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Wheat FHB resistance assessment using hyperspectral feature band image

fusion and deep learning
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Abstract: The breeding and selection of resistant varieties is an effective way to minimize wheat Fusarium head blight (FHB)
hazards, so it is important to identify and evaluate resistant varieties. The traditional resistance phenotype identification is still
largely dependent on time-consuming manual methods. In this paper, the method for evaluating FHB resistance in wheat ears
was optimized based on the fusion feature wavelength images of the hyperspectral imaging system and the Faster R-CNN
algorithm. The spectral data from 400-1000 nm were preprocessed by the multiple scattering correction (MSC) algorithm.
Three feature wavelengths (553 nm, 682 nm and 714 nm) were selected by analyzing the X-loading weights (XLW) according
to the absolute value of the peaks and troughs in different principal component (PC) load coefficient curves. Then, the different
fusion methods of the three feature wavelengths were explored with different weight coefficients. Faster R-CNN was trained on
the fusion and RGB datasets with VGG16, AlexNet, ZFNet, and ResNet-50 networks separately. Then, the other detection
models SSD, YOLOvS5, YOLOv7, CenterNet, and RetinaNet were used to compare with the Faster R-CNN model. As a result,
the Faster R-CNN with VGG16 was best with the mAP (mean Average Precision) ranged from 97.7% to 98.8%. The model
showed the best performance for the Fusion Image-1 dataset. Moreover, the Faster R-CNN model with VGG16 achieved an
average detection accuracy of 99.00%, which was 23.89%, 1.21%, 0.75%, 0.62%, and 8.46% higher than SSD, YOLOVS,
YOLOV7, CenterNet, and RetinaNet models. Therefore, it was demonstrated that the Faster R-CNN model based on the
hyperspectral feature image fusion dataset proposed in this paper was feasible for rapid evaluation of wheat FHB resistance.
This study provided an important detection method for ensuring wheat food security.
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1 Introduction

Fusarium head blight (FHB), mainly caused by Fusarium
graminearum, is a global disease!"”. The normal physiological
functions of wheat are disturbed by fungi after infection, and the
internal structure and external shape of wheat also change®. The
disease can cause significant yield and quality reductions in the
form of atrophy, weight reduction, and discoloration”. Fusarium
produces secondary metabolites, especially deoxynivalenol (DON),
which can interfere with normal eukaryotic cell function by
inhibiting protein synthesis and can cause great harm to humans and
animals®”. It has been well documented that DON may cause
toxemia, which may contribute to the emergence of cancer!'*'.
Recently, chemical, biological, and agricultural approaches have
been implemented to control FHB in wheat'”. Chemical control
approaches primarily reduce the amount of Fusarium contamination
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through the application of chemicals, but issues of increased
resistance to Fusarium and environmental contamination do exist'.
approaches control
contamination through microorganisms, but the effectiveness of
different
approaches change farming
methods and select resistant varieties, as changing the farming

Biological  control mainly Fusarium

microorganisms against the disease varies under

conditions. Agricultural control
methods could reduce the survival of Fusarium to some extent with
respect to the environment. However, Fusarium outbreaks would be
uncontrollable when the weather is hot or rainy"’. Therefore,
research on and development of wheat varieties with FHB
resistance is essential'’. Wheat FHB resistance is composed of five
types: resistance to the original fungal infection (type I), resistance
to fungal diffusion in the spike (type II), low accumulation of DON
(type 111), low Fusarium-damaged kernel (type IV), and other FHB
resistance types (type V). However, only type II resistance is
stable and can be easily used to evaluate and select FHB-resistant
wheat varieties, which is conducive to the fundamental control of
FHB!". Currently, manual methods are mainly adopted for
resistance identification, which is slow and restricts the
development cycle of resistant varieties. In addition, manual
evaluation approaches are not objective or accurate. Therefore,
proposing a new rapid identification technique is of great
importance!'”.

