Influences of microwave vacuum puffing conditions on anthocyanin content of raspberry snack

Mu Yanqiu, Zhao Xinhua, Liu Bingxin, Liu Chenghai, Zheng Xianzhe*
(Northeast Agricultural University, Harbin, 150030, China)

Abstract: Microwave technology is fit for the processing of berry products, but it may affect nutrition components of berry fruit. To improve the nutritional value of the berry products, the influences of microwave vacuum puffing conditions on the anthocyanin content of raspberry snack were investigated using central composite experiments. Results indicated that vacuum pressure had the most significant effect on the anthocyanins of berry snack, followed by the puffing time, microwave power, and initial moisture content. The interaction between microwave power and puffing time on the anthocyanins was extremely significant. Under microwave power of 2.68 kW and the puffing time of 81.00 s, the anthocyanin content of raspberry snack was retained at high level. The results can provide some technological basis for the berry fruit products processed with high quality.

Keywords: raspberry snack, microwave vacuum puffing, processing condition, anthocyanin content, absorbance

DOI: 10.3965/j.ijabe.20130603.0010

Introduction

Raspberry (Rubus idaeus) is highly valuable berry fruit owing to its unique flavors, soft textures, and high nutrition. High contents of anthocyanins, vitamins and minerals in raspberry provide obvious health benefits[1,2]. Raspberry and its products had been accepted and favored by the consumers. However, raspberry has a short shelf life of 2-3 days at room temperature due to its succulence fruitage and thin pericarp. In addition to partial consumption of fresh fruit, the majority of harvested raspberries are frozen for the further processing. At present, raspberry products mainly include beverages, icecreams, jams and jellies. Raspberry snack puffed by microwave vacuum (MV) method is a novel leisure food with crisp-taste and rich nutrition.

The MV technology comes from the combination of rapid volumetric heating from microwave[3] and low drying temperature from vacuum environment, which is a potential method to process the fruit and vegetable[4]. Fruit and vegetable products based on MV processing method have high quality in terms of structure, volume and nutrient retention[5,6]. Lin et al.[7] reported that the carrot slices dried by MV had higher rehydration, higher α-carotene and vitamin C content, lower density, and softer texture than those dried by hot air. Liu et al.[8] suggested that blue honeysuckle slices puffed using MV method had higher quality attributes including hardness, crispness, color and vitamin C content than those using
hot-air drying. Puffing phenomena with volume expansion and porous interior often occurred in products processed by MV method\(^{[9,10]}\). Microwave vacuum puffing (MVP) technology has been applied to process fruits and vegetables, such as apple, banana, carrot, mushroom, potato\(^{[11-17]}\). MVP processing may influence the quality of products in terms of structural characteristics, appearance, taste and nutrient component. Liu et al.\(^{[18]}\) found the effect of MVP parameters including initial moisture content, vacuum pressure and microwave intensity on the quality attributes in terms of expansion ratio, hardness, crispness and color of blue honeysuckle snack. Mu et al.\(^{[19]}\) studied the influence of process conditions on the texture characteristic and sensory properties of berry snacks subjected to MV. Zheng et al.\(^{[20]}\) presented the microwave power, vacuum degree and initial moisture content had significant influences on the dehydration and texture quality of raspberry snack and determined the volume expansion related to the dehydration rate of berry slab\(^{[21]}\). The loss of vitamin C and anthocyanins in berry product processed by MV is lower than that processed by the convective drying\(^{[22,23]}\).

Anthocyanins are potent flavonoid antioxidants widely distributed in berry fruits, which provide health benefits and contribute antioxidant capacity. Processing conditions have effects on the stability of anthocyanins. However, little investigation was conducted on the influences of MV conditions on the anthocyanins of berry products. The objective of this study was to analyze the influences of MVP process parameters on the anthocyanin content of raspberry snack. The results would help to improve the quality of berry products.

