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Method for the fruit tree recognition and navigation in complex
environment of an agricultural robot
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Abstract: To realize the visual navigation of agricultural robots in the complex environment of orchards, this study proposed a
method for fruit tree recognition and navigation based on YOLOVS. The YOLOvVSs model was selected and trained to identify
the trunks of the left and right rows of fruit trees; the quadratic curve was fitted to the bottom center of the fruit tree recognition
box, and the identified fruit trees were divided into left and right columns by using the extreme value point of the quadratic
curve to obtain the left and right rows of fruit trees; the straight-line equation of the left and right fruit tree rows was further
solved, the median line of the two straight lines was taken as the expected navigation path of the robot, and the path tracing
navigation experiment was carried out by using the improved LQR control algorithm. The experimental results show that under
the guidance of the machine vision system and guided by the improved LQR control algorithm, the lateral error and heading
error can converge quickly to the desired navigation path in the four initial states of [0 m, —0.34 rad], [0.10 m, 0.34 rad],
[0.15 m, O rad] and [0.20 m, —0.34 rad]. When the initial speed was 0.5 m/s, the average lateral error was 0.059 m and the
average heading error was 0.2787 rad for the navigation trials in the four different initial states. Its average driving was 5.3 m
into the steady state, the average value of steady state lateral error was 0.0102 m, the average value of steady state heading error
was 0.0253 rad, and the average relative error of the robot driving along the desired navigation path was 4.6%. The results
indicate that the navigation algorithm proposed in this study has good robustness, meets the operational requirements of robot
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autonomous navigation in orchard environment, and improves the reliability of robot driving in orchard.
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1 Introduction

After with the continuous
development of control theory, sensor technology, and processor
performance improvement for China’s industrial, agricultural, and
service industries automation and intelligent development have laid

entering the 2lIst century,

the foundation. With the increasing level of automation of
agricultural machinery in China, the study of agricultural robots has
also received increasing attention™”. Given that all of China’s fruit
production is at the top of the world, fruits, and their by-products
have become a major source of income for farmers and are
gradually becoming an important pillar of the rural economy.
However, the highly manual-dependent production mode and
rapidly increasing labor costs have become the main factors limiting
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fruit production”. To further improve production efficiency and
fruit quality, the intelligence of agricultural machinery and
equipment is an inevitable trend for future development.
Agricultural robots are indispensable for ploughing®®, pruning,
fertilizing and weeding®, and picking®” in the production and
management of orchards. Agricultural robots want to operate in this
unstructured environment without perception of the orchard
environment!', they must first know the exact location of the fruit
trees!">"". Visual navigation has the advantages of simple equipment,
wide detection range, low cost, and autonomy in real-time, and is
gradually becoming a mainstream navigation method, widely used
for local path planning problems in unmanned"*. The key to this
technology is the reliable and stable recognition of the navigation
path by means of image processing, which in turn guides the travel
of the machine!™. Many commercial field robots use GNSS (Global
Navigation Satellite System) data as a global positioning source and
operate using field maps measured by aerial imaging or seed maps
generated by seeders'”. Radcliffe et al."” segment the sky from the
canopy background and fit a navigation path based on the difference
between the sky and the canopy. However, for most orchards, the
GNSS signal and the sky background are blocked by the canopy.
Sharifi et al.'¥ segmented the clustered images based on graph
segmentation theory and applied the Hough to extract path features.
Yang et al."” proposed an algorithm to detect the center line of the
maize rows under the canopy by extracting the bottom of the plants.
Yi et al.” proposed a night hare monitoring method based on
infrared thermography and improved YOLOV3, compared with
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Faster-RCNN and RFCN-RESNET101, which increased the
detection rate by 45% and 20%, and the detection speed increased
by 30fps and 45ps. Zhang et al.?" proposed a weed detection
method for vegetable seedlings with improved YOLOVS algorithm
and image processing, which improved the accuracy of 5.8%, 6.9%,
10.3%, 13.1%, 9.0% and 5.2% compared with Faster R-CNN, SSD,
EfficientDet, RetinaNet, YOLOv3 and YOLOv4. However, the
inconsistent nature of lighting and shadows in farmland and
orchards poses a challenge to these color image-based algorithms.
At present, scholars at home and abroad have carried out more
research related to path recognition, but in the orchard environment,
the use of traditional image processing methods is susceptible to
interference from factors such as the varying morphology of fruit
trees, complex environmental backgrounds, and changes in lighting
conditions™. In recent years, convolutional neural networks"! have
made great research progress in the direction of image processing.
YOLOV5 (You Only Look Once) is a target detection network
based on a fully convolutional neural network, uses the Pytorch
framework, which can easily train its own dataset is very friendly to
users, and has the advantages of high precision, fast speed, and easy
deployment compared with other models such as RCNN and SSD.
For the limitations of existing methods, this paper proposes a
navigation method based on YOLOVS for fruit tree recognition and
navigation path fitting. The objective of this study is to devise a
reliable visual navigation methodology tailored for autonomous
navigation systems operating within intricate orchard settings.

