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Abstract: The saliency detection of the same kind of stacked fruits can assist robots in completing sorting tasks, which is an
important prerequisite for the grading and packing of fruits. In order to accurately obtain saliency targets of fruits in the same
kind of stacked state under overexposure, non-uniform illumination, and low illumination, a method for detecting stacked fruits
under  poor  illumination  based  on  RGB-D visual  saliency  was  proposed.  Based  on  the  Res2Net  network,  features  from each
layer  of  two images were  obtained.  To realize  the  complementary advantages  between RGB features  and depth features,  the
input  RGB  images  were  preprocessed  using  depth  weighting  to  obtain  purified  RGB  features.  To  increase  the  information
interaction between branches of different scales and better balance the fusion features and modal exclusive features,  a multi-
scale  progressive  fusion  module  was  proposed.  To  minimize  the  difference  between  the  initial  saliency  maps  generated  by
different features and improve the accuracy of the final predicted saliency maps, a multi-branch hybrid supervised method was
used.  The  comprehensive  experiments  on  the  self-made  dataset  of  the  same  kind  of  stacked  fruits  show  that  the  proposed
algorithm is  superior  to five state-of-the-art  RGB-D SOD methods in four key indicators: S value, F value,  and MAE value,
which are 0.979, 0.992, and 0.006, respectively, and the P-R curve, which is also closer to the upper right corner of the graph.
These values demonstrate that the proposed algorithm can accurately obtain saliency targets in the same kind of stacked fruits.
The results of this study can promote the automatic development of the fruit production and packaging industry.
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 1    Introduction
Fruit sorting is an important link to realizing the intelligence of

the fruit industry chain[1],  and it  is also the primary prerequisite for
fruit  injury  detection[2],  grading,  and  packing.  At  present,  fruit
sorting in the same stacking state mainly depends on a large number
of people or large equipment with vibration[3].  These methods have
problems such as low manual efficiency, large equipment areas, and
easy to cause fruit damage. Therefore, it is imperative to use robots
to  complete  the  sorting  task.  However,  if  you  want  the  robot  to
grasp  the  top  fruit  directly  like  in  manual  operation,  you  must  be
able  to  detect  the  foreground  salient  targets  in  the  same  kind  of
stacked fruits.

Because  the  difference  between  foreground  fruit  target  and
background in the same stacking state is too small, it is difficult to
segment  by  traditional  visual  methods.  If  you  want  to  obtain  the
accurate  foreground  target  to  be  captured,  salient  object  detection
(SOD)[4]  is the preferred method. The goal of SOD is to detect and

highlight the most salient objects in the visual input, which has been
applied  to  many  computer  vision  tasks,  such  as  remote  sensing
images[5] and biomedicine[6], etc.

As the depth map complements the distance information, it can
improve  the  detection  accuracy  under  complex  backgrounds  to  a
certain  extent.  RGB-D SOD has  attracted  more  and  more  research
attention, and many RGB-D SOD methods have been proposed and
made some advances. Arivazhagan et al.[7] generated saliency maps
from  RGB  and  depth  action  sequences,  extracted  symbols,
amplitude, and center descriptors representing complete local binary
patterns from them, and then fused depth features and RGB features
through canonical correlation analysis and dimension reduction. Liu
et al.[8] proposed a dual stream thinning network, designed a fusion
thinning module to fuse the output features of different resolutions
and  models,  and  used  low  layer  depth  features  with  higher
resolution  to  refine  the  boundary  of  detected  targets.  Zhao  et  al.[9]

applied the contrast prior to the CNN-based architecture to enhance
the  depth  information,  and  further  integrated  the  enhanced  depth
features  with  RGB features  using a  new fluid  pyramid integration.
Singh et al.[10] proposed a composite backbone network with mutual
attention-based  discrimination  windows.  At  each  encoder  stage,
discrimination windows based on channel, spatial, and feature level
attention are  inserted  to  enhance salient  features.  Das  et  al.[11] used
the  depth  estimation  network  to  find  the  depth  map  of  a  two-
dimensional  image,  and  used  the  depth  map  to  train  the  depth-
guided saliency network to generate an intermediate depth saliency
map.  Finally,  they  fused  the  depth  saliency  maps  with  the  rough
saliency maps to obtain the final saliency maps. The main limitation
of the above methods is that the influence of lighting conditions has
not  been  taken  into  account.  To  simplify  the  volume  of  sorting
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equipment, if the factory lighting is directly used as the light source,
there  will  inevitably  be  overexposure,  non-uniform  illumination,
and low illumination. Poor lighting conditions will inevitably affect
the detection accuracy.

