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Abstract: Field-road segmentation is one of the key tasks in the processing of the trajectory of agricultural machinery. To
improve the accuracy of the field-road segmentation, this study proposed an XGBoost model based on dual feature extraction
and recursive feature elimination called DR-XGBoost. DR-XGBoost takes only a small amount of agricultural machine
trajectory features as input. Firstly, the model adopted the dual feature extraction method we designed to rapidly expand the
number of features and then adequately extract local trajectory features by the time window and feature extraction operator.
Secondly, the model applies the recursive feature elimination algorithm to eliminate redundant features from the perspective of
the model segmentation effect and thus reduce the computational consumption of model training. Thirdly, it trains XGBoost to
complete the trajectory segmentation. To evaluate the effectiveness of DR-XGBoost, a series of experiments were conducted on
a real trajectory dataset of agricultural machines. The model achieves a 98.2% Macro-F1 score on the dataset, which is 10.9%
higher than the previous state-of-art. The proposal of DR-XGBoost fills the knowledge gap of trajectory feature extraction for
agricultural machinery and provides a reasonable and effective feature selection scheme for the field-road segmentation

problem.

Keywords: trajectory segmentation, feature extraction, recursive feature elimination, time window, XGBoost

DOI: 10.25165/j.ijabe.20231603.8187

Citation: Xiao Y Z, Mo G Z, Xiong X Y, Pan J W, Hu B B, Wu C C, et al. DR-XGBoost: An XGBoost model for field-road
segmentation based on dual feature extraction and recursive feature elimination. Int J Agric & Biol Eng, 2023; 16(3): 169-179.

1 Introduction

In the sphere of machinery trajectory data mining, field-road
segmentation is the key procedure to achieve precision agriculture
and has a wide range of applications among numerous tasks. For
example, effective field-road segmentation models contribute to
estimating accurately the area of fields, whereby the input amount
of agricultural production materials (e.g., seeds, fertilizers, etc.), the
operating hours of agricultural machinery as well as the costs
arising from the operation of agricultural machinery can be
efficiently budgeted, making the cost of agricultural production
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reduce further™. Moreover, precise identification of the traveling
scene of agricultural machinery can assist in adjusting the
parameters related to the travel of agricultural machinery, which can
and the
environment™®. In addition, the field-road segmentation technology

reduce the consumption of fuel impact on the
can extract the traveling trajectories of agricultural machines in
different scenes, which combined with Internet of Things (IoTs)
technology can make reasonable task assignments and timely
operation evaluation for agricultural machinery!.

The goal of field-road segmentation is to conduct semantic
segmentation for the trajectory of agricultural machinery by
identifying the traveling
Specifically, the basic principle of field-road segmentation is to
process trajectory data of agricultural machinery and identify the
traveling scene of agricultural machinery at each trajectory point.
Eventually, the points will be assigned the corresponding semantic
labels. The trajectory refers to the sequence of spatio-temporal
coordinates generated by agricultural machinery in the traveling
process, the traveling scene includes operating in fields and driving
on roads, and the semantic labels include the trajectory point when
agricultural machines operating in fields (referred to as the field
point) and the trajectory point when agricultural machinery driving
on roads (referred to as the road point)®. Global Navigation
Satellite System (GNSS) is a navigation and positioning system that
provides users with 3-dimensional coordinates, as well as velocity
information and time information of the object under investigation,

scenes of agricultural machinery.

anytime and anywhere on the Earth's surface or in near-Earth space.
Related studies have shown that segmentation models based on the
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traveling parameters of agricultural machinery recorded by GNSS
receivers show great potential in the field-road segmentation
problem, where the traveling parameters of agricultural machinery
include the trajectory point location as well as speed and direction
information of agricultural machinery in the process of traveling®'".

Despite the importance of the field-road segmentation task for
agricultural machinery trajectory data mining, there are still some
shortcomings in the related research so far. In the past, some studies
adopted segmentation models based on the boundaries of fields to
process the trajectories of agricultural machinery!?. However, in
practical applications, the boundary information of fields is difficult
to obtain, which usually requires manual collection and is
inefficient”. In addition, there are cases of misreporting and
omission in the manual collection, which further affects the
efficiency of the statistics and supervision for the traveling
trajectory of agricultural machinery. Other studies adopted the
segmentation models based on remote sensing images, i.e., using
traditional image segmentation methods to segment the remote
sensing images of the traveling area of agricultural machinery, but
those models greatly relied on the quality of remote sensing images,
and low-resolution images will significantly reduce the
effectiveness of field-road segmentation*',