2 Materials and methods

2.1 Materials and equipment

The fresh raspberries used in the experiment were supplied by Harbin Xinyue Three Berry Fruits Co. (Harbin, China) to frozen storage. The frozen raspberries were thawed at room temperature, then were cleaned and weighed. Soft sugar (Hongguang brand, Bocheng Sugar Co. Ltd, Nehe, China) was added to the raspberries at weight ratio of 1:5. The mixture of raspberry and sugar were crushed using an agitator (HR1727, Philips Domestic Appliance & Personal Care Co. of Zhuhai SEZ Ltd., Zhuhai, China) for 20 min for the preparation of raspberry puree. The moisture content of raspberry puree \(M_{re} \) (%, w.b.) was measured using direct drying method (GB5009.3-2010). The raspberry puree was concentrated and modulated to desired moisture content, \(M_{T} \) (%, w.b.) by MV dryer. During the modulation process of puree, the mass of evaporated water (\(\Delta m_{w}, g\)) satisfied Equation (1):

\[
\Delta m_{w} = m_{re} - \frac{m_{re} \cdot (1 - M_{re})}{1 - M_{p}}
\]

where, \(m_{re}\) is the mass of raw puree before concentrated process (g); \(M_{re}\) and \(M_{p}\) are the moisture contents of raw puree and concentrated puree (%, w.b.) respectively.

Raspberry leather consisted of concentrated puree and maltodextrin at solid ratio of 2:3. The additive amount of maltodextrin into concentrated berry puree was calculated as follows:

\[
m_{m} = \frac{3m \cdot (1 - M_{0})}{5(1 - M_{m})}
\]

where, \(m_{m}\) is additive amount of maltodextrin into concentrated berry puree (g); \(m\) and \(M_{0}\) are the total mass (g) and the initial moisture content (% w.b.) of berries slab respectively; \(M_{m}\) is the moisture content of maltodextrin with the value of (5.12±0.02)% (w.b.).

The desired moisture content of concentrated puree \((M_{p}, \% \text{ w.b.})\) was given by:

\[
M_{p} = \frac{m \cdot M_{0} - m_{m} \cdot M_{m}}{m - m_{m}}
\]

The moisture content of samples was measured using air drying oven. Uniform fruit leathers were cut with circular mold with the diameter of 24.50 mm and the thickness of 2.84 mm for preparation to MVP. Figure 1 showed the shapes of raw berry leather and puffed berry snack.

![Figure 1 Raw berry leather and berry snack puffed](image-url)
A MV dryer (QW-4HV, Guangzhou Kewei Microwave Energy Co. Ltd, Guangzhou, China) was used to puff raspberry slab. Dimensions of drying chamber (width × depth × height) were 800 mm × 900 mm × 1000 mm. Operations of MV puffing berry slab were conducted at three microwave output powers levels of 1.34 kW, 2.68 kW and 4.02 kW. Chamber pressure was set in the range of 0-90 kPa. There were six rotating baskets in the oven cavity.

2.2 Anthocyanin determination

Anthocyanins in raspberry snacks were measured by spectrophotometric method, and the procedure was as follows: (1) Preparation of chromogenic agent as follows: 100 mL vanillin methanol (1%) was added with 100 mL hydrochloric acid (8%). (2) About 2 g raspberry snacks was ground using a laboratory mill to powder and weighed, then added into 50 mL methanol. The mixed solution was oscillated for 30 min to dissolve fully, and filtrated, then diluted with methanol to 100 mL. One milliliter extracted solution was mixed to 5 mL chromogenic agent as the test solution. One milliliter methanol was added into 5 mL chromogenic agent as the blank solution. (3) The measurement of anthocyanins of samples was carried out using an ultraviolet-visible spectrophotometer (6010 Type, Shanghai HP Analytical Instrument Co. Ltd, Shanghai, China) with the wavelength of 500 nm.

