lidar’s ROI, and each point cloud
element was assigned to one of its cells. Due to the sparsity of point
clouds and the necessary image resolution for deep learning, the cell
size was set at 0.10 mx0.10 m. Next, for each grid cell, the number
of points, maximum height (the difference between the maximum
height and the minimum height), and mean reflectivity were
calculated. These three attributes were used as the R-channel value,
G-channel value, and B-channel value, respectively, in each cell
during the conversion of the 3D Lidar data into a bird’s eye view
(BEV) image. All cells were then aggregated to generate a BEV
image of the point cloud with a resolution of 300x400 pixels. Given
that the U-Net++ network required the input image to be a multiple

of 32 pixels, the BEV image’s resolution was adjusted to 512x512
pixels. The resulting point cloud BEV images include a total of
2000 frames, with 1000 frames each of 16-channel point cloud BEV
images from Miyun and 64-channel point cloud BEV images
generated by the proposed point cloud super-resolution model. It
should be noted that although the BEV transformation of the 3D
point cloud results in a loss of spatial information, the proposed
point cloud super-resolution model indirectly compensates for this
loss by upsampling the 16-channel Lidar point cloud to 64-channel.

X 30 m

40 m

Figure 7 Schematic diagram of grid range

2.4 Data annotation

The aforementioned 2000 frames of point cloud BEV images
were split into a training set, validation set, and test set in an 8:1:1
ratio. The BEV images were manually labeled and their pixels into
two categories were classified, namely road and non-road, using the
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Labelme image labeling tool. Next, the labeled training and

validation sets were augmented using the Albumentations tool,

which included horizontal and vertical flips, as well as 45°

counterclockwise rotation.

2.5 Improved U-Net++ model

2.5.1
In 2015, Fully Convolutional Network (FCN) was proposed to

Model overview

apply deep learning to road recognition for the first time, enabling
road area extraction in urban road scenarios. The U-Net network is
a variant of FCN and has been widely used. The U-Net++?!
semantic segmentation network can be viewed as composed of
multiple U-Net with different depths. The long-skip-connected
features of U-Net are passed without additional operations, which
lack the fusion of dense feature graphs. In order to solve this
problem, U-Net++ defines short-skip-connection to densely connect
the encoder stage and decoder stage feature maps, which were
combined into dense short-skip-connection to further fuse the
feature map information. However, even though the short-skip-
connection of U-Net++ indirectly fused the characteristics of

different receptive fields, it only fused the information of the next
layer, and the information of the upper layer was not fused, causing
the fine granularity of the encoder stage and the decoder stage to
still not be fine enough. Additionally, the features of the short-skip
connections undergo too much intermediary convolution during the
transfer process, leading to the extracted information being
combined with irrelevant information, thereby making the decoding
path of the image longer and more challenging to train in
backpropagation. To address these issues, U-Net++ combines long
and short skip connections for feature fusion. Long-skip
connections solve the problem of difficult training during
backpropagation, allowing original features to be better trained.
Short-skip connections can be utilized for dense feature map fusion,
which improves feature extraction capability. The network structure
is shown in Figure 8. However, U-Net++’s combination of long and
short skip connections does not address the issue of the original
features containing a lot of redundant information, nor does it
resolve the issue of the encoder and decoder stages lacking
sufficient granularity.
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Note: Relu: Rectified linear unit.

Figure 8 U-Net++ network structure

In this study, several modifications were made to the U-Net++
model in order to address the issues of insufficient granularity in the
encoder and decoder stages, as well as the loss of edge information
in the road segmentation results due to the lack of direct fusion of
information in the upper layers. To address these issues, the original
ordinary convolution kernels were replaced in the outermost U-
shaped structure with two Asymmetric Convolution Blocks
(ACBlock)™" of size 3. Additionally, a Multi-branch Asymmetric
Dilated Convolutional Block (MADC) was added in the highest

semantic information layer to fuse information from different
receptive fields and directly fuse information from the upper layers.
To address the problem of redundant information in the original
features resulting from the presence of long-skip-connection in the
original network model, an Attention Gate model (AG)* was added
to the long-skip-connection in the decoder stage, which reduces the
extraction of non-road redundant information from the original
features via the attention mechanism. The improved U-Net++
structure, incorporating these modifications, is shown in Figure 9.
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Figure 9

