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1  Introduction 

The American Society of Robotics and the United Nations 
Organization for Standardization define a robot as a programmable, 
multi-functional manipulator or a specialized system that can be 
changed and programmed by a computer to perform different tasks.  
Robots are widely used in agricultural production and other fields[1-4]. 

Since the 1990s, there have been related studies on the design 
and use of agricultural robots[5].  There is a growing trend in the 
functional diversity of agricultural robots in China and abroad, 
which are gradually being promoted for ordinary agricultural 
production activities.  Besides, researchers have redefined 
traditional farm management concepts and upgraded inefficient 
planting methods with more efficient phenotype equipment and 
methods for large-scale plant phenotype evaluation.  The upgrade 
ensures that agricultural production can effectively cope with the 
global burden of food insecurity.  Thus, this review is examined 
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the need to understand the relationship between genotype and 
phenotype and the necessity of using a robot specifically designed 
for plant phenotype extraction because it is a major challenge of 
using robots in the agricultural industry[2]. 

Plant phenotype profiling measures specific plant traits using 
particular methods and protocols[6-11].  Plant traits are related to 
plant structure, biochemistry, and function at the cellular, canopy, 
and plant levels[6,12,13].  However, the traditional labor-intensive 
data collection method cannot meet the increasing demand for plant 
phenotype data.  Besides, the traditional phenotype acquisition 
method has human error, which is not in line with the concept of 
precision agriculture[1,8,14,15].   

Since the 2000s, intelligent mechanical technology and sensor 
technology have been applied in the field of plant phenotyping[16].  
Researchers have built camera control equipment to achieve the 
acquisition of phenotype data, for example, carrying environmental 
sensors on mechanical trellises to obtain real-time information on 
plant growth environment; carrying RGB cameras on agricultural 
tractors to obtain images of plant canopies; carrying camera 
platforms on gliders to obtain large-scale group-scale overhead 
images of farmland, etc.[3,4,8,17]  These data can help researchers 
quickly understand the plant growth condition so that they can 
respond to unexpected situations in the cultivation process in time.  
The recent development of machine learning algorithms and big 
data technologies since the 2010s has increased the intelligence of 
agricultural robots (Figure 1).  For instance, gantry platforms and 
pipeline phenotype platforms can extract data in high time 
sequence, while unmanned aerial vehicles (UAV) and 
self-propelled robot platforms have greatly improved data 
acquisition quality and efficiency[18-20]. 

Accurate measurement and rapid processing of phenotype 
information are key in plant phenomics.  Current plant monitoring 
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and phenotype techniques require agricultural equipment with 
multiple sensors.  These sensors are non-destructive, quantitative, 
and multi-scale, and facilitate high-throughput data generation.  
Phenotype detection robots, the new multi-functional real-time 
monitoring platform, are the choice machine for many botanists 
and agricultural scientists since they generate phenotype data 
through fully autonomous monitoring systems.  And the 
phenotype robots have the advantages of small size, high autonomy, 
and the ability to process phenotype data in real time[21-24].  

 
Figure 1  Development timeline of traditional agricultural and 

phenotype detection robots 
 

Thus, this paper reviews the latest agricultural and forestry 
phenotype detection robots and their application worldwide and 
provides a comprehensive review of related researches.  The 
current status of phenotype data parsing, the advantages of using 
robots, and the development potential of phenotype detection 
robots were assessed based on their design principles, work 
characteristics, and evaluation indicators[25].  Finally, the future 
development prospects of phenotype detection robots for specific 
traits and environments, multi-source plant phenotype detection 
methods, and phenotype detection robot clusters were refined. 

2  Definition, characteristics, and work modes of 
phenotype detection robots designed for agriculture 
and forestry 

2.1  Phenotype detection robots for agricultural and forestry 
applications 

This section summarizes the structure and functional 
characteristics of the current robots for agricultural and forestry 
applications (Figure 2), accordingly providing new definitions for 
phenotype detection robots.  A phenotype detection robot is an 
instrument that can independently run in a lane or field row, extract 
plant phenotype information, and analyze the data in a piece of 
intelligent mechanical equipment (such as an industrial computer).  
Phenotype detection robots are replacing traditional phenotype 
equipment and have attracted more attention worldwide.  And this 
definition helps to refine the work of plant phenotype with the 
intersection of agriculture and computer[4,26-30]. 

 
Figure 2  Basic structure concept diagram of phenotype detection 

robot 
 

2. 2  Characteristics of phenotype detection robots 
2.2.1  Structural features 

Phenotype robots are mainly divided into upper and lower ends 
or upper, middle, and lower structures[26,31,32].  The upper layer 
has a robotic arm, which interacts with sensors to extract plant 
phenotype data accurately.  The middle structure is for 
human-computer interaction and includes the stabilizer equipped 
with sensors, server computers, and the Pan/Tilt/Zoom (PTZ).  
This part controls the robot and can be connected to a power 
backup or other equipment.  The lower layer has autonomous 
mobile devices used to achieve functions such as tracking, 
navigation, and obstacle avoidance.  These features and functional 
modules facilitate the high-throughput acquisition of plant 
phenotype data.  Robots can improve data quality and analysis.  
Moreover, they combine three-dimensional plant gene maps with 
plant phenotype data, which is essential for regional differentiation 
characteristics and intergenerational evolution rules.  