2 Materials and methods

2.1 Robot
This section introduces our team’s self-developed robot, which

was used for the data acquisition and final navigation test of this ex-
periment. As shown in Figure 1, the robot is equipped with various
sensors for navigation tasks, including a TOF (Tine-of-Flight)
camera, an RGB camera, an RTK (Real-time kinematic) module,
and two inertial measurement units. The main sensor for the vision-
based navigation function in this article is the RGB camera, which
has a viewing angle of 90°x59° and a resolution of 1280%960.

RGB Camera

TOF Camera

Figure 1

Arched waist agricultural robot

This article focuses on the vision module shown in Figure 2,
and other modules in the navigation system will be described in
other studies. In the visual navigation system developed by the
author’s team of this study, the main functions are divided into three
parts, the first is to collect data, make datasets, and train network
models. The second is to establish the kinematic model of the test
platform and solve the relevant parameters. Finally, the model is
used for object detection, and then the path planning is carried out,
combined with the pose and kinematic model of the test platform to
complete the navigation.
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Figure 2 Flowchart of vision-based navigation system module
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2.2 Introduction to the YOLOVS network model

The YOLO model is a fast and compact object detection model
with better performance for the same size than other networks and
has been steadily improving. YOLOVS5 can be easily and con-
veniently deployed to small mobile devices and its network
structure is divided into four parts: Input, Backbone, Neck, and Pre-
diction. As shown in Figure 3, the stage of Input includes the
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preprocessing of an image, such as scaling the image to the
appropriate pixel size, normalization, and so on. The Backbone part
is used to extract the representation of some common characteristics
of fruit trees. Neck can further improve feature diversity and
robustness. The Head part includes a classification branch and a
regression branch, which is used to complete the output of fruit tree
target detection results.
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Figure 3 RPN structure

2.3 Image and data acquisition and production

The image acquisition site was on a walnut plantation at the
Yuanjian Research Base in Luoyang City, Henan Province, and the
image acquisition took place in May 2022. The data acquisition was
carried out by remote control of the arched waist agricultural robot
walking without mounted operational implements to simulate the
normal working conditions of the robot. Video data acquisition was
carried out via an Azure Kinect DK vision sensor mounted on the
front of the robot. The vision sensor was mounted 0.6 m above the
ground at the front of the robot and the camera was oriented in the

direction of the robot’s advance. The robot travels at a speed of
approximately 0.5 m/s and the vision sensor captures images at a
resolution of 1280x720 pixels at a frame rate of 30 fps. The
captured video was divided into frames, and to avoid excessive
image similarity in the time series, an interval extraction method
was used to extract one frame every 30 frames to form the image
sample data set, as shown in Figure 4a.

2990 images were selected from the collected data for the
orchard dataset. The Labellmg tool was used to label the image
sample dataset. The trunk of the walnut tree had many branches and
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no obvious boundaries, so it was not possible to label the smallest
outer rectangle, therefore, this study selected the bottom of the
walnut tree and the ground articulation to the emergence of the

branch part of the labeled external rectangle, and the nearest three to
five trees in the left and right columns were labeled as “tree”. This
is shown in Figure 4b.

a. Original image

b. Labeled images

Figure 4 Examples of the dataset production for the test

The data was automatically saved as a text file after annotation,
the contents of which are listed in Table 1. 70% of these annotated
images were used as the training set and 30% as the test set.

The Pytorch architecture was used for model training, and a
GeForce RTX 2060 Super was used for GPU acceleration. The
specific model training configuration is listed in Table 2.