In recent years, a few studies have proposed different machine
learning models as well as deep learning models based on the
traveling parameters of agricultural machinery recorded by GNSS
receivers to solve the field-road segmentation problem. Specifically,
these models can be classified into unsupervised machine learning
models, supervised machine learning models, and supervised deep
learning models. Normally, the density of agricultural machine
trajectory points is high in fields owing to slower operating whereas
low on roads owing to faster driving, as well as the direction is
nearly parallel when agricultural machines operate in fields. Chen et
al.'! proposed an unsupervised machine learning model based on
direction distribution and DBSCAN for the above characteristics of
agricultural machine motion (DBSCAN+Rules), the basic idea of
which is to first extract the density features of agricultural
machinery trajectories using DBSCAN algorithm for initial
segmentation, and secondly further correct the segmentation results
by inference rules based on direction feature to achieve better
segmentation effect. However, this model does not extract the
motion features of agricultural machinery (e.g., acceleration,
angular variation, angular velocity, angular acceleration, etc.) and
classifies trajectories based on the longitude, latitude, and direction
features only, which does not adequately exploit the important
information in trajectory data. The density feature is reflected by
spatial features (the longitude and latitude features), and the
dependence on the spatial features makes the model inflexible,
making the segmentation effect easily affected by the acquisition
accuracy of GNSS receivers and often requiring additional
correction processes for the spatial features. The model also
introduces many hyperparameters with high sensitivity, whose
small adjustments will dramatically affect the trajectory
segmentation effect. Furthermore, the inference cannot solve the
misclassification problem well due to the existence of over-
correction (i.e., re-classifying a portion of correctly classified
sample points as a wrong label at the same time as correcting the
mis-segmented trajectory points). Poteko et al.'” proposed a
supervised machine learning model based on a decision tree (DT)
which has the advantages of non-reliance on the special features of
agricultural machinery, short training time, and high accuracy.
Nevertheless, the model conducts inadequate and empirical-based

feature extraction for trajectory data in the absence of theoretical
support. Besides, the generalization performance of a single
classifier applied in the model is limited, which is often inferior to
that of a multi-classifier system based on integrated learning!'*".
Chen et al.™ proposed a supervised deep learning model based on
graph convolutional neural network (GCN), which constructs a
spatio-temporal graph based on temporal and spatial features of
trajectory points, and then applies graph convolution to find new
feature representations for the trajectory points. However, graph
convolution only propagates weights between adjacent nodes,
which leads to temporal and spatial scopes examined by the model
being relatively limited. Besides, the features used to build the
model are selected subjectively without calculation, so the model
lack an objective feature selection scheme. Finally, it is usually time-
consuming to train a graph convolutional neural network, which
does not meet the demand for efficiency in agricultural production.

In the current trajectory data mining sphere, the theoretical
researches on trajectory feature extraction are extremely sparse, and
the existing trajectory feature extraction methods rely heavily on the
spatial features of trajectories”'**. However, specifically in the
sphere of agricultural trajectory data mining, the quality of GNSS
receivers varies, which significantly affects the acquisition accuracy
for spatial features of agricultural trajectories. Therefore, the high
dependence on spatial features makes the existing trajectory feature
extraction methods not suitable for direct application in the field-
road segmentation problem, and the current sphere of agricultural
machinery trajectory data mining lacks a complete, universal, and
less equipment-requiring feature extraction method.

To address the inadequate feature extraction and empirical-
based feature extraction in current studies, this paper aims to
develop an XGBoost model based on dual feature extraction and
recursive feature elimination (DR-XGBoost). Concretely speaking,
firstly, a dual feature extraction method (DFE) is proposed in order
to adequately extract the trajectory features of agricultural
machinery, which is divided into two stages, motion feature
extraction (MFE) and time window feature extraction (WFE). MFE
rapidly extracts derived motion features based on a handful of initial
motion features, thereby initially expanding the number of features.
WEFE further extracts time window features to capture the motion
state of agricultural machinery in the local time range by time
windows and feature extraction operators, thus expanding the
number of features exponentially. Secondly, with the purpose of
improving the efficiency of model training, we apply the recursive
feature elimination algorithm based on cross-validation (RFECV) to
recursively eliminate less important features from the perspective of
the actual segmentation effect of the model, realizing the selection
for the feature subset which makes the model effect optimal®”.
Thirdly, we input the trajectory data processed by the above feature
engineering into XGBoost and construct a series of classification
trees as base classifiers to segment trajectories efficiently in the
form of classifier systems”. The main contributions of this study
were as follows:

1) A dual feature extraction method with outstanding
generalization performance was proposed, which effectively
extracts important information from the distribution of agricultural
machinery trajectory data and significantly enhances the
segmentation effect of our model. To the best of our knowledge, no
formalized feature extraction method for agricultural machine
trajectory has been proposed before.

2) The recursive feature elimination algorithm was applied to
effectively eliminate redundant features, further extracting the main
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information of the distribution of agricultural machine trajectory
data. The model selection causes model training less consuming in
computation and further improves the segmentation efficiency of
the model.

3) The highly effective feature engineering was combined with
the advanced integration algorithm XGBoost to form the DR-
XGBoost model which was applied to a real agricultural machinery
trajectory dataset and achieved more competitive results than other
field-road segmentation models.

2 Materials and methods

2.1 Datasets

This study employed the daily traveling trajectory data of
agricultural machines in several Chinese provinces in the period
from August to October 2019 provided by the Key Laboratory of
Agricultural Machinery Operation Monitoring and Big Data
Application of the Ministry of Agriculture and Rural Affairs of
China as the experimental data, which contains totally 120
trajectories from Shandong Province, Henan Province, and Anhui
Province, etc. The quantity of points in each trajectory is shown in
Figure 1.