The upper layer of the robot has a flexible manipulator and 
various non-affecting sensor equipment that combines several 
computer algorithms and programming modules to achieve the 
characteristic of simple equipment operation and full automation.  
In most cases, the upper and middle layers of the phenotype 
detection robots cannot be combined because PTZ is located in the 
middle of the robot, but the relevant human-computer interaction 
equipment and sensors can be mounted without causing 
interference.  But in some special cases, such as requiring a 
smaller robot, the top layer, and the middle layer can be integrated 
into one section.  The middle part is important in coordinating and 
controlling the whole equipment.  When the robots do not need a 
lot of human-machine interaction, the experimental sites are too 
narrow for movement; the upper and lower layers can form a whole 
to reduce the equipment volume.  Finally, rubber tires, metal 
crawlers, or ground tracks can facilitate movement under different 
soil hardness, terrain, and topography (Figure 3). 

 

 
Note: Row 1 presents the crawler and universal wheeled robot bases. 

Figure 3  Three common types of movement phenotype robots 
 

For example, using rubber tire sets with flexible steering 
motors can improve obstacle avoidance ability when working in an 
outdoor environment with hard soil.  On very soft or muddy roads, 
the metal track can guarantee passability.  In a narrow indoor 
environment or the greenhouse, repositioning the upper part of the 
robot on the ground can greatly improve efficiency.  

Phenotype robots rely on various sensors to complete 
autonomous targets and navigation[33-37].  Moreover, the 
continuous improvement of data accuracy requirements in 
medicine, military, and agricultural industries has nurtured 
improved sensitivity and data quality of robots and sensors.  For 
example, RGB cameras now have a shell with power interfaces and 
data transfer interfaces that can be stably assembled on robots.  
Some multispectral cameras or thermal imagers can also be 
assembled in special card slots and integrated into the phenotype 
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robots or other platforms on phenotype or UAV platforms.  Thus, 
users can finish all the necessary tasks across these interfaces using 
preset parameters[26,38-40].  

Most of these improved features are changed from traditional 
agricultural robots[4,41].  These features present the basic 
applications for sensors and robotic equipment, but their efficiency 
and intelligence do not meet the increasingly complex needs of 
agricultural experiments.  Phenotype detection robots for 
agriculture and forestry require higher autonomy than traditional 
equipment and pinpoint accuracy.  A phenotype robot has higher 
flexibility and environmental adaptability than a rail-mounted 
gantry system or other fixed phenotype platforms.  Similarly, 
phenotype detection robots have greater advantages than unmanned 
aerial vehicle platforms (UAPs) or other commonly used phenotype 
platforms in terms of operational complexity and usage conditions.    
2.2.2  Functional features  

Phenotype detection robots for agriculture and forestry have 
different functional characteristics from other phenotype platforms 
for several reasons.  First, they have more angles to collect much 
more multiple data than data from a single view.  Besides, these 
phenotype detection robots are able to get inside the plant canopy 
and extract the microscopic phenotype information from the front, 
side, top, or other specific angles.  The foreground and 
background of the captured images can also be changed 
accordingly, which greatly enriches data diversity.  

Secondly, these phenotype robots collect more accurate 
microscopic phenotype data than UAPs and other large fixed 
platforms.  Some phenotype robots sacrifice “high throughput” 
with data acquisition from field ridges and cluster plants, providing 
more information[34,42-45].  Moreover, some images from inside the 
canopy can also reflect more plant characteristics, thus, achieving 
another breakthrough in plant phenomics.  Most phenotype robots 
perform position tracking or self-guided navigation.  These robots 
use the GPS positioning system to build maps through close-range 
LiDAR scans of precise movements and real-time obstacle 
avoidance.  Furthermore, they can accommodate pre-lay 
positioning-magnetic sheets or auxiliary road signs in the test area 
for tracking.  Additionally, Young et al.[25], showed that 
self-propelled robots can correct their running trajectory by 
calculating the deflection angle in real-time, thus, moving with 
higher precision[32,34,46].  

Finally, these phenotype detection robots are more scalable, 
implying that users can quickly replace the sensors according to 
different structures and data extraction needs.  Such 
characteristics can greatly reduce experimental costs and 
complexity.  The scalability cooperates with the structural 
evaluation indicators, reflecting the core ideas of precision and 
smart agriculture and forestry[47]. 
2.2.3  Conditions and the phenotype detection robot workflow 

 The phenotype robot requires an experimental plan according 
to the experimental site and purpose.  Robots should be adjusted, 
and relevant sensor parameters preset to complete the relevant task.  
After that, robots run at the specified time.  During 
experimentation, the health of the device is monitored to ensure 
proper workflow.  Afterward, the equipment should be stored 
properly and the data saved for future uses (Figure 4). Phenotype 
detection robots can interact with experimental targets and 
environments in real-time.  The robot makes different judgments 
and action feedback according to different goals.  The two-way 
communication between the robot and the external environment 
ensures autonomous task completion.  Communication involves 
transmitting the signal from the experimental site to the robot and 

information processing in the first interaction.  The information 
feedback includes tracking navigation and obstacle avoidance, 
target detection, and sensor position adjustment.  After that, the 
second interaction occurs.  Here, the robot profiles plant 
phenotypes and continuously transmits plant phenotype 
information to the terminal device until the end of the 
task[14,15,26,29,30,34,46,47]. 

 

 
Figure 4  Phenotype detection robot workflow 

 

The final information from the robot can be divided into 
spectral (image) and text (scalar) data.  These data are generally 
collected by specific sensors, such as RGB cameras, multispectral 
sensors, hyper-spectrometer, obscure chlorophyll fluorescence 
cameras, transflectometer, environmental temperature and humidity 
sensors, and others (Table 1). 