To  address  the  above  problems,  a  stacked  fruits  detection
algorithm under poor lighting based on RGB-D visual saliency was
proposed in this study. The main contributions of this method are as
follows:

1) The depth-weighted preprocessing module was introduced to
purify the input  image pairs,  retain  the features  of  the input  image
pairs  that  are  conducive  to  salient  target  detection,  weaken  the
faculae  and  other  misleading  features,  and  avoid  the  impact  of
unstable  image  quality  of  the  input  images  on  the  detection
accuracy;

2)  A  multi-scale  progressive  fusion  module  was  proposed,  so
that  the  proposed  algorithm  can  effectively  retain  the  exclusive
features  of  modes  in  the  process  of  multimodal  feature  fusion,
increase  the  information  interaction  between  branches  of  different
scales,  fully  cover  the  context  information,  and  maximize  the
utilization  of  input  features,  thereby  weakening  the  influence  of
lighting conditions and improving the detection accuracy;

3)  The  hybrid  supervision  method  was  adopted  for  the  initial
saliency maps generated by multiple branches so that the pixel-level
binary cross-entropy loss and the map-level intersection-over-union
loss complement each other, accelerate algorithm convergence, and
reduce  the  impact  of  adverse  factors  such  as  reflection  and  low
illumination, to improve the accuracy of saliency prediction.

 2    Materials and methods
 2.1    Image acquisition

The datasets  of  this  study consist  of  two public datasets  and a
self-made  dataset.  The  public  datasets  include  1485  images  from
NJU2K[12] and 700 images from NLPR[13], and the self-made dataset
includes  300  images,  covering  six  kinds  of  fruits,  namely  yellow
peach, honey peach, green mango, narcissus mango, Fuji apple, and
Jonah king apple, as shown in Figure 1.

 
 

a. Yellow peach b. Honey peach c. Green mango

d. Narcissus mango e. Fuji apple f. Jonah king apple

Figure 1    Samples of six types of stacked fruits
 

To  enhance  the  robustness  of  the  network  to  image
transformation  and  alleviate  the  problem  of  overfitting,  data
enhancement was used, and random rotation, random clipping, and
horizontal  flipping  were  applied  to  the  images  in  the  training
dataset.  In  this  study,  300  images  of  the  self-made  dataset  were
divided into the training set and test set according to a ratio of 8:2.
Table  1  lists  the  number  of  images of  various stacked fruits  in  the
dataset.

 

Table 1    The number of images of various stacked fruits
Stacked fruit type Graphics Training set Test set
Yellow peach 52 42 10
Honey peach 46 36 10
Green mango 59 49 10

Narcissus mango 48 38 10
Fuji apple 46 36 10

Jonah king apple 49 39 10
 

 2.2    Network of the same kind of stacked fruit detection
As  shown  in  Figure  2,  the  framework  of  the  stacked  fruits

detection algorithm is based on RGB-D visual saliency under poor
lighting.  The  backbone  network  is  Res2Net-101[14],  and  the  inputs
are RGB and depth image pairs of the same kind of stacked fruits.
The model structure is divided into three parts: first, depth-weighted
preprocessing  is  performed  on  the  input  RGB  images  to  obtain
purified  RGB  features;  then  the  fusion  features  are  obtained  by
progressively fusing the purified RGB features and depth features of
each layer;  finally,  in  the  decoding stage,  the  initial  saliency maps
generated  by  RGB  branch,  depth  branch,  and  fusion  branch  are
supervised  by  the  multi-branch  hybrid  supervision  method  to
improve the accuracy of the final prediction saliency maps.
 2.2.1    Depth-weighted preprocessing

The  unstable  quality  of  the  input  image  pairs  is  a  key  factor
affecting  the  accuracy  of  RGB-D  saliency  detection.  High-quality
RGB and depth image pairs have the feature of “edge alignment”[15].
Therefore, this feature can be used to retain the features of the input
image pair that are conducive to the detection of salient objects and
reduce faculae  and other  misleading features,  so  as  to  improve the
detection  accuracy.  Inspired  by  the  DFM  algorithm[15],  the  depth-
weighted preprocessing (DWP) module in Figure 2 was introduced.
The specific structure of the DWP module is shown in Figure 3.