Each record consists of the ID of an agricultural machine, the
spatial features of the agricultural machine (including the longitude
and latitude features), the initial motion features of the agricultural
machine (including the speed (m/s) and direction (°) features), the
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2.2 Overall framework of DR-XGBoost

As shown in Figure 2, the XGBoost model based on dual
feature extraction and recursive feature elimination (DR-XGBoost)
is divided into three stages: trajectory cleaning, feature engineering,
and XGBoost classification. The feature engineering consists of
dual feature extraction (DFE) and recursive feature elimination
based on cross-validation (RFECV), where the DFE consists of
motion feature extraction (MFE) and time window feature
extraction (WFE).
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Figure 2 An overall framework of XGBoost model based on dual feature extraction and recursive feature elimination

1) Trajectory cleaning. A data cleaning process was conducted
including repetitive trajectory processing, drifting trajectory
processing, and stopping trajectory processing!'‘.

2) Motion feature extraction. To increase the number of
trajectory features, MFE was conducted to deduce the derived
motion features from the initial motion features thus initially
expanding the feature set (presented in Section 2.3.1).

3) Time window feature extraction. In order to capture the
motion state of agricultural machinery in the local time range, WFE

was conducted based on time windows and feature extraction
operators (presented in Section 2.3.2).

4) Recursive feature elimination. To select the most effective
subset of features, the less important features added in the DFE
stage are recursively eliminated in this stage (presented in Section
2.4).

5) XGBoost classification. The data processed by feature
engineering is fed into XGBoost for training to obtain the trajectory
classifier (presented in Section 2.5).
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2.3 Dual feature extraction
2.3.1 Motion feature extraction

In order to increase flexibility, DR-XGBoost only employs the
initial motion features and time features as the input of the whole
model, whereby MEF is conducted to deduce derived motion
features. The motion features refer to the physical quantities to
describe the motion state of agricultural machinery, which can
reflect the instantaneous motion state of agricultural machinery and
can be further divided into the initial motion features and the
derived motion features. The initial motion features include the
velocity and direction features, and the derived motion features
include the acceleration, angular difference, angular velocity, and
angular acceleration features. The formal description of the MFE
process is as follows:

A dataset with n sample data of trajectory points and 3 initial
features D ={(X,,#,y)|i=1,2,....n} was given, where X~=(v;, 6,)
denotes the initial motion feature of an agricultural machine at the
ith trajectory point, v; and 6; respectively denotes the speed (m/s)
and direction (steering angle, °) features of the agricultural machine
at the ith trajectory point, #; denotes the time (s) feature of the
agricultural machine at the ith trajectory point, and y; €{0, 1} (the 0
and 1 are label codes for the road point and field point respectively).
Let the feature set of initial motion features be X ©={v, 6}, and
conduct MFE according to Equations (1)-(4).

s g
A6, =6,-6,, (2)
e — &)

where, a;, AG;, w;, and o; respectively denote the acceleration (m/s?),
angular variation (°), angular velocity ((°)/s), and angular
acceleration ((°)/s?) feature of the agricultural machine at the ith
trajectory point, and similarly, v, ;, 6, ;, and 7, ; respectively denote
the speed and direction and time features of the agricultural
machine at the (i—1)th trajectory point. The initial motion features
were combined with the four derived motion features deduced from
Equations (1)-(4) into the first-order augmented feature set
X"=X"U {a, A, w, a}. Due to the application of the second-order
difference quotient in Equations (1)-(4), the first two trajectory
points are usually discarded in MFE.
2.3.2 Time window feature extraction

It was defined that a continuous period containing a series of
trajectory points as a time window. The statistics of the trajectory
features within a time window can reflect the local motion state of
agricultural machinery, where the statistics refer to known functions
about the features of a series of trajectory points (e.g., the mean and
standard deviation of local trajectory features). The traveling state
of agricultural machinery can be divided into going straight and
turning. In the case of going straight, agricultural machines usually
operate in fields with approximately uniform motion, so the mean,
median, max, and min of the acceleration, as well as the standard
deviation of the velocity, is close to 0 within the corresponding time
window; whereas on roads, agricultural machines often conduct
accelerating and braking processes, which will result in the larger
standard deviation of velocity and acceleration within the
corresponding time window. Although agricultural machines may

appear stationary during driving on roads (e.g., waiting for red
lights or crossing pedestrians), the motion process of agricultural
machines at this time includes deceleration, stop, restart, and
acceleration processes, and they still have the characteristics of the
larger standard deviation of velocity and acceleration within the
corresponding time windows. In the case of turning, because
agricultural machines operate back and forth in fields, they make
frequent U-turn operations in fields, and they usually change
direction slowly and evenly when making U-turns, which makes the
mean of angular variation of agricultural machines in fields larger
and the standard deviation of angular velocity close to zero;
whereas on roads, U-turn operations of agricultural machines are
not common, and there are several sharp turning operations, which
makes the mean of angular variation of agricultural machines on
roads smaller and the standard deviation of angular velocity larger.
Based on the above analysis, the traveling characteristics of
agricultural machinery on roads and in fields are significantly
different both in the going straight state and the turning state, so the
feature statistics difference was utilized within time windows to
identify different classes of trajectory points, proposing a time-
window-based feature extraction method (the corresponding process
is WFE) and defining the features extracted by WFE as time
window features. A formal description of WFE is as follows:

The feature extraction operator o € F was introduced. F is the
operator space containing all operations that can be applied to
extract features. For the specific time window length /e N, (s),
WFEFE is conducted for feature x € X according to Equation (5).

o(x;) = o-r/e[r,—Hl,r,](xj) (5)

where, o/(x;) denotes the time window feature value extracted by
conducting o operation on the feature values x; within a time
window that ends at the ith trajectory point and is of length /.
Denote oy(x) a kind of time window feature extracted by conducting
WEE on feature x using a time window with length / and the feature
extraction operator ¢. In this study, Yo € F={mean, median, std,
max, min}, Yl € L={200, 900}, WFE is conducted on the feature
Yox e X, where F denotes the actually adopted set of operators,
mean, median, std, max and min respectively denote the operations
of taking the mean, median, standard deviation, maximum and
minimum values of the trajectory feature values within the time
window, and L denotes the actually adopted set of time window
lengths (the lengths are in second). The extracted time window
features are added to X" to obtain the second-order augmented
feature set X? = XV U {o(x)Vo € F,¥le L,¥x € XV},
2.4 Recursive feature elimination

DFE significantly increases the quantity of available features,
but it also increases the computational consumption during model
training and the possibility of feature redundancy. To eliminate
redundant features in X®, DR-XGBoost conducts feature selection
by applying RFECV, which recursively eliminates the less
important features in combination with the feature importance
provided by XGBoost?"*!. The detailed steps are as follows:

Input: The min quantity of features to be retained p;

Output: The selected feature subset X©;

Step 1 Train XGBoost using all the features in the feature set
X,

Step 2 Apply the cross-validation to evaluate the XGBoost and
record the evaluation metrics;

Step 3 Calculate feature importance by the trained XGBoost
model and sort the features in descending order according to the
feature importance;
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Step 4 For each feature subset size s€ {|{X%|,| X?|-1, ..
do

Step 5 Select the top s most important features to constitute the
feature subset X®;

., ptlp}

Step 6 Retrain XGBoost using the features in the feature subset
X®;

Step 7 Evaluate the current XGBoost by cross-validation and
record the current evaluation metrics;

Step 8 Recalculate feature importance by the current XGBoost
model and reorder the top s most important features.

Compare the evaluation metrics of all XGBoost during the
iterations and determine the optimal subset of features, which is
denoted as X

RFECYV eliminates the least important feature from the current
feature set in each iteration to make the feature subset X' gradually
shrink until the quantity of features therein reduces to p. After
completing all iterations, based on the evaluation metrics of all
XGBoost, the optimal feature subset was selected as the third-order
augmented feature set X, and the feature vector of the ith trajectory
point at this time is denoted as X;.

2.5 XGBoost classification

X® was employed as the input feature of XGBoost. The
classifier system was initialized to an empty set and C rounds of
iterations were conducted during training XGBoost, with a trained
classification tree added to the system in each round®.. In the cth
(c€{l, 2, 3, ..., C}) round of iterations, the sum of the predicted
results by the first ¢ trees was used as the probability for the ith
trajectory point being a positive class in the cth round prediction 7
(defined in Equation (6), where f.(X)) is the predicted result by the
cth tree for the ith trajectory point). w; was denoted as the weight of
the leaf node whose indexes are j and /; as the set of all the
trajectory points with predicted labels corresponding to the leaf
node whose index is j. After the second-order Taylor expansion,
simplification, and derivation for the objective function, the optimal
j
+Aa
respectively the sum of the first and second-order derivatives (of the

loss function with respect to the (¢—1)th predicted results of all

weight  w’ =-g was obtained, where G; and H;, were

trajectory points in /), as well as 4, is a hyperparameter.
=0
(0N g " (6)
3= fX) =30+ fi(X)
u=1
Gain (defined in Equation (7)) is taken as the basis for
prepruning, where y is a hyperparameter as well as the subscripts L
and R respectively denote the left and right subtrees obtained by
splitting at a node, and the splitting process will be undone if Gain<
0 after splitting.
G; G G, +Gy)
Gain = = T _(GitGy) -y
2|\H +4 H+A H,+H +A

(M

By the above steps, XGBoost can learn the structure and leaf
node weights of each tree in each round of iterations. After
completing all iterations, a classifier system consisting of C trees
was obtained for trajectory segmentation.

3 Results and discussion

3.1 Validation and metrics

The Stratified K-Fold method was applied for model
evaluation, dividing the training set into K subsets and ensuring the
ratio of positive to negative samples in each subset was equal to that

in the original dataset®™. K rounds of evaluation were conducted,
and in each round, a subset was taken from K subsets as the
validation set without repetition, then merged the remaining subsets
as the training set to train models and calculated metrics. After
completing the K rounds, the average of the K groups of metrics
was calculated as the final metric. In the experiments of this study,
K=10 was taken, which was recommended by Stone et al.C!,
Westerhuis et al.”” and Neunhoeffer et al.””), allowing to fully test
the performance of models.