 

Table 1  Sensor types and corresponding phenotype detection 
robots and data types 

Sensors Phenotype detection 
robot Phenotype data types 

RGB camera All kinds of robots RGB photos/plant 
height/crown width 

Multispectral camera All kinds of robots Multispectral data of leaves 

Hyperspectral camera Large indoor robots 
with a black box 

Hyperspectral data of leaves, 
stems, and roots 

3D LiDAR All kinds of robots Point cloud data of leaves, 
roots, and stalks 

Thermal infrared camera All kinds of robots Leaf temperature/Plant 
temperature 

Depth camera All kinds of robots RGB photos/Depth 
photos/Point cloud 

Chlorophyll fluorescent 
camera 

Robot with a robotic 
arm or PTZ 

Chlorophyll fluorescence 
image of plant leaves 

Transmissometer/ 
reflectometer 

Robot with a robotic 
arm or PTZ 

Leaf transmittance and 
reflectance 

Temperature and  
humidity sensor All kinds of robots 

Temperature and humidity 
information of the 
plant-growth environment 

Light intensity sensor All kinds of robots Light intensity 
 

The spectral data acquisition conditions of RGB and depth 
images are similar.  However, continuous shooting is necessary 
for agricultural and forest plants at specified angles of view and 
frames under sufficient lighting conditions[30,48,49].  Therefore, 
teams using phenotype robots design a suitable enclosure and 
install an external light to ensure the data quality according to plant 
phenotype and experimental requirements.  Some users use 
high-precision robotic arms to stably extract microscopic 
phenotypes.  Collecting multispectral and thermal infrared 
images[12,50] should be performed under natural light conditions.  
Thus, reasonable planning is required aiming for a shooting time 
between 10:00 am to 3:00 pm.  Shadowing caused by the 
equipment itself requires consideration.  However, hyperspectral 
images and chlorophyll fluorescence meters[42,51,52] can control 
interference from an external complex light environment to reduce 
imaging noise when acquiring pictures.  Such sensors generally 
need to be used with a black box and a controllable light source.  
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However, scalar data mainly include 3D point cloud[9,36,41,53-58], 
ambient temperature, and humidity information.  The point cloud 
of plants is generally obtained by scanning with a depth camera or 
3D-LiDAR.  The robot should maintain a stable operation to 
obtain scalar data continuously with reduced noise caused by the 
vibration of the vehicle body.  Plant environmental and growth 
information can be tabulated Table 2 according to the recorded 
time and sequence for subsequent analysis and processing. 

3  Development status  

This paper extensively investigated the publications related to 
phenotype detection robots in agriculture and forestry and 
summarized the current classification and development status of 
phenotype detection robots.  
3.1  Citation analysis  

A search on the Web of Science core database using the 
keywords “robot” and “plant” from 1992 to 2022 identified 1203 
articles on plant robotics.  Adding the keyword “phenotype” 
retrieved 11 publications.  Moreover, the most common keywords 
were “plant protection robot”, “automation technology”, and 
“computer software and computer application”.  These keywords 
reflect that the current phenotype data was obtained from 
traditional or improved agricultural robots.  Plant protection 
robots were the majority (Table 2).  Replacing the search terms 
with “phenotype” and “robot”, it yielded 65 related literatures.  
The 65 papers were mainly published after 2016.  The keywords 
of the 65 papers mainly included multidisciplinary sciences, 
computer science artificial intelligence, and computer science 
theory methods (Figure 5). 

The VOSviewer classified the node locations and clustering 
results of the keywords “plant” and “robot” into three major 
categories (Figure 6). 
Table 2  Plant environment and growth information correspond 

to different data, times, and sequences of data collection 
Topic Quantities Keywords of literature 

Robot & Plant 1203 
1. Robotic systems 
2. Sensor 
3. Plant science 

Robot & Plant Phenotype 11 
1. Plant phenotyping 
2. Computer artificial intelligence
3. High throughput 

Unmanned Ground Vehicle 
& Phenotype 19 

1. Multidisciplinary science 
2. Plant phenotyping 
3. Artificial intelligence 

Phenotype & Robot 65 
1. Multi-sensor platform 
2. High-throughput 
3. Plant phenotyping 

 
Figure 5  Keyword frequencies in retrieved papers using 

‘phenotype’ and ‘robot’ as keywords 
 

 
Figure 6  Phenotype robots retrieved from January 2015 to June 2022 

 

1) The red cluster concentrates on the robot body parts 
combined with field automation control, mechanical design, 
manufacturing, path planning algorithm, and user operating system.  
This section analyzes the running trajectory, control method, and 
interaction means to provide an important theoretical and structural 
scientific basis for designing intelligent plant robots. 

2) The blue cluster focuses on the crops and the corresponding 

specific phenotype extraction methods.  The literature mainly 
includes methods and equipment for targeted data acquisition from 
the external plant structure and organ composition, such as stem 
length, plant height, leaf shape, and leaf number.  It also provides 
application ideas for related practitioners to understand the basis of 
the phenomics of plants.  

3) The green cluster focuses on the quantitative analysis of 
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plant phenotypes.  This part mainly starts from different types of 
sensors and data, different branches of artificial intelligence and 
regression analysis algorithms, and different growth cycles, organs, 
tissues, and other plant fields.  These papers also analyzed and 
studied the internal relationship between plant phenotypes and 
algorithms.  The literature covered cluster analysis, the 
perspective of the sensors carried by the robots, and the solutions to 
the problems of robot information acquisition, especially plant 
information acquisition.  Besides, this literature provided data 
supporting plant cultivation and breeding. 

The statistics above show that the current research on data 
extraction and analysis for specific phenotypes is relatively separate 
from research on agricultural robots.  However, the increasing 
demand for plant phenotype information and data accuracy for 
agricultural and forestry-based plant phenotype detection robots 
have gradually become research hotspots in related fields. 