2.5.2 ACBlock

The ACBlock was designed to have higher weights on the
“skeleton” structure near the center point, which creates an
asymmetric structure with “high skeleton weights and low boundary
weights”. This uneven weight distribution during the convolution
process improves the effective feature extraction ability of the road,

Improved U-Net++ structure

especially in curved road recognition scenarios®’, as shown in
10. In the improved U-Net++ model,
convolutional kernel was replaced in the outermost U-shaped

Figure the original
structure with ACBlock, which improved the model’s ability to
adapt to curved roads. Because the ACBlock was the same size as
the original convolutional kernel, the inference time of the
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Figure 10 Schematic diagram of the ACBlock structure

improved U-Net++ model did not increase.
2.53 MADC

Building upon the concepts of dilated convolution™ and
asymmetric  convolution, the MADC module introduces
Asymmetric Dilated Convolution (ADCBIlock), which expands the
receptive field without reducing the image’s resolution or
introducing new hyperparameters. On the basis of ACBlock, it is
expanded with an expansion rate of 2 or 3 and smoothed with 1x1
convolution to obtain two kinds of ADCBlock, as shown in Figure 11.

To extract road information from various receptive fields, the
structural concept of Inception was integrated®™ with the multi-
branch ACBlock combination illustrated in Figure 12 to construct
the MADC module. The MADC module consists of five branches
that allow for the merging of different receptive fields. The first
branch uses the upper layer feature map as input, and the other four

Dilated=2 Dilated=3

V] Conv Conv

v v

g A& 5| mom
onv i+ onv |+

s P . C:r; :H:%

I C;)anv 1x1 I C3‘1“1V 11 T

a. ADCBIlock structure of dilated=2 b. ADCBlock structure of dilated=3
Note: ADCBlock: Asymmetric Dilated Convolution. ‘+’ means the outputs are
summed up.

Figure 11 ADCBIlock structure with different expansion rates

branches use ADCBlocks with different expansion rates. The
second branch uses an ADCBlock with an expansion rate of 1, the
third branch uses an ADCBlock with an expansion rate of 2, the
fourth branch uses an ADCBlock with an expansion rate of 1
followed by an ADCBlock with an expansion rate of 2, and the fifth
branch uses an ADCBIlock with an expansion rate of 1, 2, and 3 in
succession. The MADC module applies the Relu function to
preserve nonlinearity after each ADCBlock convolution. Compared
to the ADCBIlock structure, the MADC module increases the
network depth and widens the receptive field. The broader
perceptual field is better suited for capturing information about
large areas of roads and producing more abstract features, while the
higher network depth can handle inputs for more complicated road
features.

ADCBlock
Dilated=1
ADCBIlock
Dilated=2
ADCBlock |l ADCBlock
Dilated=1 Dilated=2
ADCBIlock ADCBIlock
Dilated=1 Dilated=2

! . N . .

Note: IN: Input; OUT: Output.
Figure 12 Schematic diagram of the MADC structure

2.5.4 Attention gate

Attention Mechanism is a kind of well-performing approach in
computer image segmentation and target detection tasks that
focuses on target information in the image and ignores irrelevant
information. For road recognition, the attention mechanism was
introduced to focus on the road features to be learned and ignore
non-road regions in the image.

The attention gate model, as shown in Figure 13, involves the
encoder’s downsampled features X' and the decoder’s upsampled
features g. Firstly, feature maps X' and g are subjected to 1x1x1
convolution operation to obtain feature maps A and B, respectively,
and feature maps A and B are summed to obtain feature map C, and
the Relu function is performed to keep nonlinearity. Then 1x1x1
convolution, sigmoid activation function, and resampling are
performed to obtain the attention score o. Finally, a and X' are
multiplied to assign attention weights to the original features, and
the feature maps are fused in the upsampling. This feature map,

after multiplying with the attention score, reduces the values of
regions in the image that are not related to road features and
increases the values of road regions relatively, improving the road
segmentation accuracy.