Five metrics were employed to evaluate the performance of
models, which were precision (Pre), recall (Rec), Macro-F1 score
(F1), accuracy (Acc), and training time (Time). The first four
metrics were calculated based on the confusion matrix®". The
confusion matrix consisted of true positive (TP, indicating the
number of positive class samples that were correctly classified),
false positive (FP, indicating the number of negative class samples
that were incorrectly classified), false negative (FN, indicating the
number of positive class samples that were incorrectly classified),
and true negative (TN, indicating the number of negative class
samples that were correctly classified). The first four metrics were
calculated as Equations (8)-(11).

TPeid/rond
Pre feld/road — M 8
feldfroud TPeia/road + FPietd/rond ( )
TPﬁcld/mml
ReCeigjrong = = 9
fedfoad TPheid/rosa + FNielasroad ©)
Fl — Preﬁeld X Recﬁeld — Premad X Recroad (1 O)
Preﬁe]d + Recﬁeld Preroad + Recmad
TP+TN
Acc= — o IN (11)
TP+ TN+FP +FN

where, the subscripts field and road respectively denoted the metrics
calculated with the field and road point as the positive class,
whereas the metrics without subscript denoted the sum of the above
two cases, and F1 and Acc were the overall metrics that combined
the two classes.

3.2 Comparative experiments

DR-XGBoost was compared with several current commonly
used segmentation models in various aspects. These models
included GCN, DT, DBSCAN+Rules, and Random Forest (RF),
where GCN was state-of-the-art agricultural machinery trajectory
segmentation model, and RF was state-of-the-art city traffic
trajectory segmentation model®.

RF was trained using the dataset without feature extraction and
optimized its hyperparameters by grid search®. The relevant
settings for GCN, DBSCAN+Rules, and DT remained consistent
with the corresponding research.

The results of comparative experiments are listed in Table 1,

Table1 Comparison of major segmentation models
Field Road
Rec  Pre Rec  Pre
DR-XGBoost 99.6 992 96.1 979 99.0 98.2 7.38

Method

Accuracy F1  Time/s

GCN 954 833 721 904 90.3 87.9 >3600
DT 60.8 924 914 574 86.5 85.5 2.30
DBSCAN+Rules 54.1 923 803 335 86.3 82.7 968
RF 777 90.7 81.6 61.1 78.9 76.8 2.45

Note: DR-XGBoost: XGBoost model based on dual feature extraction and
recursive feature elimination; GCN: Graph convolutional neural network; DT:
Decision Tree; RF: Random Forest. Rec: Recall; Pre: Precision; F1: Macro-F1
score.
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and the rows therein were arranged in descending order according
to F1. The segmentation results of a trajectory using the models are
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e Road point

a. Ground truth trajectory
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d. Trajectory segmented by DT

b. Trajectory segmented by DR-XGBoost

e. Trajectory segmented by DBSCAN-+Rules

shown in Figure 3. In all metrics except Time, DR-XGBoost
achieved results that outperform other models.

c. Trajectory segmented by GCN
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f. Trajectory segmented by RF

Note: The area circled in red is noteworthy, where there are more misclassified trajectory points. DR-XGBoost: XGBoost model based on dual feature extraction and

recursive feature elimination; GCN: Graph convolutional neural network; DT: Decision Tree; RF: Random Forest. Same below.

Figure 3 Trajectories segmented by the modes

Although the Time metric of DR-XGBoost ranked 3rd in Table
1, the difference in training time between it and RF, DT was no
more than 6 s. Compared with GCN which was a deep neural
network, DR-XGBoost still had a greater advantage in training
efficiency. Although DR-XGBoost was moderately time-
consuming, it achieved a remarkable segmentation effect.

In Figure 3a, the ground truth trajectory was given as the
reference for all the segmentation models. As shown in Figure 3b,
for the trajectory segmented by DR-XGBoost, the misclassified
trajectory points are extremely rare for both farm points and road
points.

Thanks to the support of a deep neural network, GCN
outperformed the other models except for DR-XGBoost, making it
effectively capture the spatio-temporal relationships between
adjacent trajectory points by constructing the spatio-temporal graph
and conducting the graph convolution process. As shown in Figure
3c, the trajectory segmented by GCN had fewer false field points
compared to the others except for DR-XGBoost. Nevertheless, it
conducted feature selection based only on prior theoretical analysis
without selecting the most advantageous features from the
perspective of actual segmentation effects. In addition, the spatio-
temporal graph only constructed edges between adjacent trajectory
points, which made the graph convolution only propagate weights
between adjacent trajectory points, while DR-XGBoost employed
multi-scale time windows to extract features, so the latter was easier
to capture the relationship between trajectory points with larger time
span than the former. In this study, DR-XGBoost actually adopted
the set of time window lengths L={200, 900}. By using a time
window of length 200 s, DR-XGBoost could capture the stable local
motion state of agricultural machines for a short period. For some
easily confused trajectory points (e.g., trajectory points generated

when waiting for red lights or pedestrians on roads), DR-XGBoost
could capture the change of agricultural machine motion states of a
long term from time window features extracted by the time window
of length 900 s to achieve correct segmentation. F1 of DR-
XGBoost was 10.9% higher than GCN (listed in Table 1), and the
trajectory segmented by DR-XGBoost was almost identical to the
ground truth trajectory, which was a significant advantage in the
segmentation effect. What was more, the difference in Time
between GCN and XGBoost was multiple orders of magnitude,
which made DR-XGBoost superior to GCN in terms of segmentation
speed as well.