Depending on the equipment structure and application 
scenarios, phenotype detection robots can be divided into several 
divisions. 
3.2  Classification of phenotype robots  

According to different usage scenarios, phenotype detection 
robots can be divided into large-scale and small-scale types.  
Large-scale phenotype robots are used in orchards or field 
environments, but small plant phenotype robots operate in 
greenhouses with controlled conditions[9,47,59,60].  The 
characteristics of the orchard or field environments are large crop 
planting areas, changeable weather conditions, and complex soil 
topography.  At maturity, the vegetation or crops are relatively tall, 
and detecting the canopy interior can be difficult.  Therefore, field 
environment phenotype robots require good multi-terrain operation 
and high-throughput data acquisition capabilities.  In contrast, 
greenhouse robots require a small experimental space, complete 
supporting facilities, and small environmental changes.  The 
passability of the robot must match the different experimental sites.  
Thus, the robot should have good obstacle avoidance and be 
equipped with a mechanical arm, a pan-tilt, and other multi-angle, 
multi-directional smart devices[25,61,62].  

Based on the different operating types, phenotype robots can 
be divided into three categories: cross ridge, self-propelled, and 
small robots with integrated robotic arms.  Cross ridge and 
self-propelled robots can be adapted to most data collection tasks in 
most field environments.  This is because both kinds of robots 
adopt the underlying platform design that is more suitable for the 
field environment, and both have good passability.  Self-propelled 
robots can also be used in large greenhouses or greenhouses 
because of the smaller size of the robot compared to the straddle 

robot.  Small robots with integrated robotic arms are designed for 
cramped greenhouse environments and can penetrate deep into the 
canopy for data acquisition.  All these have their own adaptation 
scenarios, while self-propelled robots which can work between 
ridges are the most applicable category.  In general, these robots 
can solve problems related to data diversity.  Besides, phenotype 
robots can quickly disassemble and replace parts, so that different 
sensors can be used to accurately extract phenotype data of 
different plants.   

Phenotype detection robots are very popular around the world 
because they have similar structural characteristics to traditional 
agricultural robots, especially vegetation monitoring and fruit, and 
vegetable picking robots.  Both phenotype and traditional 
agricultural robots have underlying mobile platforms and upper 
modules.  Thus, both robots can easily complete functional 
migration and development.  The specific research on phenotype 
robots by teams from different countries will be explained in 
section 3.3. 
3.3  Ground-propelled phenotype detection robots  

As mentioned above, phenotype detection robots are 
extensively applicable to the current field of plant phenomics.  
Global teams have designed and developed different robot 
platforms to meet different experimental contents (Table 3).  For 
example, Weyler et al.[29], from the University of Bonn, Germany, 
used a large-scale phenotype robotic device to extract phenotype 
images of sugar beet plants at the seedling stage.  This device that 
runs across ridges and moves within the same ridge is equipped 
with an RGB camera for photographing beet seedlings from an 
overhead angle.  The team used these images to detect and 
discriminate weeds from beet plants instantly.  They used a 
keypoint-based deep learning algorithm to implement the beet leaf 
count function (Figure 7e). 

In 2018, the School of Agricultural Engineering at the 
University of Hohenheim designed a similar phenotype robot for 
maize plants in field and greenhouse environments[63].  The 
platform comprises a mobile unmanned vehicle at the bottom layer 
and a mechanical PTZ on the upper layer containing an industrial 
control computer, depth camera, and temperature and 
humidity-light intensity three-in-one environmental sensor.  The 
obtained images from inside and outside the canopy are extractable 
from point cloud data after inverse processing, and the 
three-dimensional image of the leaf can be reconstructed through 
Poisson surface technology and image fusion and splicing 
technology[55,64,65].  The ability of ground phenotype robots to 
control error levels shows that they can generate accurate 
phenotype information (Figure 7b). 

 

Table 3  Ground-propelled phenotype detection robots, their specialized functions, and respective research teams using them in various 
Phenotypic detection robots Operating types Advantages Place and usage 

Auto plant detection 
system[61] Cross Ridge Robot Strong environmental adaptability, data collection can be performed 

under different scenes and light sources (Fields/Greenhouse) 
Used by the Japanese team around 
2020 

Vinobot[46] Self-propelled Robot Combining unmanned vehicle and observation tower, monitoring crop 
phenotype in combination with point and surface (Fields) 

Used by Mackenzie Presbyterian 
University team since 2017 

TERRA-MEPP[25] Self-propelled Robot The crawler helps the device achieve high-throughput acquisition in 
different soil conditions (Fields) 

Used by teams of University of 
Illinois since 2016 

LQ-CropLiDAR Self-propelled Robot  
between the Lines 

Height, angle, and collection route can be adjusted to achieve 
high-throughput collection of phenotypic data (Fields/Greenhouse) 

Used by teams of Beijing Academy of 
Agriculture and  Forestry since 2020

RoAD (Robotic assay for 
drought)[39] 

Small robots with  
integrated robotic arms 

High degree of automation, enabling automatic monitoring, auxin 
regulation, and phenotype extraction (Greenhouse) 

Used by the Iowa State University 
team since 2020 

Robotanist[71] Small robots with  
integrated robotic arms 

Equipped with a high-resolution stereo imager to achieve accurate 
acquisition of 3D phenotype (Fields/Greenhouse) 

Used by teams at Carnegie Mellon 
University in 2018 

PhenoWatch Small robots with  
integrated robotic arms 

High-throughput, equipped with a variety of optical sensors to achieve 
accurate extraction of plant phenotype data (Fields/Greenhouse) 

Used by teams from Nanjing 
Agricultural University since 2019 

Robot and UAV embedded 
platform[58] 

Cooperative system of  
UAP and phenotype robot 

Using the collaborative measurement of two devices to help achieve 
3D reconstruction of corn leaves (Fields) 