To  obtain  rich  edge  features,  the  low-dimensional  features  r1
and d1 of RGB stream and depth stream in Figure 2 are first input
into  the  DWP  module,  and  then  convolved[16]  to  obtain  the  edge
activation  features  r1 ′  and d1 ′.  The  edge  alignment  feature  vector
Vec1 between r1 and d1 is shown in Equation (1).

Vec1 =
GAP(r1′ ⊗d1′)
GAP(r1′ ⊕d1′)

(1)

where, GAP represents the global average pooling operation.
To  make  the  edge  alignment  feature  vector  robust  to  slight

disturbances,  r1  and  d1  are  sampled  down  twice  by  using  the
maximum  pooling  with  a  step  of  2,  and  Vec1  is  calculated  on
multiple  scales.  The  calculation  method  is  the  same  as  that  of
Equation  (1)  to  obtain  Vec2  and  Vec3.  Vec1,  Vec2,  and  Vec3  are
cascaded  to  generate  the  enhancement  vector  Evec.  The  edge
enhancement vector vi (i=1, 2, 3, 4, 5) is obtained by separating the
elements of the enhancement vector Evec.

d5
d5

Because the highest level feature   from the depth stream can
realize  the  coarse  position  of  salient  areas,  the    is  recalibrated
through  low-dimensional  RGB  and  depth  features  to  improve  its
position accuracy for salient areas.

First,  an  8  times  up-sampling operation is  performed on d5 to
make it the same size as r1 and d1, and d5′ in Figure 3 is obtained.
Then, r1 and d1 are multiplied by elements to generate a  common
edge feature ft. To better simulate the long-term correlation between
low-dimensional  features  and  high-dimensional  features,  the
maximum  pooling  operation  and  dilated  convolution  are  used  to
rapidly  increase  the  receptive  fields.  The  recalibration  process  is
shown in Equation (2).
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Fcal (d5′) = F2
UP

(
DConv3×3

(
F2

DN (d5′ + ft)
))

(2)

F2
UP F2

DN

where, Fcal represents a recalibration process. DConv3×3 means the
dilated  convolution  kernel  is  3×3,  the  step  is  1,  and  the  expansion
rate is 2,  including BatchNorm and ReLU activation.   and 
indicate  that  the  bilinear  up-sampling  and  down-sampling
operations are to 2 and 1/2 times the original size, respectively.

Two  recalibrations  were  performed  in  this  study  for
performance and efficiency tradeoffs, as shown in Equation (3).

fc = Fcal (d5′) , frec = Fcal ( fc) (3)

where,  fc and  frec  represent the features after recalibration once and
twice,  respectively.  Finally,  the  overall  attention  vector  wi  is
obtained by combining frec and ft, as shown in Equation (4).

wi = BConv3×3 ( frec + ft) , i = 1,2, . . . ,5 (4)

where,  BConv3×3  refers  to  3×3  convolution  with  BatchNorm  and
Sigmoid activation.

Finally, the output of the depth-weighted preprocessing module

was obtained, the purified RGB feature Pri, as Equation (5).

Pri = ri +di ∗ vi ∗wi, i = 1,2, . . . ,5 (5)
Unlike  the  DFM  algorithm[15],  which  directly  obtains  the

saliency maps through the depth weighting module, in this study, it
was  used  as  a  preprocessing  module  to  obtain  purified  RGB
features.  As  shown  in  Figure  2,  in  the  post-processing  of  the
algorithm proposed,  purified  RGB features  are  used  to  replace  the
original  input  RGB features  in  order  to  improve  the  quality  of  the
input image pairs.
 2.2.2    Multi-scale progressive fusion

In  order  to  effectively  retain  the  modality-specific  features  in
the  process  of  multimodal  feature  fusion,  increase  the  information
interaction between branches of different scales, and fully cover the
context  information,  so  as  to  improve  the  robustness  of  the
algorithm to light  changes,  a  multi-scale  progressive fusion (MPF)
module  is  proposed.  The  specific  structure  of  the  MPF  module  is
shown in Figure 4.