Due to the lack of reliable theoretical support, DT implemented
a feature extraction process using median and standard deviation
operations only in a short time range. As listed in Table 1, DT was
above 90% for both Pre on field points and Rec on road points, but
only around 60% for both Pre on road points and Rec on field
points. As shown in Figure 3d, compared with the ground truth
trajectory, there were still more false field points in the trajectory
segmented by DT. The results indicated that DT tended to identify
trajectory points as road points, which was a drawback brought by
the inadequate feature extraction. In addition, DT used only a single
classifier while DR-XGBoost used a classifier system for trajectory
segmentation, so the latter had better generalization ability in most
cases.

As shown in Figure 3e, the inference rule of DBSCAN+Rules
enabled it to correct false field points, but excessive correction
caused a mass of correctly segmented field points to be re-identify
as road points, which also showed the limitation of the selected
features of the model to some extent.

Benefiting from the effect of feature engineering and the
excellent classification performance of XGBoost, the segmentation
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effect of DR-XGBoost was much better than RF. As shown in
Figure 3f, the segmentation effect of RF was inferior because it had
not undergone feature extraction, and compared with the ground
truth trajectory, its trajectory in the field was interspersed with
many false field points.
3.3 Ablation experiments

Feature engineering played a decisive role in DR-XGBoost,

The time window length set L

Limit the time range

Time
window
feature
extractlon

Motion
featur
xtraction

The first-order
augmented feature set XV

The initial motion
feature set X©

Calculate feature values

The feature extraction operator set F'

The process of feature engineering

The second-order augmented feature set X
X=X X Ol |FI|LI=66

including MFE, WFE, and RFE. Changes in the feature set in
feature engineering (including the changes of the elements and the
number of elements in each order of the augmented feature set) are
shown in Figure 4, and results of ablation experiments in each stage
of the feature engineering are listed in Table 2, and trajectories
segmented by the model in different stages of feature engineering

are shown in Figure 5.

The set of the

Select

Recursive
feature
lelimination

The third-order augmented
feature set X (|IX®|=38)

Eliminate

{minu(x)} VX € {a, AG}}
{mean:(x)Vx € {0, a}}

The set of eliminated features

Figure 4 Changes of feature set during feature engineering

Table 2 Results of ablation experiments on each step of
feature engineering

Field Road
Method Acc F1
Rec Pre Rec Pre
XGB 99.7 91.0 49.4 97.2 91.5 80.3
XGB +M 99.5 91.4 51.7 95.5 91.8 81.2
XGB+M+W 99.7 98.7 93.0 98.3 98.6 97.3

XGB+M+W+R 99.6 99.2 96.1 97.9 99.0 98.2

Note: The XGB represents XGBoost, the M represents motion feature extraction,
the W represents time window feature extraction and the R represents recursive
feature elimination based on cross-validation.

3.3.1 Motion feature extraction

The number of elements in the initial feature set |[X©|=2
(shown in Figure 4) and the handful number of unextracted features
contained too little effective information to achieve satisfactory
segmentation. In the ablation experiment, the ground truth trajectory
is shown in Figure 5a. The unextracted initial features were input
into XGBoost for segmentation, and the segmented trajectory is
shown in Figure Sb. Agricultural machines usually operate in
approximately rectangular fields, which makes their trajectory of
them in fields usually appear continuous aggregation, but the
segmented trajectory in Figure 5b obviously did not conform to the
law, where the field point clusters were interspersed with numerous
misclassified false road points compared with the ground truth
trajectory. To preliminarily solve the problem, MFE aimed to
expand the number of features and capture the instantaneous motion
state of agricultural machines. XGB+M improved 0.9% on F1
compared to XGB (listed in Table 2), and a portion of the false field
points was correctly segmented by adopting MFE (shown in Figure
5c), which indicated that MFE slightly improved the segmentation
performance of the model. The left subplot shows two traveling
trajectories of an agricultural machine, where the blue and green

trajectories respectively indicate the trajectories on a road and in a
field; the right subplot shows the velocity of the two trajectories in
the left subplot, where the blue and green boxes respectively
correspond to the blue and green trajectories.

3.3.2 Time window feature extraction

The time window feature extraction made three main
contributions.

1) Further expanding the feature set;

2) Capturing different types of local motion states of
agricultural machines within a time window by multi-type feature
extraction operators;

3) Capturing local motion states of agricultural machines at
different periods by multi-scale time windows.