Used by teams of the University of 
Hohenheim since 2017 
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a and c: The phenotype robots called Rovers designed by MIT  b. A robot with PTZ designed by the University of Hohenheim  d. An indoor phenotype robot called 
RoAD  e. An example of using robot to count leaves of beet  f. An example of overhead image acquisition using a phenotype robot  g and h: Processing of plant 
phenotype data 

Figure 7  Phenotype detection robot and data extraction examples 
 

For instance, a 2019 study by the MIT Sensitive City 
Laboratory, Computer Science, and Artificial Intelligence 
Laboratory presented high-throughput phenotype robots developed 
for sorghum[26].  The robots, named “Rovers”, use biofuel, are 
highly adaptable, and have unique triangular crawlers designed for 
different experimental environments, including the greenhouse and 
field.  The device is also equipped with RGB and depth cameras 
and uses stereo imaging technology to obtain high-throughput plant 
surface information.  Rovers have a GPS situated on top of the 
mast-type gimbal containing other sensors and an industrial 
computer fixed on the vehicle platform.  At the same time, the 
sensor shutter settings matched other factors such as driving speed, 
terrain, and test path length to reduce data noise (Figure 7c).  

A July 2021 publication by Iowa State University described 
the Robotic Drought Detection (RoAD) system, a ground robotic 
device designed and developed for BR and drought stress 
experiments of Arabidopsis in a small greenhouse environment.  
The device has a robotic arm, rover, bench scale, 
precisely-controlled watering system, RGB camera, and laser 
profiler; thus, it accurately identifies plant locations and moves 
autonomously to collect relevant information.  The RoAD 
performs routine weighing, watering, and imaging tasks and can 
administer BR response assays by watering plants with 
Propiconazole (PCZ), a BR biosynthesis inhibitor.  Furthermore, 
RoAD contains an automated and non-invasive robotic imaging 
system that accurately determines the morphological and 
growth-related traits of Arabidopsis and maize plants, providing 
insights into BR-influenced plant growth and stress responses 
(Figure 7).  
3.4  Strengths and limitations of the currently available robots 
and possible solutions  

Plant phenotyping essentially refers to assessments of plant 
phenotype traits[6,10,66,67] and characterization to guide breeding 
efforts.  However, most phenotype equipment cannot accurately 
obtain different qualitative or quantitative phenotype traits of the 
same plant at one time.  Simultaneously, it is more difficult for the 
equipment to achieve adaptive parameter adjustments for different 
plants and traits[46,68].  This challenge is also a strength as it 
promotes the development of targeted phenotype robots with 
diversified applications.  

For example, a robotic arm system installed on a fixed track 
can complete high-throughput phenotyping through specific 
programs and preset parameters[12,15,43,69].  Such robots are mostly 
used in small-scale greenhouses or controlled environments, 
reducing wear and tear, thus, cutting down operation and 
maintenance costs and extending the service life.  Additionally, 
these robots have more stable mechanical structures and a 
reasonable optical-sensor layout.  They can be attached to external 
light sources or metal black boxes to improve imaging quality 
(Figure 7h).  

Currently, these robots and the ground self-propelled 
phenotype robots (discussed under ‘Ground-propelled phenotype 
detection robots’) can function in automatic data collection and 
quantitative application of water and fertilizer; thus, combining the 
functions of traditional agricultural and modern phenotyping robots.  
Various features of the robot.  And these devices achieve 
complete remote control through an encrypted connection between 
the server and the machine while ensuring data and experimental 
security and contributing to precision agriculture and breeding. 

Therefore, phenotype detection robots complete some 
traditional agriculture besides phenotyping; thus, the efficiency and 
accuracy of agricultural experiments.  Compared with other 
phenotyping devices (taking the UAPs as an example), phenotype 
detection robots have the following advantages:  

1) High degree of autonomy and high carrying capacity to 
generate accurate phenotype data from a stable platform that 
accommodates other related equipment and sensors.  The 
separated bottom-operating and upper-acquisition modules reduce 
the interference between the various sensors during operation[9,70].   

2) Ability to complete indoor and outdoor environments with 
smooth, continuous data acquisition.  Moreover, their design and 
modification are easy and flexible for different experimental 
environments and conditions[30,71].  

3) Preset network coverage to comply with the higher 
requirements for real-time transmission of plant phenotype data 
since normal operation often involves real-time cultivation and 
breeding plan adjustments.  Real-time adjustments are the core of 
smart agriculture and are key for present-day phenotype data 
collection[12,72].  
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4  Evaluating phenotype detection robots  

This evaluation system considers several factors, including 
plant phenomics, mechanical design principles, manufacturing 
requirements, artificial intelligence, and application requirements.  
The evaluation aims at ensuring the high-throughput and 
nondestructive acquisition of phenotype data (Figure 8)[46]. 

 
Figure 8  Main evaluation indexes of phenotype detection robot 

 

4.1  Structural evaluation indicators  
4.1.1  Degree of equipment intelligence  

Phenotype detection robots reduce the influence of human 
factors on the experiment and realize high-throughput data 
collection than the traditional labor-intensive methods[1,73].  
Autonomous robots can reduce human participation, costs, and 
manual errors, the core of smart agriculture.  Therefore, structural 
intelligence and autonomy are considered when designing and 
evaluating a phenotype detection robot.  
4.1.2  Adaptability to complex environments  

It was argued that a phenotype detection robot should be able 
to work continuously in various experimental environments 
without major changes, such as replacing accessories or adding 
auxiliary equipment.  Outdoor phenotype detection robots are 
constrained by the environment and experimental area, limiting 
their application during strong winds, thunderstorms, or dark 
weather conditions[42,74].  Crop density, soil moisture, and texture 
were also considered to test the robot’s passability.  Therefore, the 
environmental adaptability of the new phenotype detection robots 
under unfavorable conditions and high-quality data acquisition are 
important structural considerations.  
4.1.3  Endurance capability  

Battery life is a "pain point" for autonomous mechanical 
equipment, especially some robots.  Many phenotype robots 
cannot continuously collect data for a long time, thus, decreasing 
the experimental efficiency and prolonging the experimental period.  
Therefore, the phenotype detection robots should have reasonable 
power control, autonomous return to the charging pile, and use 
solar energy or other environmentally friendly biomass energy to 
extend the service life of the device.  