As  shown  in  Figure  2,  the  input  of  the  MPF  module  is  the
purified  RGB  features  and  depth  features  of  each  layer.  Starting
from  the  second  branch,  the  output  of  the  previous  MPF  module
needs to  be integrated into the purified RGB features  before being
input into the MPF module to achieve progressive fusion.

RFr
i RFd

i

EFr
i EFd

i

As  shown  in  Figure  4,  the  MPF  module  first  uses  GAP  for
input features to obtain global statistics in RGB and depth images.
Then,  the  two  feature  vectors  into  the  1×1  convolution  layer  and
sigmoid activation function are used to obtain the reserved features

 and   of the two modes,  and then the reserved features are
multiplied with the input features to obtain the modal enhancement
features    and  ,  which  represent  the  exclusive  attributes  of
RGB features and depth features, respectively.

RFr
i RFd

iIn  addition,    and    aggregate  through  the  Softmax
function to retain the useful feature channels from RGB streams and
depth streams, and then normalize them so that their output range is
0-1[17],  thus obtaining the fused feature FFi.  The fusion features are
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DWP: Depth-weighted preprocessing; PRGB: Preprocessed RGB; MPF: Multi-scale progressive fusion; CPD: Cascaded partial decoder; FFD: Fusion feature decoder.

Figure 2    Framework of stacked fruits detection algorithm under poor lighting based on RGB-D visual saliency
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Note:  Vec:  Alignment  feature  vector;  Evec:  Enhancement  vector;  vi:  Edge
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once;  frec:  Features  after  recalibration  twice;  wi:  Overall  attention  vector;  Pri:
Purified RGB feature.

Figure 3    Structure of depth-weighted preprocessing module
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multiplied  with  the  input  features  of  the  two  modes  to  obtain  the
enhanced  fusion  features    and  .  The  output  of  the  MPF
module can be obtained by adding them with the enhanced features
of the respective modes, and then cascading the results and entering
1×1 convolution, that is, the progressive fusion feature MPFi.

The MPF module is characterized by the fact that from the first
branch,  the  output  of  the  previous  MPF module  will  participate  in

the  processing  of  the  latter  MPF  module  throughout  the  process,
rather than a simple result  cascade. The progressive fusion method
integrates  local  and  global  features  more  effectively,  increases  the
interaction  between  different  branches,  and  can  effectively  retain
valuable  modal  exclusive  features  while  obtaining  fusion  features,
preventing feature loss, maximizing the utilization of input features,
and improving detection accuracy.
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enhanced fusion features.

Figure 4    Structure of multi-scale progressive fusion module
 

 2.2.3    Combined decoders
As shown in Figure 2, the combined decoders used in this study

are  composed  of  Cascaded  Partial  Decoder  (CPD)[18]  and  Fusion
Feature Decoder (FFD)[19].

As  shown  in  Figure  2,  the  input  of  the  CPD  module  is  the
output  of  each  layer  of  the  purified  RGB  feature  branch,  depth
feature branch, and fusion feature branch. The detailed structure of
the CPD module is shown in Figure 5a. After the input features are
dimensionally  reduced  by  1×1  convolution,  it  undergoes  parallel
spatially separable dilated convolution blocks with dilation rates of
3,  5,  and  7,  and  the  results  are  cascaded  with  the  dimensionality

