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Abstract: The saliency detection of the same kind of stacked fruits can assist robots in completing sorting tasks, which is an
important prerequisite for the grading and packing of fruits. In order to accurately obtain saliency targets of fruits in the same
kind of stacked state under overexposure, non-uniform illumination, and low illumination, a method for detecting stacked fruits
under poor illumination based on RGB-D visual saliency was proposed. Based on the Res2Net network, features from each
layer of two images were obtained. To realize the complementary advantages between RGB features and depth features, the
input RGB images were preprocessed using depth weighting to obtain purified RGB features. To increase the information
interaction between branches of different scales and better balance the fusion features and modal exclusive features, a multi-
scale progressive fusion module was proposed. To minimize the difference between the initial saliency maps generated by
different features and improve the accuracy of the final predicted saliency maps, a multi-branch hybrid supervised method was
used. The comprehensive experiments on the self-made dataset of the same kind of stacked fruits show that the proposed
algorithm is superior to five state-of-the-art RGB-D SOD methods in four key indicators: S value, F value, and MAE value,
which are 0.979, 0.992, and 0.006, respectively, and the P-R curve, which is also closer to the upper right corner of the graph.
These values demonstrate that the proposed algorithm can accurately obtain saliency targets in the same kind of stacked fruits.
The results of this study can promote the automatic development of the fruit production and packaging industry.
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1 Introduction

Fruit sorting is an important link to realizing the intelligence of
the fruit industry chain', and it is also the primary prerequisite for
fruit injury detection”, grading, and packing. At present, fruit
sorting in the same stacking state mainly depends on a large number
of people or large equipment with vibration”. These methods have
problems such as low manual efficiency, large equipment areas, and
easy to cause fruit damage. Therefore, it is imperative to use robots
to complete the sorting task. However, if you want the robot to
grasp the top fruit directly like in manual operation, you must be
able to detect the foreground salient targets in the same kind of
stacked fruits.

Because the difference between foreground fruit target and
background in the same stacking state is too small, it is difficult to
segment by traditional visual methods. If you want to obtain the
accurate foreground target to be captured, salient object detection
(SOD)" is the preferred method. The goal of SOD is to detect and
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highlight the most salient objects in the visual input, which has been
applied to many computer vision tasks, such as remote sensing
images® and biomedicine!®, etc.

As the depth map complements the distance information, it can
improve the detection accuracy under complex backgrounds to a
certain extent. RGB-D SOD has attracted more and more research
attention, and many RGB-D SOD methods have been proposed and
made some advances. Arivazhagan et al.”’ generated saliency maps
from RGB and depth action sequences, extracted symbols,
amplitude, and center descriptors representing complete local binary
patterns from them, and then fused depth features and RGB features
through canonical correlation analysis and dimension reduction. Liu
et al.® proposed a dual stream thinning network, designed a fusion
thinning module to fuse the output features of different resolutions
and models, and used low layer depth features with higher
resolution to refine the boundary of detected targets. Zhao et al.”
applied the contrast prior to the CNN-based architecture to enhance
the depth information, and further integrated the enhanced depth
features with RGB features using a new fluid pyramid integration.
Singh et al.'"” proposed a composite backbone network with mutual
attention-based discrimination windows. At each encoder stage,
discrimination windows based on channel, spatial, and feature level
attention are inserted to enhance salient features. Das et al.'"! used
the depth estimation network to find the depth map of a two-
dimensional image, and used the depth map to train the depth-
guided saliency network to generate an intermediate depth saliency
map. Finally, they fused the depth saliency maps with the rough
saliency maps to obtain the final saliency maps. The main limitation
of the above methods is that the influence of lighting conditions has
not been taken into account. To simplify the volume of sorting
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equipment, if the factory lighting is directly used as the light source,
there will inevitably be overexposure, non-uniform illumination,
and low illumination. Poor lighting conditions will inevitably affect
the detection accuracy.