Table 1 Labeled data properties Table 2 System environment configuration for model training

Category x/W y/H w/W h/H Name Configuration information

0 0.224 609 375 0.589 583333  0.038 281 25 0.1625 Operating systems Windows 11

0 0.3109375 0.545 833 333 0.021 875 0.086 111 111 CPU AMD Ryzen 5 3600X 6-Core Processor 3.80 GHz

0 0.340 625 0.520 833 333 0.0125 0.066 666 667 GPU GeForce RTX 2060 Super

0 0911328125 0.827777778 0.060 15625 0.255 555 556 Video memory 8G

0 0.601 171 875  0.603 472222  0.028 90625  0.126 388 889 Memory 32G

0 0.538 671 875  0.555555556 0.01484375 0.077 777 778 Development environment Pycharm2021,Python 3.6

Accelerated environment CUDAVI10.2,CUDNNvV7.6.5

Each row in Table 1 represents the location of a tree, x, y, w,
and / are normalized values relative to the scale of the image, and
the value is between 0 and 1. x and y are the coordinates of the
center point of the label box on the x and y axes respectively, and w
and 4 are the width and height of the label box, respectively.

Each row in Table 1 represents the position information of a
tree, which is the normalized value relative to the picture scale,
ranging from 0 to 1. Where x and y represent the coordinates of the
center points of the label box in the direction of the x-axis and y-
axis respectively; w and /& represent the width and height of the
label box respectively. W and H mean that the size of the image is
WxH pixels.

2.4 Model selection and training

YOLOvV5 provides users with four models YOLOVSs,
YOLOv5m, YOLOVSI, and YOLOv5x according to the complexity
of the architecture, and the performance of these four models is
shown in Figure 5. YOLOvSs has the smallest network and the
fastest detection speed, although the AP precision is lower,
considering the large target of the detection object in this study, the
small model for mobile deployment friendly and other
characteristics, so the YOLOv5s model was chosen for training.

50 Bept,t\\e({)l_()vsl YOLOvSx
= 45 YOLOvV5m
> -
[=¥
< 40 - — YOLOVS5s
o — YOLOv5m
85l . — YOLOv3I
|} — YOLOvS5x

YOLOvS5s - EfficientDet
30 F
0 5 10 15 20 25 30

Faster «——— GPU speed/ms-img™!

Figure 5 Performance diagram of different models of YOLOvS5""

The epochs were 300, the learning rate was 0.01, the batch size
was 8, the momentum was 0.937, and YOLOvS was adaptive to
image scaling, with a default image size of 1280x720.

To verify the validity of the model, both qualitative and
quantitative evaluations were carried out. Qualitative evaluation
means comparing whether there are any missed or false detections
in the target box selection. The main indicators selected for the
quantitative evaluation are Precision (P), Recall (R), and mean
Average Precision (mAP). The equations are as follows:

_ TP 1)
P= g X 100% (1)
R= —1r % 100% )
T T,+F, ?
> AP
mAP = == (3)

where, P is the proportion of all positive predictions that are correct,
%; R is the proportion of all real positive observations that are
correct, %; AP is the average precision, %; mAP is the mean
average precision, %; T, is the positive category judged to be
positive; F), is the negative category judged to be positive; Fy is the
positive category judged to be negative; N is the sum of different
categories of targets for this image.

As shown in Figure 6, after 65 Epoch iterations of the model, P
reaches 0.912 60, R reaches 0.939 09, and mAP reaches 0.958 89,
indicating that the model has high prediction accuracy.

2.5 Fruit tree row detection and fitting of navigation paths

Use the trained network model to detect 1000 images of the
collected fruit trees, the detection effect images are shown in
Figure 7, in which 963 images were correctly detected and 37
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images had false detections. The values at the top right of the target
box in the figure indicate the confidence level of the different class
labels, and it can be seen from the figure that the model achieves a
confidence level of about 90% for the detection of the left and right
rows of trees.

To address the impact of the occurrence of false detections on
the fruit tree row fit, the confidence levels of the data from the 1000
images mentioned above were counted and the results are shown in
Figure 8.