On the basis of MFE, WFE expanded the number of features
from 6 to 66 (shown in Figure 4), exponentially increasing the
available features. As listed in Table 2, XGB+M+W achieved a
significant improvement in all the classification metrics, especially
in terms of F1 by 16.1% compared to XGB+M, which made a
favorable contribution to the final performance of the model. As
shown in Figure 5d, after WFE, almost all of the false field points
were correctly segmented, and the segmented trajectories were
remarkably close to the ground truth trajectories.

Within any time window, different local motion states of
agricultural machines were reflected as different distribution
characteristics of local trajectory features (including concentration
trend, dispersion degree, and range scale), which could be captured
by different feature extraction operators.

The mean and median extraction operators mainly captured the
concentrated trend of local trajectory features, both of which had
their own advantages and shortcomings. The mean value contained
more adequate information in general because it was related to
features of all trajectory points within a time window, and could
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a. Ground truth trajectory

d. Trajectory segmented by XGB+M+W

b. Trajectory segmented by XGB

Field point

® Road point

c. Trajectory segmented by XGB+M

e. Trajectory segmented by XGB+M+W+R

Note: M represents motion feature extraction; W represents time window feature extraction; R represents recursive feature elimination based on cross-validation. The area

circled in red is noteworthy, where there are more misclassified trajectory points.

Figure 5 Trajectories segmented by DR-XGBoost in different stages of feature engineering

represent the average level of local trajectory features. However, the
mean extraction operator was susceptible to maximum and
minimum feature values of local trajectory, so it was difficult for
the operator to accurately express the motion state of agricultural
machines when their traveling state was unstable (e.g., variable
speed motion in a short period). In contrast, the median extraction
operator was not affected by the extreme feature values of local
trajectory, which could make up for the former deficiency, and the
extracted feature values could reflect the medium level of local
trajectory features, but the time complexity of the extraction process
of the median extraction operator was higher than that of the mean
extraction operator because the local feature values needed to be
sorted before calculating the median. In most cases, using both
mean and median feature extraction operators can obtain better
extraction results, when there are more abnormal trajectory points in
the trajectory dataset, the extraction effect of the median feature
extraction operator is better; when a task required higher
segmentation speed, a choice for mean feature extraction operator is
more appropriate.

The standard deviation extraction operator could extract the
dispersion degree of local trajectory features. As shown in the blue
trajectory in the left subfigure of Figure 6, the distance difference

e Trajectory points in field
e Trajectory points on road

'

Speed/m-s!

was larger while the direction change amplitude was smaller
between the consecutive trajectory points of the agricultural
machine on the road, and its geographical distribution could be
either dense or scattered, indicating that braking, acceleration, and
sharp turning processes of the agricultural machine occurred
frequently on the road, so the local features of the agricultural
machine trajectory were more discrete in distribution; whereas the
geographical distribution of the green trajectory points in the
subfigure was more aggregated, where the distance between two
consecutive points was relatively uniform, and the direction of the
agricultural machine changed uniformly with larger range (the
trajectory was U-shaped), indicating that the motion of the
agricultural machine in the field was uniform, its change of
direction was stable and it might make a U-turn. Furthermore, the
box plot in the right subplot of Figure 6 respectively presented the
discrete degree of the field and road trajectories, which revealed that
the discrete degree of the speed of the agricultural machine
trajectory on the road was obviously higher than that in the field.
Therefore, the dispersion degree of local trajectory features could
effectively distinguish between the two classes of trajectories,
making the effect of the standard deviation extraction operator
superior.

6 -
4 L
2 L
¢
¢
ol ¢
Field Road

Figure 6 Comparison of two classes of trajectories
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The maximum and minimum extraction operators could capture
the range scale of local trajectory features. There was a noticeable
difference between the speed ranges of agricultural machines in
fields and on roads. As shown in the right subfigure of Figure 6, on
the one hand, the operating state of the agricultural machine in
fields was more stable and the operating speed was smaller, so the
maximum speed within the time windows in fields was lower than
that on roads; on the other hand, the agricultural machine operated
continuously in fields whereas it stopped for red lights or
pedestrians on roads, so the speed minimum of the agricultural
machine in fields tend to be higher than that on roads during longer
time windows (the speed minimum of the agricultural machines on
roads was 0, see the right subfigure of Figure 6 for details). In
summary, the combination of the maximum and minimum feature
extraction operators helped to improve the segmentation effect of
the model.