To address the above problems, a stacked fruits detection
algorithm under poor lighting based on RGB-D visual saliency was
proposed in this study. The main contributions of this method are as
follows:

1) The depth-weighted preprocessing module was introduced to
purify the input image pairs, retain the features of the input image
pairs that are conducive to salient target detection, weaken the
faculae and other misleading features, and avoid the impact of
unstable image quality of the input images on the detection
accuracy;

2) A multi-scale progressive fusion module was proposed, so
that the proposed algorithm can effectively retain the exclusive
features of modes in the process of multimodal feature fusion,
increase the information interaction between branches of different
scales, fully cover the context information, and maximize the
utilization of input features, thereby weakening the influence of
lighting conditions and improving the detection accuracy;

3) The hybrid supervision method was adopted for the initial
saliency maps generated by multiple branches so that the pixel-level
binary cross-entropy loss and the map-level intersection-over-union
loss complement each other, accelerate algorithm convergence, and
reduce the impact of adverse factors such as reflection and low
illumination, to improve the accuracy of saliency prediction.

2 Materials and methods

2.1 Image acquisition

The datasets of this study consist of two public datasets and a
self-made dataset. The public datasets include 1485 images from
NJU2K"™ and 700 images from NLPR", and the self-made dataset
includes 300 images, covering six kinds of fruits, namely yellow
peach, honey peach, green mango, narcissus mango, Fuji apple, and
Jonah king apple, as shown in Figure 1.

b. Honey peach

a. Yellow peach

c¢. Green mango

> |

'd. Narcissus mango e. Fuji apple f. Jonah king apple

Figure 1 Samples of six types of stacked fruits

To enhance the robustness of the network to image
transformation and alleviate the problem of overfitting, data
enhancement was used, and random rotation, random clipping, and
horizontal flipping were applied to the images in the training
dataset. In this study, 300 images of the self-made dataset were
divided into the training set and test set according to a ratio of 8:2.
Table 1 lists the number of images of various stacked fruits in the
dataset.

Table1 The number of images of various stacked fruits

Stacked fruit type Graphics Training set Test set
Yellow peach 52 42 10
Honey peach 46 36 10
Green mango 59 49 10

Narcissus mango 48 38 10

Fuji apple 46 36 10

Jonah king apple 49 39 10

2.2 Network of the same kind of stacked fruit detection
As shown in Figure 2, the framework of the stacked fruits
detection algorithm is based on RGB-D visual saliency under poor
lighting. The backbone network is Res2Net-101"", and the inputs
are RGB and depth image pairs of the same kind of stacked fruits.
The model structure is divided into three parts: first, depth-weighted
preprocessing is performed on the input RGB images to obtain
purified RGB features; then the fusion features are obtained by
progressively fusing the purified RGB features and depth features of
each layer; finally, in the decoding stage, the initial saliency maps
generated by RGB branch, depth branch, and fusion branch are
supervised by the multi-branch hybrid supervision method to
improve the accuracy of the final prediction saliency maps.
2.2.1 Depth-weighted preprocessing

The unstable quality of the input image pairs is a key factor
affecting the accuracy of RGB-D saliency detection. High-quality
RGB and depth image pairs have the feature of “edge alignment™"\,
Therefore, this feature can be used to retain the features of the input
image pair that are conducive to the detection of salient objects and
reduce faculae and other misleading features, so as to improve the
detection accuracy. Inspired by the DFM algorithm!”, the depth-
weighted preprocessing (DWP) module in Figure 2 was introduced.
The specific structure of the DWP module is shown in Figure 3.

To obtain rich edge features, the low-dimensional features r1
and d1 of RGB stream and depth stream in Figure 2 are first input
into the DWP module, and then convolved"” to obtain the edge
activation features r1' and d1'. The edge alignment feature vector
Vecl between 1 and d1 is shown in Equation (1).
GAP(r1’®dl")

Veel = GAP(r1'@dl’)

(D
where, GAP represents the global average pooling operation.

To make the edge alignment feature vector robust to slight
disturbances, r1 and d1 are sampled down twice by using the
maximum pooling with a step of 2, and Vecl is calculated on
multiple scales. The calculation method is the same as that of
Equation (1) to obtain Vec2 and Vec3. Vecl, Vec2, and Vec3 are
cascaded to generate the enhancement vector Evec. The edge
enhancement vector v; (i=1, 2, 3, 4, 5) is obtained by separating the
elements of the enhancement vector Evec.