reduction  features  and  then  input  into  Bconv3×3  convolutional
layer,  that  is,  3×3  convolution  with  BatchNorm  and  ReLU
activation.  Finally,  Bconv1×1  convolution  is  processed  on  the
original  input  features,  and  the  result  is  added  to  the  Bconv3×3
convolution  processing  result  and  output.  By  using  spatially
separable  dilated  convolution  blocks,  the  receptive  fields  can  be
improved without increasing the number of parameters.  The multi-
branch structure is used, each branch captures a receptive field, and
finally  the  receptive  field  information  is  fused  through  cascading
operations,  which  can  achieve  the  effect  of  mimicking  human
vision, thereby improving the accuracy of the algorithm.
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Figure 5    Combined decoders
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Figure  2  shows  that  the  inputs  of  the  FFD  module  are  the
outputs of the CPD module on the purified RGB feature branch, the
depth  feature  branch,  and  the  fusion  feature  branch,  which  are
recorded as  ,  ,  and  , respectively. The detailed structure of
the  FFD  module  is  shown  in  Figure  5b.  First,  ,  ,  with 
respectively  are  multiplied,  then  the  results  are  cascaded  and  3×3
convolution is input. The convolution result and   are added to get
the output of the FFD module. It can be seen from Figure 2 that the
FFD module  only  appears  in  the  fusion branch decoding stage.  Its
function is to integrate the modal exclusive features in the purified
RGB  feature  branch  and  the  depth  feature  branch  into  the  fusion
feature  branch  to  obtain  rich  complementary  multimodal
information.
 2.2.4    Multi-branch hybrid supervision

As shown in Figure 2, in the decoding stage, the purified RGB
feature decoding branch, the depth feature decoding branch, and the
fusion  feature  decoding  branch  will  all  generate  an  initial  saliency
map,  which  are  recorded  as  SMr,  SMd,  and  SMf,  respectively.  In
this  study,  a  mixed supervision method consisting of  binary cross-
entropy  (BCE)  loss  and  intersection-over-union  (IOU)  loss[20]  was
used for each branch, and the supervision was carried out by ground
truth maps. The loss of each branch is shown in Equation (6).

Lr =
1
2

(Lbce (S Mr,GT )+Liou (S Mr,GT ))

Ld =
1
2

(
Lbce

(
S Md,GT

)
+Liou

(
S Md,GT

))
L f =

1
2

(
Lbce

(
S Mf,GT

)
+Liou

(
S Mf,GT

)) (6)

where, Lr represents the loss of the purified RGB feature decoding
branch, Ld represents the loss of the depth feature decoding branch,
Lf  represents  the  loss  of  the  fusion  feature  decoding  branch,  Lbce

represents  the  loss  of  binary  cross-entropy,  and Liou  represents  the
loss of joint intersection.

The total loss of the proposed algorithm is as Equation (7).

L = Lr +Ld +L f (7)

The hybrid supervision method can make pixel-level BCE loss
and  mapping-level  IOU  loss  complement  each  other,  accelerate
algorithm  convergence,  and  reduce  the  impact  of  adverse  factors
such  as  reflection  and  low  illumination,  so  as  to  improve  the
accuracy of saliency prediction.

 3    Experiments and discussion
 3.1    Experiment platform and parameter setting

The  experimental  running  environment  is  a  64-bit  Ubuntu
20.04  operating  system,  64  GB  memory,  and  one  Geforce  GTX
3090 GPU. The deep learning framework on which this algorithm is
based  is  Pytorch[21],  and  the  input  RGB  and  depth  image  pairs  are
adjusted  to  352×352  resolution.  Using  the  Adam  optimization
model[22],  the initial learning rate is set to 1e-4 and decreases by 10
times  every  60  epochs.  The  batch  size  is  set  to  10,  and  the  model
has trained 100 epochs.
 3.2    Evaluation indices

This  paper  uses  four  evaluation  indicators  to  evaluate  the
performance  of  the  models,  including  the  precision-recall  (P-R)
curve, F-value[23], mean absolute error (MAE)[24], and S-value[25].

The P-R  curve  is  used  to  calculate  the  accuracy  and  recall  of
the  feature  maps.  When  the  output  images  are  binarized,  the
threshold  values  are  selected  from  0  to  255,  and  each  time  the
threshold value is acquired, a set of corresponding precision values

and  recall  values  can  be  calculated  for  all  output  images.  Finally,
the  precision  values  and  recall  values  of  all  images  under  the
threshold are averaged to obtain 256 pairs of P values and R values.
The  recall  value  is  abscissa  and  the  precision  value  is  ordinate.  A
curve  graph  is  drawn  to  obtain  the P-R  curve.  The  closer  the P-R
curve  is  to  the  upper  right  corner,  the  better  the  algorithm
performance.