Phenotype robots should continuously work for 6-8 h to 
complete the data collection task within the plant growth cycle.  
Therefore, robots with these and other valuable characteristics have 
excellent endurance, while those below this standard supposedly 
have poor endurance.  
4.1.4  Clustering 

Multi-equipment clustering, the ability to work alongside 
multiple phenotype devices to phenotype plants.  At present, no 
single robot can extract all kinds of data.  For example, some 
optical sensors require natural light environment, while 

hyperspectral cameras require a black box to avoid ambient light 
noise.  Some phenotype information requires destructive data 
acquisition, and some experiments are non-destructive.  Therefore, 
the higher the degree of clustering of a phenotype robot, the more it 
can shorten the experimental period and improve the multi-source 
data acquisition, accuracy, and subsequent data processing.  
4.1.5  Scalability  

Traditional phenotyping equipment requires a longer time to 
disassemble and replace parts.  Once some large phenotyping 
platforms and large agricultural robots are installed, replacing the 
equipment parts and sensors, and operating the experimental 
environment becomes difficult.  The scalability of phenotype 
detection robots has become a concern of relevant researchers due 
to the continuously improving intelligence of phenotyping 
equipment.  A robot that can be quickly modified and assembled 
becomes the first choice of experimenters.  Based on scalability, 
phenotype detection robots can be divided into three categories: 
those that can realize rapid disassembly and assembly of equipment 
parts, those that allow local sensor replacement, and those with 
fixed, irreplaceable functional accessories.   
4.2  Functional evaluation indicators  
4.2.1  Data quality  

Precision agriculture requires precise control of various plant 
growth indicators, and subtlety analysis quality of phenotype data 
is directly related to the ease and accuracy of subsequent algorithm 
processing[11,72,75].  Therefore, a robot that can overcome operating 
environment and equipment interference during the 
high-throughput collection of high-quality data is key to the 
phenotype equipment function evaluation system.   

Data quality assessment varies with data types.  For instance, 
images need to be dynamically captured according to preset camera 
parameters, to avoid overexposure (caused by high noise), shakes 
(caused by image blur), and angle or viewing distance errors.  
However, the chlorophyll content (SPAD), transmittance and 
reflectance of plant leaves, environmental temperature, and 
humidity need one-to-one correspondence between the measured 
and verification data to improve the result value and significance.  
4.2.2  Data diversification  

The importance of data diversification was mentioned above in 
the cluster development of phenotype robots.  The effective 
information contained in a single phenotype data is not enough in 
the context of today’s agricultural needs.  Many complex 
agronomic experiments and crop monitoring tasks require multiple 
types of data support, and more information can be mined in the 
complementarity of data to maximize benefits[30,60].  Therefore, a 
well-designed phenotype detection robot should collect 3-5 data 
types concurrently and use each other as a reference to achieve 
multi-scale phenotype analysis tasks.  Of course, it does not mean 
that the more types of data collected simultaneously, the better 
robots it is because there is inevitably a mutual influence between 
sensors and differences in shooting conditions.  The phenotype 
robot should comprehensively consider data quality and data 
throughput and seek to maximize experimental benefits.  
4.2.3  Real-time communication interaction  

With the rise and development of the concept of smart farms 
and blockchain technology, the proportion of data decentralization 
has gradually increased.  Future phenotyping experiments in 
agriculture and forestry will not be limited to the same area.  Even 
if the experimental sites are very close, the data obtained by the 
robots also needs to be transmitted to the relevant personnel as 
soon as possible for processing and quantitative analysis.  
Therefore, whether it can interact remotely and whether this 
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interaction can be transmitted in real-time in combination with the 
latest communication methods and technologies is also one of the 
important functional designs of robots[39,76].  
4.2.4  Visual operation interface  

According to this review, the phenotyping platforms used by  
teams from various countries in recent years include self-designed 
and developed systems.  However, the corresponding user 
interfaces are very small[15,30,39,42,49,77], implying high usage of these 
intelligent “barrier” systems.  As the most promising phenotype 
detection robot in modern agricultural equipment, it should have a 
matching “one-button” control software and a convenient visual 
user interface to improve the usability and flexibility of the entire 
system[49]. 
4.2.5  High-throughput and fast processing of data  

To a certain extent, phenotype detection robots trade high 
throughput for data collection accuracy and specificity.  However, 
an excellent phenotype robot should consider both efficiency and 
quality to meet the current needs of high-throughput phenotype 
data.  The total amount of phenotype data Q is expressed as, 

Q=M×R                     (1) 
where, M is the type of data that the robot can obtain in one 
experiment and R is the amount of data obtained by one sensor.  

The data collected by the sensor must have minimal or no 
redundancy to facilitate accurate subsequent algorithm processing, 
especially when performing regression analysis.  Extensively 
redundant data affects the entire prediction[3,30,75,78,79], a great 
inconvenience throughout the experimentation since some basic 
indicators, such as the number of plant leaves, plant disease images, 
and insect pest identification, are directly given.  Therefore, the 
ability of the phenotype detection robot to perform rapid data 
preprocessing is an important functional evaluation index[26,46,52].   