Table 3 lists the experimental results in cases of removing a
single feature extraction operator, removing a type of homogeneous
feature extraction operator, and retaining only a type of
homogeneous feature extraction operator, where homogeneous
feature extraction operators referred to feature extraction operators
with the same main role and the above three cases were denoted as
Case 1, Case 2, and Case 3. To begin with, the experimental results
in Row 1 of Table 3 lists that the segmentation performance of DR-
XGBoost could be optimal by using multi-type feature extraction
operators; in case 1 (corresponding to row 2 to 6 of Table 3),
removal of any operator led to a decrease in the segmentation effect
of the model, with the removal of std operator causing the most
severe decrease, which indicated that all the five operators
contributed to the segmentation effect of DR-XGBoost, with std
operator having the most significant effect;
(corresponding to Rows 6-8 of Table 3), the removal of the range
scale extraction operators (the max operator and the min operator)
caused the most severe decrease, which indicated that the

in Case 2

combination of max operator and min operator contributed more to
the segmentation effect of DR-XGBoost; in Case 3 (corresponding
to Rows 9 to 11 of Table 3), the segmentation effect of DR-
XGBoost decreased least when only the range scale extraction
operator was retained, whereas it decreased most when only the
discrete degree extraction operator (the std operator) was retained,
which again showed the superiority of co-extraction effect of the
max operator and min operator, and also illustrated the law adopted

Table 3 Results of ablation experiments on each step of
feature engineering
Field Road

No. Method F1
Rec Pre Rec Pre

1 DR-XGBoost with all the operators  99.6  99.2  96.1 97.9 98.2
2 (w/0) mean 99.6 99.1 954 97.8 98.0
3 (w/0) median 99.6 99.0 949 981 979
4 (w/0) min 99.6 99.0 949 981 979
5 (w/0) max 99.7 99.0 94.6 983 979
6 (w/o) std 99.6 99.0 949 97.7 978
7 (w/0) mean & median 99.6 99.1 951 97.7 979
8 (w/0) max & min 99.7 98.6 925 98.1 972
9 (w/0) mean & median & std 99.1 99.0 948 953 97.0
10 (w/0) max & min & std 99.6 972 850 97.6 94.6

11 (w/o) mean & median & max & min  99.5 972 85.1 972 94.5

Note: w/o: without. The mean, median, max, min, and std denote the mean,
median, maximum, minimum, and standard deviation feature extraction
operators, respectively.

about the quantity of operators (if fewer feature extraction operators
are adopted, WFE would capture less information, making the loss
of segmentation performance of DR-XGBoost greater).

Lengths of time windows reflected the time span of feature
extraction, which played a significant role in the segmentation
performance of DR-XGBoost. A shorter time window is suitable for
extracting short-term trajectory features, which often reflect the
single-stage motion state of agricultural machines (e.g., the uniform
motion state when agricultural machines are operating steadily in
fields). However, for some complex cases containing multi-stage
motion processes (e.g., agricultural machines leaving a field onto a
road or stopping on a road to wait for a red light), it was difficult to
segment trajectories accurately based on the short-term features
only. To solve the above problems, DR-XGBoost introduced longer
time windows to capture the multi-stage motion state of agricultural
machines. The combination of multi-scale time windows effectively
captured the motion states of agricultural machines in different
periods, thus avoiding misclassification. The experimental results
using single-scale time windows and multi-scale time windows are
shown in Figure 7. The results showed that when using a single time
window for feature extraction, the longer time window could lead to
better segmentation effects; when further using multi-scale time
windows for feature extraction, the combination of a longer time
window and a shorter time window could complement each other to
achieve a superior segmentation effect. Specifically, the set of time
window lengths that worked optimally in this experiment was
L={200, 900}, which was finally adopted.

3.3.3 Recursive feature elimination

The RFECV algorithm effectively solved the feature
redundancy problem that might arise from using multi-scale time
windows and multi-type feature extraction operators for WFE.
Elimination of redundant features not only reduced computational
consumption of the training process but also selected main features
to further improve the model performance. The features eliminated
by RFECV from the second-order augmented feature set X® during
the experiment were shown in Figure 4, with the quantity of
remaining features |X®| = 38, which was nearly half of the number
of features in X®. Furthermore, as shown in Table 2, RFECV
resulted in a 0.9% improvement in F1 of the model. The above
results indicated that the algorithm was able to slightly improve the
segmentation performance of the model while significantly reducing
the computational consumption of the model training. Finally, as
shown in Figure 4, the only motion feature retained is v after
RFECV. This indicated that numerous time window features were
added to the feature set after WFE, which contained more important
information about the trajectory, making the relative importance of
motion features except for v decrease, and thus the feature
redundancy problem arose.

4 Conclusions

For the field-road segmentation problem, in order to adequately
extract and effectively select trajectory features of agricultural
machines, this study proposed an XGBoost model based on dual
feature extraction and recursive feature elimination (DR-XGBoost),
where the dual feature extraction includes motion feature extraction
and time window feature extraction. The motion feature extraction
achieves preliminary expansion of the number of trajectory features
and captures for the instantaneous motion state of agricultural
machines, and the time window feature extraction achieves a
significantly further expansion of the number of trajectory features
and captures for different types of local motion state of agricultural
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Figure 7

machines within different periods, and the recursive feature
elimination achieves selection for the optimal feature subset.
Compared with other existing field-road segmentation models, DR-
XGBoost presents a superior segmentation performance, and the
model achieves more accurate segmentation for trajectories both in
the field and on the road, which enables the Macro-F1 score of the
model to be 10.9% higher than that of previous state-of-art model
on the experimental dataset, showing a significant advantage.

In the future, the feature engineering for trajectory data will be
continued to investigate with a view to obtaining better results on
the task of field-road segmentation for agricultural machines.
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