F-value[23]  is  the  weighted  harmonic  average  of  recall  rate  and
accuracy rate under non-negative weight, and its calculation method
is shown in Equation (8).

F =
(1+β2)PR
β2P+R

(8)

where, β  is  a  non-negative  weight  to  measure  recall  and  accuracy.
According to the experience of many salient target detection tasks,
it  is usually set as β2=0.3, increasing the weight value of accuracy.
In  this  study,  the  maximum F-value  is  used  to  represent  the  best
performance of the algorithm.

MAE[24] represents the mean value of the absolute error between
the  predicted  value  and  the  true  value.  The  range  is  that  when  the
predicted  value  is  completely  consistent  with  the  true  value,  it  is
equal to 0, which is a perfect model. The greater the error between
the predicted value and the true value,  the greater  the MAE value.
The MAE calculation method is shown in Equation (9).

MAE =
1
m

m∑
i=1

|yi − f (xi)| (9)

where,  m  represents  the  number  of  samples,  f(x)  represents  the
predictive value of the model,  and y  represents the true value.  The
smaller  the  MAE  value,  the  higher  the  similarity  between  the
predicted  value  and  the  true  value,  the  less  the  background  noise,
and the better the overall performance of the algorithm.

S-value[25]  focuses  on  evaluating  the  structural  information  of
saliency maps,  which is closer to the human visual system than F-
value.  It  mainly  calculates  the  structural  similarity  of  object
perception  and  region  perception  between  the  predicted  value  and
the  true  value.  The  calculation  method  of  S-value  is  shown  in
Equation (10).

S λ = λ×S o + (1−λ)×S a (10)

where, λ∈[0,1] is a balance parameter, usually taken as 0.5. So and
Sa  represent  the  structural  similarity  of  target  perception  and  area
perception,  respectively.  The  larger  the  S-value,  the  smaller  the
structural  error  of  the saliency map and ground truth map,  and the
better the performance of the algorithm.
 3.3    Quantitative evaluation of experiment results

Figure 6 shows the P-R curves of state-of-the-art RGB-D SOD
methods on the self-made stacked fruit  test  dataset  in recent years.
The  algorithm  proposed  in  this  study  is  closest  to  the  upper  right
corner of the coordinate system. Especially when the recall rate is in
the  range  of  0.8-1.0,  the  accuracy  value  is  larger  than  other
algorithms.  Therefore,  the  algorithm  in  this  paper  is  superior  to
other algorithms on the whole and has high detection reliability.

Table  2  lists  the  other  three  objective  evaluation  criteria.  The
best value is shown in bold. It can be seen that the S-value, F-value,
and  MAE  value  of  the  algorithm  proposed  in  this  study  have
absolute advantages over other algorithms on stacked fruit datasets.
From the comprehensive objective evaluation indicators, the spatial
structure of the saliency maps predicted by the algorithm proposed
in this study is closer to that of the ground truth maps.
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Figure 6    P-R curves of comparison algorithms on stacked
fruit dataset

 
 3.4    Qualitative evaluation of experiment results

The visual comparison results between the algorithm proposed
in  this  study  and  other  comparison  algorithms  on  the  stacked  fruit
dataset  are  shown  in  Figures  7-9,  where  Figure  7  shows  the
detection results in the case of overexposure and reflection, Figure 8
shows the detection results in the case of non-uniform illumination,
and  Figure  9  shows  the  detection  results  in  the  case  of  low

illumination.  It  can  be  seen  from  the  detection  results  of  different
algorithms on various images in Figures 7-9 that under poor lighting
conditions such as overexposure, non-uniform illumination, and low
illumination,  the  algorithm  proposed  in  this  study  is  more  robust,
and  can  extract  clear  foreground  target  edges,  resulting  in  more
complete and smooth significant areas, good retention of target fruit
details, and high similarity with the ground truth maps. In summary,
the  algorithm  proposed  in  this  study  has  strong  anti-interference
ability,  is  less  affected  by  lighting  conditions,  and  has  high
positioning and detection accuracy for various types of fruit targets.
Therefore,  the algorithm proposed in this study has good detection
performance for the same kind of stacked fruits.
 