The anthocyanin absorbance, namely the equivalent of anthocyanin content, was measured. Absorbance was proportional to anthocyanin contents of raspberry snack\(^{[24]}\), for example, higher absorbance value represented that berry snacks retained more anthocyanin component. The experiments were performed in triplicate, and the mean values were reported.

2.3 Experimental design

The five factors including microwave power, vacuum pressure, puffing time, initial moisture content and mass load were determined according to the results from preliminary experiments. Output powers of MV dryer were set at three levels of 1.34 kW, 2.68 kW and 4.02 kW. Thus, all factors were also determined at three levels to keep the level consistency of factors, and the level intervals were sufficient to cover the measure range. A second-order central composite design with five factors at three levels was used to determine the interactions of MVP parameters on the anthocyanin content of raspberry snack. The three levels of each factor were presented in Table 1.

2.4 Statistical analysis

Experimental data were statistically analyzed by regression and analyses of variance (ANOVA) using the Design Expert software (Version 6.0.10, Stat-Ease, Inc, Minneapolis, MN, USA).

3 Results and discussion

Fifty groups of experiments were performed, and anthocyanin absorbances (the equivalent of anthocyanin content) under different MV parameter combinations were presented in Table 2.

Analyses of variance (ANOVA) were carried out to investigate the statistical significance of independent variables on the equivalent of anthocyanin content of the snack as shown in Table 3.

As shown in Table 3, \(F\) value of the model was 6.03 \((P < 0.0001)\), and the model was extremely significant. \(B, C\) and \(AC\) \((P < 0.01)\) were extremely significant model terms. \(A, D,\) and \(AE\) interactions were significant model terms \((P < 0.05)\). Lack of Fit \((F = 0.66, P > 0.1)\) was insignificant, and it implied that the data were in good agreement with the model within the ranges of experiments. The coefficient of determination \((R^2 = 0.8061)\) indicated that the model could explain the response of 80.6\%. The insignificant factors were eliminated from the model, and the quadratic regression model for the anthocyanin absorbance was shown in Equation (4).

\[
Y = 0.36857 + 0.069397A - 2.28150 \times 10^{-4} B + \\
+ 2.13755 \times 10^{-3} C - 0.043921D - 4.41017 \times 10^{-4} AC \\
+ 1.07661 \times 10^{-4} AE
\]

\[(4)\]
According to the F value of model terms, the sequence of the factors affecting the anthocyanin content from high to low was vacuum pressure, puffing time, microwave power, initial moisture content and mass load.

Figure 2 shows the response surface plots of the interaction between every two parameters on the absorbance under the center point level of other factors. As the heat- and oxygen- sensitive component, the degradation degree of anthocyanins in berry snack depends on the heating time, temperature, moisture content and oxygen content in the vacuum oven.

3.1 Effect of microwave power on the anthocyanin content of berry snack

As shown in Figure 2 (a, c, d), the vacuum pressure, initial moisture content and mass load were held at a certain level, the absorbance initially increased and then decreased with the increase of microwave power. When the microwave power was in the range of 2.15-2.68 kW, the absorbance was relatively high (0.045-0.055). High microwave power caused the rising temperature of snack to degrade its anthocyanins. The moisture content of
berry snack was higher under lower microwave power, which resulted in the decomposition of the anthocyanin component[25].

3.2 Effect of vacuum pressure on the anthocyanin content of berry snack

Vacuum pressure had an extremely significant effect on the absorbance, but the interaction between vacuum pressure and the other factors was insignificant (shown in Table 2). While the other process parameters were fixed, the absorbance had a negative correlation with vacuum pressure, as shown in Figure 2 (a, e, f, g). Anthocyanins was easily degraded in oxygen-enriched environments, therefore anthocyanin loss within snacks was reduced at lower vacuum pressure value under MVP conditions.
3.3 Effect of puffing time on the anthocyanin content of berry snack

Figure 2 (e, h, i) revealed that the absorbance was firstly increased and then decreased with the increase of puffing time. The anthocyanin content of snack was the maximum at puffing time of 80.00 s. This result may explain that anthocyanin concentration increases inside berry leather with the decrease of moisture content at the beginning stage of MVP, then the higher temperature in snack may result in the degradation of anthocyanins at the later stage.