The efficiency of data processing factors in the data volume 
per unit time e  is captured in the following equation: 

Qe
t




                      (2) 

where, Q is the total amount of phenotype data, and Δt is the 
experimental period.  

Besides, the long-term processing efficiency E can be 
determined with the overall experimental period using the 
following equation:  

1 ,   
K

ii
Q

E K N
T
                   (3) 

where, K is the total number of data collection tasks across the 
experiment period; T is the time required to complete the whole 
experiment; N is a natural number.  

5  Challenges and development prospects of 
phenotype detection robots 

Currently, there are several outstanding challenges in 
designing and using phenotype robots.  On the one hand, optical 
sensors dominate the detection system, but their function 
contradicts the complex and variable plant phenotype measurement 
task.  On the other hand, the precise measurement and 
collaborative extraction of multi-source data from phenotype robots 
are still insufficient.  In the future, plant phenotype detection 
robots for agriculture and forestry will inevitably improve and 
update iterations according to the existing problems to achieve 
multi-robot, multi-platform cluster development, and 
high-precision data collection.  This improvement projection also 
aligns with the requirements of the relevant structural and 
functional evaluation indicators proposed in this paper.  
5.1  High-throughput, intelligent robots  

Current phenotype robots partly sacrifice high-throughput data 
extraction for improved flexibility and accuracy.  Simultaneously, 
current phenotype robots have not completely replaced human 
resources because of limited load capacity, endurance, and data 
collection refinement.  Thus, device operation still requires 
manual parameter setting and some deployment operations.  
Phenotype robots also face irreversible wear and tear due to 
prolonged operation.  Solving these problems requires a lot of 
material and effort against the concept of sustainable development 
and smart agriculture.  Therefore, a mature intelligent phenotype 
detection robot needs to be able to reduce self-wear and reduce the 
failure rate.  

However, future phenotype detection robots developed for 
agriculture and forestry plants will probably have higher autonomy 
before experimentation, be pre-deployable, and be modeled to 
different places and plants.  The robot can be adjusted in detail to 
complete the collection work as long as the data is needed.  And 
after experimentation, the robot can transmit and save the data, 
check its operational status (for any faults), and give feedback in 
time.  Moreover, experimenters can monitor and manage the robot 
operation in real-time through a remote control terminal, thus, 
realizing an “unmanned” operation (Figure 9).  

 
Figure 9  Components of plant phenotype detection robots for agriculture and forestry 
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5.2  Non-destructive extraction and precision requirements of 
data  

Agricultural experiments based on phenotype robots should 
perform non-destructive data extraction, but currently, the robots 
are destructive[42,68,69,80].  In some cases, the robots irreversibly 
damage plant stems and leaves as they move and collect data.  
The damage can adversely affect other experiments hinged on the 
same batch of plants, ultimately failing the entire experiment.  
Therefore, reasonable robots should also reserve space for 
equipment use before application in agriculture and forestry 
experiments, achieving the coordinated development of agriculture 
machinery and agronomy.  

In addition, due to the diversity of plant phenotypes and the 
great differences in the expression of the same phenotype on 
different plants, whether it is the spectral image data mentioned 
above or text data such as point clouds, it is necessary to improve 
Data quality to meet the needs of increasingly in-depth 
phenotyping tasks.   

For example, some phenotype detection robots meet occlusion 
problems when taking images, especially on the stem part 
(horizontal direction) and the canopy (vertical direction).  
Three-dimensional information about leaves and stems is also 
crucial for phenotype analysis, yet 3D digital plant data collection 
by robots is still largely exploratory.  3D digital plant data 
collection still involves specific situations per plant and requires 
precise positioning of robotic arms and other equipment; thus, a 
critical development direction for future agriculture and forestry 
phenotype detection robots[44,52,81]. 

Additionally, processing phenotype data is inseparable from 
mathematical-statistical models and computer algorithms.  The 
former is mostly used for scalar (text) type data parsing and the 
latter for spectral image processing[54,63,82,83].  Efficient software 
analysis developed for agriculture/forestry research will improve 
smart agriculture.  For example, regression algorithms based on 
the least form algorithm can predict plant growth, while similar 
linear or non-linear analytical functions can also correlate plant 
biomass data[60,84,85,86].  Semantic segmentation and object 
detection algorithms can refine the anatomy of plant images, 
including RGB, multispectral, or thermal infrared images.  Deep 
learning models of computer vision can perform feature 
analysis[63,80,87-93].  Some 3D point cloud-based processing and 
digitization algorithms can also reconstruct 3D plant 
models[53,54,64,94,95], a convenience for relevant practitioners 
performing global analysis of plant growth status.  Moreover, 
continuous optimization of artificial intelligence algorithms is the 
basis for developing intelligent agriculture robots[6,15,20,26,29,96] 
(Figure 9).  Hence, future phenotype robots should ensure high 
data quality and higher-throughput, multi-scale information 
extraction, especially when collecting different types of 
complementing data.  In this way, comprehensive and accurate 
data analysis will be realized.  Thus, the advanced robots better 
guide breeding work and trigger breakthroughs in phenotype 
detection robot technology. 
5.3  Data mining challenges and intelligent human-computer 
interaction 

The purpose of obtaining phenotype information is to classify 
and filter large sample data.  The laws of plant growth can be 
analyzed using the laws and characteristics of relevant models and 
algorithms to better guide agricultural breeding.  Therefore, the 
ability to analyze phenotype data is an important indicator in 
measuring the phenotype detection robot system[14,15,31,47].  