 

Table 2    Evaluation criteria of comparison algorithms on
stacked fruit dataset

Evaluation
criteria

Algorithms

SPNet[19] D3Net[26] DMRA[27] A2dele[28] CFIDNet[29] Ours

S↑ 0.915 0.674 0.915 0.936 0.976 0.979

F↑ 0.934 0.681 0.939 0.974 0.989 0.992

MAE↓ 0.042 0.167 0.043 0.029 0.011 0.006

Note: Ours means the method proposed in this study. Same below.
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Figure 7    Comparison of detection results of stacked fruits with overexposure and reflection
 
 3.5    Module ablation experiments

In  this  study,  the  DES  public  dataset[30]  with  poor  lighting
conditions is  taken as an example to verify the impact of the three
modules on the algorithm performance.

The  specific  operation  is  to  remove  a  module  separately  and
keep other settings unchanged for training. The baseline represents
the basic network without all modules, while “w/o DWP” means to
remove  the  depth-weighted  preprocessing  module,  “w/o  MPF”
means  to  remove  the  multi-scale  progressive  fusion  module,  and
“w/o combined decoders” means to remove the decoding part. The

P-R  curves  of  the  DES  dataset  are  shown  in  Figure  10.  It  can  be
seen  from Figure  10  that  removing  any  of  the  three  modules  will
affect  the  algorithm’s  performance.  Table  3  lists  the  comparison
between  the  objective  evaluation  criteria  obtained  on  the  DES
dataset after removing any module and the evaluation criteria of the
complete  algorithm proposed  in  this  study.  It  can  be  seen  that  the
removal  of  any  module  will  lead  to  a  decrease  in F-value  and  S-
value,  and  an  increase  in  MAE value.  Therefore,  it  can  be  proved
that  the three modules  included in this  algorithm help improve the
detection accuracy.
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 4    Conclusions
The method for detecting stacked fruits under poor illumination

based on RGB-D visual  saliency was proposed,  which realizes  the
detection  of  salient  objects  of  the  same  kind  of  stacked  fruits,  can
help  the  robot  quickly  lock  the  optimal  grasping  target,  avoids
losses  caused  by  fruit  tumbling  and  falling,  and  is  conducive  to
promoting the intelligent process of fruit production lines. Through
the  depth-weighted  preprocessing  module,  the  original  input  RGB

features  are  purified,  which  reduces  the  influence  of  low-quality
depth  maps  on  the  detection  effect.  The  multi-scale  progressive
fusion module is used to effectively retain the exclusive features of
modes  in  the  process  of  multi-modal  feature  fusion,  increase  the
information  interaction  between  branches  of  different  scales,  fully
cover the context information, and maximize the utilization of input
features,  thereby  improving  the  robustness  of  the  model  to  poor
lighting conditions. The initial saliency maps generated by the multi-
branch  combined  decoders  adopt  a  hybrid  supervision  method  to
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Figure 8    Comparison of detection results of stacked fruits with non-uniform illumination
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Figure 9    Comparison of detection results of stacked fruits with low illumination
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balance  the  differences  of  different  modal  features  and  finally
obtain saliency maps with clear edges of complete content.  On the
self-made stacked fruit dataset, the proposed method is qualitatively
and quantitatively compared with five state-of-the-art RGB-D SOD
methods,  and  the  experimental  results  show  that  the  detection
results of the proposed algorithm are the closest to the ground truth
maps  and  have  certain  advantages  in  four  objective  evaluation
indicators.  The  detection  frame  rate  of  the  algorithm  proposed  in
this  study  is  8.5  fps  (the  detection  image  resolution  is  352×352).
Subsequent work will focus on improving the continuous detection
speed  of  the  algorithm,  so  as  to  better  meet  the  real-time
requirements of fruit sorting tasks.
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Table 3    Evaluation criteria of module ablation experiments on
the DES dataset

Evaluation
criteria

Module ablation experiments
Baseline w/o DWP w/o MPF w/o combined decoders Ours

S↑ 0.906 0.920 0.915 0.921 0.926
F↑ 0.929 0.936 0.932 0.937 0.939

MAE↓ 0.025 0.922 0.024 0.023 0.020
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