J—»W,:1x1x1
Xl

A Relu(o))
v Ix1x1
— W 1x1x1 -2

g

. . Resampler
Sigmoid(a,)

Figure 13  Attention Gate structure

3 Results and analysis

3.1 Network Training

The network of this work was implemented in Pytorch and
trained on a single NVIDIA Tesla V100 GPU with 32 GB of
memory. The Adam optimization algorithm was used with an initial
learning rate of 1e-4, and the learning rate was dynamically adjusted
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using exponential decay. To avoid overfitting, the early stop method

was employed during training. Specifically, if the loss function

value of the validation set did not decrease in 5 consecutive rounds

of training, the training was stopped immediately. A hybrid loss

function was used, which combines binary cross-entropy with dice

coefficients, as the objective function. The hybrid loss L is defined as,
2-Y,-P,

1<
L(KP):_;Z<Yi'IOgPi+W> (2)

i=1

d
L= ZLK.(Y, P) (3)

where, ¥; €Y and P,EP denote the target labels and predicted
probabilities for the class road at the ith pixel in the batch, and n
indicates the number of pixels within one batch. The overall loss
function for improved U-Net++ is then defined as the weighted
summation of the hybrid loss from each individual decoder, where d
indexes the decoder.

3.2 Improved model evaluation

To better evaluate the effectiveness of each improved structure,
the network was progressively enhanced to construct six different
groups of networks based on the U-Net++ architecture. The
experimental results are listed in Table 1. Experiments 1-5 used 16-
channel point cloud BEV images, while experiment 6 utilized 64-
channel point cloud BEV images completed by super-resolution.
Experiment 1 represents the original U-Net++ network. Experiment
2 replaced convolution kernels with ACBlock on the basis of
Experiment 1. Experiments 3 and 4 added the MADC module and
the AG module, respectively, based on Experiment 2. Finally,
Experiments 5 and 6 integrated the MADC module into Experiment
4. The performance improvements of different enhancement
structures were compared and the point cloud super-resolution
method was proposed in this paper by testing the different network
structures on their corresponding test sets. The evaluation metrics
were Mean Intersection over Union (MIOU) and average inference
time (TIME) per image on the test set.

Table 1 Comparison of effects of different improved network structures
Dataset Coding structure Decoding structure .
Test No - : MADC MIOU/% Inference time/ms
16-channel point clouds 64-channel point clouds CONV ACBlock AG
) N - N - - - 89.19 15.45
2 ~ - - N - - 91.01 15.45
3 \ - - J V - 92.46 16.04
4 \ - - J - J 93.85 16.23
5 N - - x/ J J 94.27 16.55
6 - 3 - V J J 96.54 16.55

Note: CONV: Convolution; ACBlock: Asymmetric Convolution Blocks; MADC: Asymmetric Dilated Convolutional Block; AG: Attention Gate; MIOU: Mean
Intersection over Union; ‘\> means the partial content or structure is used; *--' means the partial content or structure is not used.

As demonstrated by the experimental findings listed in Table 1,
the MIOU for segmentation of 16-channel point cloud BEV images
using the original U-Net++ network was only 89.19%. The
experimental results reveal that replacing the standard convolutional
kernel with ACBlock improved the convolutional kernel’s capacity
to extract road characteristics, as evidenced by the 1.82 percentage
points increase in MIOU in Experiments 1 and 2, without increasing
the number of model parameters and inference time. Experiment 3’s
addition of the MADC module expanded and fused road
information from different respective fields, resulting in a 1.45
percentage points increase in MIOU compared to Experiment 2.
Experiment 4 introduced the AG module to focus on the target road
features, reducing erroneous extraction of non-road regions and
increasing MIOU by 2.84 percentage points compared to
Experiment 2. The improved U-Net++ network in Experiment 5
integrated all the improved modules, resulting in a 5.08 percentage
points increase in MIOU compared to Experiment 1, to 94.27%.
Experiment 6 utilized the improved U-Net++ network to segment
64-channel point cloud BEV images, improving the MIOU by 7.35
percentage points compared to Experiment 1, to 96.54%. Due to the
inclusion of MADC and AG modules into the network structure, the
inference time slightly increased as the model precision improved.
Experiments 1, 2, 3, 5, and 6 were selected as comparison
experiments, used the point cloud BEV images of different road
sections as the input image, and employed the image obtained by
Labelme software annotation as the true values. Figure 14 shows a
comparison of the prediction results of the network.