Based on the statistical results, the confidence level of correctly
identified targets ranged from 0.72-0.98, while the confidence level
of misidentified targets ranged from 0.20-0.60, so a threshold of
0.70 was chosen. Targets with confidence levels below the
threshold were considered as misidentified targets and the data were
not used for quadratic polynomial fitting and fruit tree row line
fitting.
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0.8 F
0.6 F
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02F
0L .
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Note: mAP is the mean average precision

Figure 6 The relationship between Epoch and Model precision
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Figure 7 Examples of the detection results of the test
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Figure 8 Confidence level distribution of detection results

As shown in Figure 9, the midpoint of the bottom of the
bounding box is close to the bottom of the trunk of the fruit tree, so
the final navigation path is obtained by fitting a straight line to the
bottom of the fruit tree on the left and right sides respectively, and
then finding the midline. The detected targets are divided into two
parts based on their spatial location using quadratic polynomial
extreme points. First, a quadratic polynomial is fitted to the
midpoint of the base of all identified targets. The equation of the
fitted curve is set to:

y=ax’ +bx+c 4)

Use Python’s least-squares functional leastsq to find the three
parameters a,, b, and ¢, respectively.

Then the coordinates of the extreme value point x; can be
expressed as Equation (5):

®)

X =—=—

2a,

Use Python’s least-squares functional leastsq, and bring in the
bottom midpoints of the targets on each side to obtain a line at the
bottom of the left side:

y=ax+b, (6)
Right bottom line:
y=asx+b; 7
Slope & is obtained by the slope of the median Equation (8):
k = tan ( arctan(a,) ;— arctan(as) ) ®)

The slope & is found by Equation (8), and the intersection of the
two lines is found by combining Equation (6) with Equation (7) to
finally find the midline Equation (9):

y=kx+b (O]

The resulting midline y = kx+ b is used as the final navigation
path.
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c. Find the center line

Figure 9 Navigation path fitting results

2.6 Analysis of navigation path fitting results

To verify the precision of the navigation path fitting method,
the data from 3000 images were randomly divided into 3 groups and
tested separately, and the detection results are listed in Table 3. The
average precision remained above 96% and the detection frame rate
was above 38 fps. The precision and performance of the navigation
path fitting method fully met the requirements for use in navigation.

Table 3 Statistical table of test results

Number of  Detected Detected .. Average
Group . Precision L
samples correctly time precision
A 1000 988 26.31 98.8%
B 1000 965 28.57 96.5% 97.73%
C 1000 979 29.41 97.9%

2.7 Control algorithms

In practice, the chassis needs to be able to eliminate pose errors
(heading error and lateral error) in the shortest possible time and the
output angle power should also be as small as possible, hence the
LQR control algorithm introduced in this study. The mobile
platform model is simplified, as shown in Figure 10. Based on the
geodetic coordinate system OXY, the position of the mobile
platform at this moment is defined as (x, y), the speed is v (m/s), the
wheelbase is / (m), the heading angle is ¢ (rad), and the output angle
is 0 (rad).

YJL

o

kwr

Figure 10  Kinematic model of the experiment platform

Establish the kinematic equations for the chassis:

X=v,=vcosep (10)

y=v,=vsing (11)
vtand

p=" (12)

where, % is the amount of change in the position of the mobile
platform in the X-axis direction, ¥ is the amount of change in the
position of the mobile platform in the Y-axis direction and ¢ is the
change in the heading angle of the mobile platform.

From Equations (10)-(12), it follows that:

X VCOosg fi
sl=|sne )= s (13)
. vtan
¥ T<P f
X
The state quantity ¥= | ¥ | is chosen and the control quantity

[2

isu= { ;] . Then for any reference point of the reference trajectory,

denoted by r, the above equation can be rewritten as:

X, = f(x,u,) (14)

X,

where, &= | Vs | u= {;] . For the above equation using Taylor

.
series expansion at the reference point and ignoring higher order

terms:
= fuy+ L0 (AW (1)
Ox Ou
of(x.u,) Of (x, u)
Finding Jacobi matrices for f ox and fau , we have:
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of o of
ox dy Oy .
. . . 0 0 -vsing,
i) _ | 0k 0L Ok | _ 0 0 wvcos .,
Ox dx dy Oy 0 0 " 0‘ ¢
ot of Of
ox dy Oy 16)
o6 oh
v 06 cos g, 0
af(x,u) _| oL of | _ sing, 0 a7
ou v 06 tang, v,
ofy  Of / lcos?d,
o 9o
Amount of change in state volume error:
- X, 0 0 -vsing, X=X
=|y-y 0 0 w.cosg, y=y | +
_‘;J - ‘1.07 0 0 0 ‘p - wl
[ cos, 0
: v=v, .
sing, 0 } = i=Ai+Bi  (18)
tangp, v, 6—9,
L/ [cos?6,