Because the highest level feature d5 from the depth stream can
realize the coarse position of salient areas, the d5 is recalibrated
through low-dimensional RGB and depth features to improve its
position accuracy for salient areas.

First, an 8 times up-sampling operation is performed on d5 to
make it the same size as r1 and d1, and d5' in Figure 3 is obtained.
Then, 71 and d1 are multiplied by elements to generate a common
edge feature f,. To better simulate the long-term correlation between
low-dimensional features and high-dimensional features, the
maximum pooling operation and dilated convolution are used to
rapidly increase the receptive fields. The recalibration process is
shown in Equation (2).
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Figure 2 Framework of stacked fruits detection algorithm under poor lighting based on RGB-D visual saliency
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Figure 3  Structure of depth-weighted preprocessing module
, 2
Fcal(d5') = F§,

(DCOHsts (FéN (d5 + ﬁ))) (2)

where, Fcal represents a recalibration process. DConv;,; means the
dilated convolution kernel is 3x3, the step is 1, and the expansion
rate is 2, including BatchNorm and ReLU activation. Fj, and Fjy
that the
operations are to 2 and 1/2 times the original size, respectively.

indicate bilinear up-sampling and down-sampling

Two recalibrations were performed in this study for

performance and efficiency tradeoffs, as shown in Equation (3).

f. =Fcal(d5'), f.. =Fcal(f) 3)

where, f. and f,.. represent the features after recalibration once and
twice,
obtained by combining f,.. and f;, as shown in Equation (4).

i=1,2,...,5 @)

respectively. Finally, the overall attention vector w; is

w; = BCOnV3X3 (f;'ec + f;) s

where, BConv;,; refers to 3x3 convolution with BatchNorm and
Sigmoid activation.
Finally, the output of the depth-weighted preprocessing module

was obtained, the purified RGB feature Pr;, as Equation (5).
Pri=ri+d*vixw, i=12,...,5 &)

Unlike the DFM algorithm!,
saliency maps through the depth weighting module, in this study, it

which directly obtains the

was used as a preprocessing module to obtain purified RGB
features. As shown in Figure 2, in the post-processing of the
algorithm proposed, purified RGB features are used to replace the
original input RGB features in order to improve the quality of the
input image pairs.

2.2.2  Multi-scale progressive fusion

In order to effectively retain the modality-specific features in
the process of multimodal feature fusion, increase the information
interaction between branches of different scales, and fully cover the
context information, so as to improve the robustness of the
algorithm to light changes, a multi-scale progressive fusion (MPF)
module is proposed. The specific structure of the MPF module is
shown in Figure 4.

As shown in Figure 2, the input of the MPF module is the
purified RGB features and depth features of each layer. Starting
from the second branch, the output of the previous MPF module
needs to be integrated into the purified RGB features before being
input into the MPF module to achieve progressive fusion.

As shown in Figure 4, the MPF module first uses GAP for
input features to obtain global statistics in RGB and depth images.
Then, the two feature vectors into the 1x1 convolution layer and
sigmoid activation function are used to obtain the reserved features
RF; and RF! of the two modes, and then the reserved features are
multiplied with the input features to obtain the modal enhancement
features EF, and EF', which represent the exclusive attributes of
RGB features and depth features, respectively.

In addition, RF, and RF! aggregate through the Softmax
function to retain the useful feature channels from RGB streams and
depth streams, and then normalize them so that their output range is
0-1U7, thus obtaining the fused feature FF;. The fusion features are
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multiplied with the input features of the two modes to obtain the
enhanced fusion features FF, and FF/. The output of the MPF
module can be obtained by adding them with the enhanced features
of the respective modes, and then cascading the results and entering
1x1 convolution, that is, the progressive fusion feature MPF,.