In more detail, the first row shows a semi-structured road
without obstacles, and the improved U-Net++ network can perform

better road recognition. In the second row, a semi-structured straight
road with distant agricultural machinery and pedestrians is shown.
Although the improved U-Net++ network using 16-channel point
cloud BEV images as input can segment the road near the obstacles,
there may be some mis-extraction due to the limited Lidar beams
hitting the distant objects and fewer extractable features. In contrast,
the improved U-Net++ network using 64-channel point cloud BEV
images as input can segment the roads near distant obstacles more
accurately, thanks to the increased number of Lidar beams and
richer features. In the third row, a semi-structured intersection is
shown. The improved U-Net++ network using 64-channel point
cloud BEV images as input mistakenly extracts the water channel
next to the distant car as a road area, because the point cloud data at
the canal was mistakenly expanded during super-resolution, making
the features here similar to the road surface. The fourth row shows
an unstructured road with farmlands beside it, which have more
similar characteristics to the road surface. Our method can eliminate
the mis-extraction of farmland beside the road, thereby improving
the accuracy of road segmentation. Overall, the proposed method in
this paper can segment point cloud BEV images of field roads more
accurately than the original U-Net++ network in most cases, thereby
ensuring the safety of agricultural machinery.
3.3 Real-time Assessment

Table 2 lists the time required for each stage of our method. As
shown, the proposed method of this study achieves an average
processing time of 69.56 ms/frame, which is well within the range
of real-time performance. Considering that the typical speed of
tractors on field roads is 20 km/h, the proposed method can
accurately identify field roads in real time.
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Figure 14 Comparison of network prediction effects under different scenarios

Table 2 Average time required to process a frame in

each stage
Data process 16-channel point clouds 64-channel point clouds
Super resolution/ms x 8
BEV image/ms 42.17 45.01
Road prediction/ms 16.55 16.55
Total/ms 58.72 69.56

Note: ‘x” means that it has not gone through this operation.

4 Conclusions

In this study, a technical solution was proposed for the
recognition of field roads in BEV images using 16-channel Lidar.
By performing super-resolution processing on the 16-channel point
cloud data to generate 64-channel point cloud data, converting 3D
point clouds into the 2D point cloud BEV images, and improving
the U-Net++ road segmentation network, the accuracy of road
segmentation had been significantly improved. The proposed
method of this study employed the U-Net++ as the basic semantic
segmentation network structure, and incorporated three key
improvements:

1) The ACBlock was used to replace the original U-Net++
convolutional kernel in the outermost U-shaped structure. The
asymmetric structure of the ACBlock enhanced the feature
extraction capabilities of convolutional kernels without introducing
additional hyperparameters, resulting in superior generalization
performance;

2) The MADC was added to the highest semantic information
layer. By combining asymmetric dilated convolutions with various
receptive fields, the MADC improved the robustness of the model;

3) The AG model was added to the long-skip-connection in the
decoding stage, which effectively filters out invalid non-road

information in the image and mitigates the false extraction of
farmland with a similar structure to unstructured roads;

The proposed method of this study achieved an MIOU of
96.54% and an average processing time of 69.56 ms on 16-channel
point clouds, which was 7.35 percentage points higher than U-
Net++, meeting the requirements for unmanned driving in
agricultural machinery. Moreover, this study’s approach was also
applicable to lower channel Lidars, such as 8-channel Lidar, by
super-resolving 8-channel Lidar point clouds by a factor of eight.
Multi-sensor fusion is the main research direction of future
unmanned driving, and future work will be extended to multi-sensor
fusion for environment perception.
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