The above equation shows that state error quantities can form a
linear state space. A forward Eulerian discretization of the above
equation yields:

X(k+1)—x(k)

f= T = AR+ Ba (19)

Collation gives:
—Tv,sing,

Tv,cos,
1

10
#k+1)=(TA+E)¥(k)+TBu(K)= | 0 1 #k)+
0 0

T cose, 0

T'sing, 0 Y A L

Fang, v (K) = Ax(k)+ Ba(K)  (20)
l lcos?6,

Consider the following two characteristics of the desired
system response:

1) The ability to quickly and steadily approach 0 and maintain
balance in terms of pose errors;

2) The front wheel angle control output is as small as possible.

Therefore, this study introduces a loss function, expressed as
the weighting of the accumulated tracking error of the tracking
process and the accumulated control output, as in the following
equation:

N
J=) (X"QX+u"Ru) 1)

k+1
where, Q is the state weighting matrix of the semi-positive definite
matrix and R is the control weighting matrix of the positive definite
matrix. Q larger matrix elements imply that the tracking error is
expected to converge to zero quickly; R larger matrix elements

imply that the control output is expected to be as small as possible.

Therefore, the former optimization objective represents the
cumulative size of the tracking error, and the second optimization
objective represents the loss of energy in the tracking process,
which transforms the trajectory tracking control problem into an
optimization control problem. For the optimization solution of the
objective Equation (21), the optimal control law u is a linear

function with respect to the state variable X:
u=-[(R+B"PB)"'B"PA]X = -KX (22)
where, P is the solution of the following Riccati equation of
Equation (23):
P=A"PA-A"PB(R+B"PB)'B"PA+(Q (23)

It is obtained by MATLAB R2020a simulation that the

positional error can quickly and steadily converge to 0 when
05 0 O

Q=10 05 0| and R= {
0o 0 1

system meets our design requirements and works best.

0(')5 (1)} Currently, the body

3 Results and analysis

3.1 Experimental process

To verify the precision of the algorithms in this study, visual
navigation experiments were conducted on the experiment platform
in a walnut orchard at the Yuanjian Research Base in Luoyang City.
Walnut forest stands are spaced 4 m apart in rows and 2 m apart in
plants, with walnut trees about 5 m high. The camera was
positioned at the front of the center line of the longitudinal axis of
the experiment platform, at a height of 0.6 m above the ground, with
a pitch angle of 0 rad, a sampling frame rate of 30 fps, and a
forward speed of 0.5 m/s. The experiment platform was operated in
four initial states with lateral and heading errors of [0 m, —0.34 rad],
[0.1 m, 0.34 rad], [0.15 m, O rad], and [0.2 m, —0.34 rad], and was
fully autonomous under the control of the machine vision system.
The average errors, standard deviation, steady-state error,
adjustment time, and adjustment efficiency were used to quantify
the navigation experimental effects. The experimental effects and
experimental data are presented in Figure 11, Table 4, and Table 5.
Travel distance is the distance of the current position of the
experiment platform from the starting point; errors are the pose
errors of the experiment platform, the sum of lateral error and
heading error; steady state is the state when the experiment platform
converges to a lateral error of £0.03 m and heading error of
+0.05 rad; adjustment time is the time required to adjust the
experiment platform from the starting point to the steady state;
adjustment efficiency is the average attitude error corrected per
second.

3.2 Analysis and discussion

1) The average lateral errors of the experiment platform in the 4
different initial states were 0.0163, 0.0807, 0.0789, and 0.0607 m,
and the average heading error was 0.1312, 0.2747, 0.3473, and
0.3615 rad, respectively. The average lateral error for the different
initial states was 0.059 m and the average heading error was
0.2787 rad. When the experiment platform travels to a steady state,
the steady state lateral errors are 0.0101, 0.0102, 0.0118, and
0.0088 m, with a mean value of 0.0102 m; the steady state heading
error is 0.0178, 0.0258, 0.0379, and 0.0195 rad, with a mean value
0f 0.0253 rad. Based on the above analysis, it can be concluded that
the experiment platform can quickly correct errors and quickly
reach a stable state by driving autonomously along the desired
navigation path of the orchard, and when it reaches a stable state, its
steady-state error can be maintained at around 0.01 m and 0.026 rad,
meeting the requirements of orchard navigation precision.