The MPF module is characterized by the fact that from the first
branch, the output of the previous MPF module will participate in

the processing of the latter MPF module throughout the process,
rather than a simple result cascade. The progressive fusion method
integrates local and global features more effectively, increases the
interaction between different branches, and can effectively retain
valuable modal exclusive features while obtaining fusion features,
preventing feature loss, maximizing the utilization of input features,
and improving detection accuracy.
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Figure 4 Structure of multi-scale progressive fusion module

2.2.3 Combined decoders

As shown in Figure 2, the combined decoders used in this study
are composed of Cascaded Partial Decoder (CPD)"™ and Fusion
Feature Decoder (FFD)!".

As shown in Figure 2, the input of the CPD module is the
output of each layer of the purified RGB feature branch, depth
feature branch, and fusion feature branch. The detailed structure of
the CPD module is shown in Figure 5a. After the input features are
dimensionally reduced by 1x1 convolution, it undergoes parallel
spatially separable dilated convolution blocks with dilation rates of
3, 5, and 7, and the results are cascaded with the dimensionality

reduction features and then input into Bconv3x3 convolutional
layer, that is, 3x3 convolution with BatchNorm and ReLU
activation. Finally, Bconvlx1 convolution is processed on the
original input features, and the result is added to the Bconv3x3
convolution processing result and output. By using spatially
separable dilated convolution blocks, the receptive fields can be
improved without increasing the number of parameters. The multi-
branch structure is used, each branch captures a receptive field, and
finally the receptive field information is fused through cascading
operations, which can achieve the effect of mimicking human
vision, thereby improving the accuracy of the algorithm.

Beonv(1x1)

®—> Output

b o[

a. Structure of cascaded partial decoder

v
O,

Output

©—>{ com-y |

(® Pixel addition

@ Channel cascade
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b. Structure of fusion feature decoder

Note: G/ the outputs of the CPD module on the purified RGB feature branch; G¢: the outputs of the CPD module on the depth feature branch; G‘if : the outputs of the CPD

module on the fusion feature branch.

Figure 5 Combined decoders
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Figure 2 shows that the inputs of the FFD module are the
outputs of the CPD module on the purified RGB feature branch, the
depth feature branch, and the fusion feature branch, which are
recorded as G/, G¢, and G/, respectively. The detailed structure of
the FFD module is shown in Figure 5b. First, G/, G, with G/
respectively are multiplied, then the results are cascaded and 3x3
convolution is input. The convolution result and G/ are added to get
the output of the FFD module. It can be seen from Figure 2 that the
FFD module only appears in the fusion branch decoding stage. Its
function is to integrate the modal exclusive features in the purified
RGB feature branch and the depth feature branch into the fusion
feature branch to obtain rich complementary multimodal
information.

2.2.4 Multi-branch hybrid supervision

As shown in Figure 2, in the decoding stage, the purified RGB
feature decoding branch, the depth feature decoding branch, and the
fusion feature decoding branch will all generate an initial saliency
map, which are recorded as SMr, SMd, and SMf, respectively. In
this study, a mixed supervision method consisting of binary cross-
entropy (BCE) loss and intersection-over-union (IOU) loss™ was
used for each branch, and the supervision was carried out by ground

truth maps. The loss of each branch is shown in Equation (6).

1
L, = 5 (L (SMr,GT) + Lo, (S M1, GT)
1

Li=5 (L (SMA,GT) + Ly, (SMA.GT)) (6)
L= % (Loe (SM£,GT) + Lo, (SME,GT) )

where, L, represents the loss of the purified RGB feature decoding
branch, L, represents the loss of the depth feature decoding branch,
L, represents the loss of the fusion feature decoding branch, Ly,
represents the loss of binary cross-entropy, and L, represents the
loss of joint intersection.

The total loss of the proposed algorithm is as Equation (7).

L=L+L,+L; @)

The hybrid supervision method can make pixel-level BCE loss
and mapping-level IOU loss complement each other, accelerate
algorithm convergence, and reduce the impact of adverse factors
such as reflection and low illumination, so as to improve the
accuracy of saliency prediction.