3.4 Effect of initial moisture content on the anthocyanin content of berry snack

Results in Table 3 indicated the effect of initial moisture content on the absorbance was significant, but the interactions between initial moisture content and other factors were insignificant. As Figure 2 (c, f, h, j) shown, the absorbance initially decreased and then increased with the increase of initial moisture content of raspberry leather. At initial moisture of 20.6% (w.b.), the anthocyanin content reached the lower level.

3.5 Effect of mass load on the anthocyanin content of berry snack

Effect of mass load on the absorbance was insignificant ($P = 0.9578 > 0.1$). By means of the whole analysis of Figure 2 (g, i, j), it could be noticed that the variation of absorbance with mass load was slight, but the interaction between mass load and microwave power was significant (shown in Table 3).

3.6 Interaction between process parameters on the anthocyanin content of berry snack

The interaction between microwave power and
puffing time on the absorbance was extremely significant ($P < 0.01$) as shown in Figure 2b. In short puffing time (60 s), the absorbance increased firstly and then decreased with the increase of microwave power. On the contrary, the increase of microwave power resulted in the absorbance increased under the long puffing time (120 s). Under microwave power of 1.34 kW, the absorbance increased with the increase of puffing time from 60.00 s to 81.00 s, whereas the absorbance values decreased slightly when the puffing time exceeded 81.00 s under the microwave power of 4.02 kW. In the observed range, the high value of the absorbance (0.043) was obtained at the microwave power of 2.68 kW and the puffing time of 81.43 s.

The influence of microwave power and mass load on the absorbance was significant ($F=6.90, P = 0.0136<0.05$) (shown in Figure 2d). When the mass load was fixed a constant, the absorbance firstly increased and then decreased with microwave power. Under the low microwave power of 1.34 kW, the negative effect of mass load on the absorbance was observed. On the contrary, the absorbance was positively correlated with the mass load in the condition of high microwave power (4.02 kW). For high power and low mass load, the high value of microwave intensity (ratio of microwave power to mass load) caused the degradation of anthocyanins inside berry snacks. The highest value of absorbance was obtained under the mass load of 48 g and the microwave power of 2.15 kW. Appropriate microwave intensity may reduce the anthocyanin loss inside berry products.

4 Conclusions

The effects of MVP conditions on anthocyanin content of raspberry snack were investigated in this study. Vacuum pressure has the most significant effect on the anthocyanins of berry snack. Oxygen loss in vacuum environment contributes to the stability of anthocyanin component inside berry slab. The effect of puffing time is extremely significant, and appropriate puffing time may improve the anthocyanin content of the raspberry snack. The effects of microwave power, as well as initial moisture content on the anthocyanins are remarkable. When the microwave power ranged from 2.15 kW to 2.68 kW, the high anthocyanin remained was measured in the experiments. When initial moisture content of raspberry slab was 20.6% (w.b.), the anthocyanin of snack was the lowest. The interaction between microwave power and puffing time on the anthocyanins is extremely significant. When the microwave power and the puffing time were applied at 2.68 kW and 81.00 s, respectively, the high anthocyanin equivalent value was obtained in the experimental range. The interaction between microwave power and mass load on the anthocyanins was significant. The appropriate power was set according to mass load to reduce the anthocyanin loss.

Acknowledgments

The authors thank the financial support by the National Natural Science Foundation of China (No. 31071579 & 31271911), the Key Program of the Natural Science Foundation of Heilongjiang Province of China (No. ZD201013) and Key Project of Education Department of Heilongjiang Province of China (No. 12521z003) for this research project.

[References]

Influences of microwave vacuum puffing conditions on anthocyanin content of raspberry snack

Vol. 6 No.3 87

September, 2013