2) In data statistics, the standard deviation reflects the degree of
dispersion of the data. In this experiment, the driving stability of the
experiment platform can be reflected. The standard deviation of the
lateral error in the four initial states were 0.0115, 0.0441, 0.0539,
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Figure 11  Navigation effect of the experiment platform in different initial states

Table 4 Error information in different initial states

Average Standard Steady- Steady-state

Initial state Positioning . standard
errors deviation state error ..
deviation
Heading error/rad 0.1312  0.0798  0.0178 0.0119
[0 m, —0.34 rad]
Lateral error/m  0.0163  0.0115  0.0101 0.0059
Heading error/rad 0.2747 0.1587  0.0258 0.0183
[0.1 m, 0.34 rad]
Lateral error/m  0.0807  0.0441  0.0102 0.0067
Heading error/rad 0.3473  0.1804  0.0379 0.0290
[0.15 m, O rad]
Lateral error/m  0.0789  0.0539  0.0118 0.0075
Heading error/rad 0.3615 0.2454  0.0195 0.0169
[0.2 m, —0.34 rad]
Lateral error/m  0.0607  0.0580  0.0088 0.0054

Table 5 Control efficiency under different initial states

Initial state Adjustment time/s Adjustment efficiency Steady distance/m

[0 m, —0.34 rad] 6.8 0.050 3.678
[0.1 m, 0.34 rad] 10.5 0.042 5.490
[0.15 m, 0 rad] 8.9 0.017 4.526
[0.2 m, —0.34 rad] 15.3 0.035 7.658

and 0.0580 m, respectively, and the standard deviation of the
heading error was 0.0798, 0.1587, 0.1804, and 0.2454 rad,
respectively; while the steady-state standard deviation of the lateral
error was 0.0059, 0.0067, 0.0075, and 0.0054 m, respectively, and
the steady-state standard deviation of heading error was 0.0119,
0.0183, 0.0290, and 0.0169 rad, respectively. From the above data,
the standard deviation of the experiment platform is 0.0418 m and
0.1662 rad, respectively, while the steady-state standard deviation is
0.0064 m and 0.0190 rad, both of which have a low degree of
dispersion, indicating that the experiment platform can travel stably
under various initial states and has a high degree of stability.

3) High-efficiency performance is one of the important
parameters to detect the goodness of the system, which reflects the

size of the system’s ability to handle errors. The time consumed by
the system from the appearance of the error to the next steady state
and the adjustment efficiency, the attitude error corrected by the
system per second can reflect the efficient performance of the
system. In the 4 different initial states, the adjustment times were
6.8, 10.5, 8.9, and 15.3 s, with a mean value of 10.4 s, and their
corresponding steady-state distances were 3.678, 5.49, 4.526, and
7.658 m, respectively; the adjustment efficiencies were 0.050,
0.042, 0.017 and 0.035, with a mean value of 0.036. In summary,
the time required to reach a steady state for different initial states of
the experiment platform is 10.4 s on average, with 0.036 attitude
errors corrected per second, which has a highly efficient
performance.

4 Conclusions

Aiming at the low accuracy of the current navigation method
due to diverse tree shapes, complex orchard environments, and
changing lighting conditions, a fruit tree detection and navigation
control algorithm based on YOLOvS5 was proposed to solve these
problems. The test results in four different initial states show that
the steady-state standard deviation of the test platform remains at
0.01 m and 0.026 rad. The steady-state standard deviation was
0.0064 m and 0.0190 rad, respectively, the regulation efficiency was
0.036, and the adjustment time was 10.4 s, which could meet the
requirements of independent navigation operation in orchards. In
this study, autonomous navigation between orchard rows of fruit
trees was realized, but due to the limitations of image sensors, the
boundary of fruit tree rows could not be judged, so the experimental
platform could not independently complete the U-turn at the end of
the fruit tree rows. In the follow-up study, it is proposed to use lidar
to realize the autonomous navigation of orchards to make up for the
shortcomings of this study.
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