3 Experiments and discussion

3.1 Experiment platform and parameter setting

The experimental running environment is a 64-bit Ubuntu
20.04 operating system, 64 GB memory, and one Geforce GTX
3090 GPU. The deep learning framework on which this algorithm is
based is Pytorch®, and the input RGB and depth image pairs are
adjusted to 352x352 resolution. Using the Adam optimization
model™, the initial learning rate is set to le-4 and decreases by 10
times every 60 epochs. The batch size is set to 10, and the model
has trained 100 epochs.

3.2 Evaluation indices

This paper uses four evaluation indicators to evaluate the
performance of the models, including the precision-recall (P-R)
curve, F-value™!, mean absolute error (MAE)®, and S-value®..

The P-R curve is used to calculate the accuracy and recall of
the feature maps. When the output images are binarized, the
threshold values are selected from O to 255, and each time the
threshold value is acquired, a set of corresponding precision values

and recall values can be calculated for all output images. Finally,
the precision values and recall values of all images under the
threshold are averaged to obtain 256 pairs of P values and R values.
The recall value is abscissa and the precision value is ordinate. A
curve graph is drawn to obtain the P-R curve. The closer the P-R
curve is to the upper right corner, the better the algorithm
performance.

F-value™ is the weighted harmonic average of recall rate and
accuracy rate under non-negative weight, and its calculation method
is shown in Equation (8).

_ (1+p)PR

BP+R ®)

where, £ is a non-negative weight to measure recall and accuracy.
According to the experience of many salient target detection tasks,
it is usually set as =0.3, increasing the weight value of accuracy.
In this study, the maximum F-value is used to represent the best
performance of the algorithm.

MAE® represents the mean value of the absolute error between
the predicted value and the true value. The range is that when the
predicted value is completely consistent with the true value, it is
equal to 0, which is a perfect model. The greater the error between
the predicted value and the true value, the greater the MAE value.
The MAE calculation method is shown in Equation (9).

o
MAE = - Z Iy = f () )

where, m represents the number of samples, fix) represents the
predictive value of the model, and y represents the true value. The
smaller the MAE value, the higher the similarity between the
predicted value and the true value, the less the background noise,
and the better the overall performance of the algorithm.

S-value™' focuses on evaluating the structural information of
saliency maps, which is closer to the human visual system than F-
value. It mainly calculates the structural similarity of object
perception and region perception between the predicted value and
the true value. The calculation method of S-value is shown in
Equation (10).

S,=AxS,+(1-)xS, (10)

where, 1€[0,1] is a balance parameter, usually taken as 0.5. S, and
S, represent the structural similarity of target perception and area
perception, respectively. The larger the S-value, the smaller the
structural error of the saliency map and ground truth map, and the
better the performance of the algorithm.
3.3 Quantitative evaluation of experiment results

Figure 6 shows the P-R curves of state-of-the-art RGB-D SOD
methods on the self-made stacked fruit test dataset in recent years.
The algorithm proposed in this study is closest to the upper right
corner of the coordinate system. Especially when the recall rate is in
the range of 0.8-1.0, the accuracy value is larger than other
algorithms. Therefore, the algorithm in this paper is superior to
other algorithms on the whole and has high detection reliability.

Table 2 lists the other three objective evaluation criteria. The
best value is shown in bold. It can be seen that the S-value, F-value,
and MAE value of the algorithm proposed in this study have
absolute advantages over other algorithms on stacked fruit datasets.
From the comprehensive objective evaluation indicators, the spatial
structure of the saliency maps predicted by the algorithm proposed
in this study is closer to that of the ground truth maps.
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Figure 6 P-R curves of comparison algorithms on stacked
fruit dataset

3.4 Qualitative evaluation of experiment results

The visual comparison results between the algorithm proposed
in this study and other comparison algorithms on the stacked fruit
dataset are shown in Figures 7-9, where Figure 7 shows the
detection results in the case of overexposure and reflection, Figure 8
shows the detection results in the case of non-uniform illumination,
and Figure 9 shows the detection results in the case of low

illumination. It can be seen from the detection results of different
algorithms on various images in Figures 7-9 that under poor lighting
conditions such as overexposure, non-uniform illumination, and low
illumination, the algorithm proposed in this study is more robust,
and can extract clear foreground target edges, resulting in more
complete and smooth significant areas, good retention of target fruit
details, and high similarity with the ground truth maps. In summary,
the algorithm proposed in this study has strong anti-interference
and has high
positioning and detection accuracy for various types of fruit targets.

ability, is less affected by lighting conditions,

Therefore, the algorithm proposed in this study has good detection
performance for the same kind of stacked fruits.