Real-time data transmission and rapid processing are also important 
for intelligent phenotyping now and in the future.  However, there 
are still many performance challenges, such as traffic stability and 
wireless networks monitoring edge-connected devices.  
Nonetheless, there is still much room for improving data 
processing, preservation, and in-depth information mining[76].  

Our research team showed that most of the current phenotype 
detection robots quickly acquire and transfer phenotype data to 
databases in an integrated way.  The preset tasks of these systems 
often end in data communication and interaction; that is, the data is 
not further processed or analyzed.  After experimentation, the data 
must be manually downloaded and copied, which is undoubtedly 
inefficient.  Therefore, future phenotype robots should focus on 
rational designing and optimizing this part of the experiment.  

Agricultural big data also requires diversified data storage and 
backup to improve data security and facilitate asynchronous 
parallel processing of multi-source data; thus, the intersection of 
agriculture and computer technology should not only consider the 
robot technology and phenotype detection algorithm, but also the 
real-time sharing and the security of data[52,53,82].   

Future phenotype detection equipment also needs relevant 
software control, big data, and cloud computing analysis platforms.  
These platforms need to have the following capabilities (Figure 
9)[15,26,64]:  

1) Integrate the software and newsletter interfaces using 
reasonable software architecture and network channel divisions to 
operate multiple devices remotely.   

2) The robot system can remotely enter different types of data 
into the database, and realize data sharing among multiple devices.  
This can not only improve the efficiency of agricultural and 
forestry experiments, and facilitate subsequent data processing, but 
also improve the security and reliability of data storage, enabling 
data sharing.   

3) Quickly resolve phenotype traits by fully using cloud 
computing and other methods in future phenotype detection robot 
systems to help non-computer practitioners and lay people use 
cutting-edge algorithms to quickly analyze plant phenotype data.   

In conclusion, accelerating the integration of plant phenomics 
and computer science can facilitate agriculture and promote the 
development of artificial intelligence.  Finally, a virtuous circle 
will be formed between academia-academia, academia-industry, 
and industry-industry.  
5.4  Multi-device collaborative measurement and robot clustering  

Inaccurate technologies limit current phenotype robots for 
tracking and balancing the passage between different places; thus, 
they meet the requirements of micro-level data collection.  While 
other robots also face difficult design and assembly problems in 
different environments, these unfavorable factors directly affect the 
agronomic experiment cycle and cost[46].  The same quality is also 
necessary for developing coordinated and different equipment 
clusters.  

Currently, the phenotyping platform based on UAV technology 
is the most common system for obtaining high throughput 
phenotype data in field experiments[43,97].  The UAPs can monitor 
plant phenotypes and synergistically analyze other traits by taking 
pictures of plant canopies.  Therefore, UAV equipment is widely 
used in research in related fields.  Unfortunately, the UAV 
technology is not applicable in a conventional greenhouse 
environment[15,98] because of height incompatibilities with the 
greenhouse roof (3-10 m), which is unsuitable for drones.  In 
addition, the natural environment easily affects data collection in 
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the air.  Bad weather and high-altitude occlusion also hamper 
normal drone flight[42,74,99].  Therefore, combining the respective 
advantages of drones and phenotype robots can be a breakthrough 
in multi-scale data acquisition (Figure 10).  

 

 
Figure 10  Phenotype detection robot cluster of agriculture and 

forestry plants 
 

The concept of “machine cluster” in plant phenotyping will 
become mainstream in the future (as shown in Figure 10) because 
of the developments in communication and phenotype equipment 
technologies.  The fifth-generation communication technology (5G) is 
now mature, and research on the sixth-generation communication 
technology (6G) is on the agenda of the relevant practitioners at home 
and abroad[97,100].  In other words, real-time information transmission, 
and sharing will become the mainstream of various industries in the 
future.  As an important part of the communication, the concept of 
“decentralization” will also be applied to future phenotype 
detection equipment.  “Decentralization” means that each node in 
a multi-node system has a high degree of autonomy and can be 
freely connected to other nodes to form a new connection unit for 
distributed processing and centralized management and control of 
tasks.  These network conditions can be used on multiple ground 
robots of the same kind or deploy different phenotype robots for 
coordinated control.  These network conditions can form a cluster 
array and collect various data types, large samples, high-throughput, 
and improve data accuracy[39,101,102].  

In the future, the application of cluster robots will become the 
main means of obtaining plant phenotype data[9,26].  Different 
phenotype traits of the same plant or trait detection tasks on 
different varieties can be completed by intelligent robots.  The 
technology can also be rolled out to a larger area.  Besides, robots 
with different structural characteristics can also make up for the 
shortcomings of other robots in their respective application 
scenarios.  For example, the same agronomy experiment can 
account for field and greenhouse environments, different climatic 
conditions, and altitudes.  These robot clusters also improve the 
more robust, complete, and accurate three-dimensional data.  

6  Conclusions  

The phenotype detection robot of agriculture and forestry 
plants is an intelligent device formed by the combination of a 
cutting-edge high-throughput plant phenotyping platform and 
traditional agricultural robots, which has broad application 
prospects.  There are many disciplines involved in such equipment, 
such as artificial intelligence and data science, mechanical design 
and manufacturing automation, plant breeding, inertial navigation, 
communication, etc.  The development of phenotype robots also 
provides more efficient and robust sensing and control systems.  
Therefore, a highly functional plant phenotype robot with high use 
value should start from the above disciplines, comprehensively 
analyze its limitations, and improve its speed, accuracy, safety, and 
reliability.  This paper aims to redefine the agricultural and 

forestry plant phenotype detection robot, separate this concept from 
the general agricultural robot, realize the targeted deployment of 
agricultural experimental equipment, and lay a theoretical 
foundation for future research. 
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