Table 2 Evaluation criteria of comparison algorithms on

stacked fruit dataset

Evaluation Algorithms
criteria.  gpNet™” D3Net® DMRAP! A2dele™ CFIDNet® Ours
St 0915 0674 0915 0.936 0976  0.979
Ft 0934  0.681 0.939 0.974 0989  0.992
MAE| 0042  0.167  0.043 0.029 0011  0.006

Note: Ours means the method proposed in this study. Same below.

RGB Depth Ours

SPNet

D3Net DMRA A2dele CFIDNet

Figure 7 Comparison of detection results of stacked fruits with overexposure and reflection

3.5 Module ablation experiments

In this study, the DES public dataset’” with poor lighting
conditions is taken as an example to verify the impact of the three
modules on the algorithm performance.

The specific operation is to remove a module separately and
keep other settings unchanged for training. The baseline represents
the basic network without all modules, while “w/o DWP” means to
remove the depth-weighted preprocessing module, “w/o MPF”
means to remove the multi-scale progressive fusion module, and
“w/o combined decoders” means to remove the decoding part. The

P-R curves of the DES dataset are shown in Figure 10. It can be
seen from Figure 10 that removing any of the three modules will
affect the algorithm’s performance. Table 3 lists the comparison
between the objective evaluation criteria obtained on the DES
dataset after removing any module and the evaluation criteria of the
complete algorithm proposed in this study. It can be seen that the
removal of any module will lead to a decrease in F-value and S-
value, and an increase in MAE value. Therefore, it can be proved
that the three modules included in this algorithm help improve the
detection accuracy.
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RGB Depth Ours SPNet D3Net DMRA A2dele CFIDNet

Figure 8 Comparison of detection results of stacked fruits with non-uniform illumination

Depth Ours SPNet D3Net DMRA A2dele CFIDNet

Figure 9 Comparison of detection results of stacked fruits with low illumination

4 Conclusions

The method for detecting stacked fruits under poor illumination
based on RGB-D visual saliency was proposed, which realizes the
detection of salient objects of the same kind of stacked fruits, can
help the robot quickly lock the optimal grasping target, avoids
losses caused by fruit tumbling and falling, and is conducive to
promoting the intelligent process of fruit production lines. Through
the depth-weighted preprocessing module, the original input RGB

features are purified, which reduces the influence of low-quality
depth maps on the detection effect. The multi-scale progressive
fusion module is used to effectively retain the exclusive features of
modes in the process of multi-modal feature fusion, increase the
information interaction between branches of different scales, fully
cover the context information, and maximize the utilization of input
features, thereby improving the robustness of the model to poor
lighting conditions. The initial saliency maps generated by the multi-
branch combined decoders adopt a hybrid supervision method to
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Figure 10  P-R curves of module ablation experiments
on the DES dataset

Table 3 Evaluation criteria of module ablation experiments on
the DES dataset

Evaluation Module ablation experiments
criteria  Baseline w/o DWP  w/o MPF  w/o combined decoders  Ours
ST 0.906 0.920 0.915 0.921 0.926
F1 0.929 0.936 0.932 0.937 0.939
MAE| 0.025 0.922 0.024 0.023 0.020

balance the differences of different modal features and finally
obtain saliency maps with clear edges of complete content. On the
self-made stacked fruit dataset, the proposed method is qualitatively
and quantitatively compared with five state-of-the-art RGB-D SOD
methods, and the experimental results show that the detection
results of the proposed algorithm are the closest to the ground truth
maps and have certain advantages in four objective evaluation
indicators. The detection frame rate of the algorithm proposed in
this study is 8.5 fps (the detection image resolution is 352%352).
Subsequent work will focus on improving the continuous detection
speed of the algorithm, so as to better meet the real-time
requirements of fruit sorting tasks.
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