In recent years, some new technologies for phenotypic analysis
have been rapidly and accurately developed to improve plant yield
and quality!*"\. Plant phenotype detection has developed rapidly,

especially hyperspectral imaging (HSI) technology, which
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integrates imaging technology and spectroscopy technology and
provides methods for the detection of plants and the identification
of plant diseases™?". In the study of wheat ear FHB resistance based
on HSI technology, Bauriegel et al.”! identified FHB infection of
wheat ears by a HSI system based on wavelength ranges of 500-
533 nm, 560-675 nm, 682-733 nm and 927-931 nm, with an
identification accuracy of 87%. Vincke et al.”” developed a method
for evaluating the degree of FHB infection in winter wheat spikes
using near-infrared hyperspectral imaging (NIR-HSI) technology in
the wavelength range of 900-1700 nm, with an accuracy of 99.4%
in detecting the degree of wheat spike infection. Zhang et al.”
collected the spectral and image information of wheat spikelets
through a hyperspectral microscopic imaging system, obtained the
FHB classification index (FCI) by combining a single wavelength
and spectral index, and identified FHB-infected spikelets with a
classification accuracy of 89.8%. The selection of the feature
wavelength could effectively reduce the high-dimensional data of
the hyperspectral images, and the extraction of the sensitive band
could effectively improve the detection accuracy. In the research of
hyperspectral feature wavelength fusion images, Zhang et al.*
extracted central wavelengths of 660, 560 and 480 nm based on
hyperspectral images, and three wavelengths were combined into
the RGB image and converted to the YDbDr color space for
extracting the color features to investigate the different severities of
FHB in wheat ears.

However, it took considerable time to process large image
datasets, such as hyperspectral images™. Therefore, it was
necessary to investigate faster methods to improve data processing
efficiency. Deep learning methods are capable of extracting more
valuable information rapidly from a large number of large image
datasets”®. With the development of deep learning, Faster R-CNN®"
has been widely used in plant phenotypes due to its great
performance. Quan et al.” used the Faster R-CNN model based on
the pretrained network VGG19 to quickly and accurately detect
maize seedlings in different field environments and different growth
stages, and the model accuracy was over 97.71%. Ozguven and
Adem™ proposed a Faster R-CNN model that automatically
detected leaf spot in sugar beet leaves. The overall correct
classification rate of the model reached 95.48%. Wu et al.*” used
the transfer learning method combined with the Faster R-CNN
algorithm to count wheat berries and calculate the relevant traits in
situations, with an average accuracy of 91%.
Simultaneously, multiple recent studies have applied deep learning

various

methods in plant phenotype analysis based on hyperspectral images.
Several researchers have focused on high-dimension hyperspectral
feature extraction with deep learning networks. Yang et al.b!
proposed a method combining hyperspectral imaging and
convolutional neural networks based on the Spectral and Spatial
Attention Mechanism (Spl-Spal-At) module, aimed at identifying
different types of maize kernels. Li et al.’* proposed a technique
based on convolutional neural networks (CNN) and hyperspectral
imaging (HSI) for rapid, non-destructive, and accurate identification
of copper (Cu) pollution levels in apple rootstocks. The results
showed that the accuracy of the CNN model was 99.6%, which was
better than traditional linear and nonlinear models. Moreover, recent
studies of various deep learning algorithms have emphasized the
feasibility of extracting deep spectral features from hyperspectral
images to develop deep learning models for plant phenotype
prediction™!. Yu et al.?" acquired hyperspectral images of oilseed
rape leaves and used SAE to extract deep spectral features from
pixel spectral data for nonlinear data dimension reduction. A deep

learning regression model composed of SAE and a fully connected
neural network (FNN) was established to predict the nitrogen
content in rape leaves with a prediction accuracy of 90.3%. Jin et
al.’’ used deep learning models based on hyperspectral image
pixels to identify FHB-infected regions in wheat ears. The high-
dimensional hyperspectral data were reduced by principal
component analysis (PCA) and input into the deep convolutional
recurrent neural network (DCRNN) for extracting features that
achieved high accuracy in classifying healthy and diseased wheat
ears. Based on the mean spectral reflectance and 1-D CNN, Rehman
et al.” implemented an end-to-end deep learning model to predict
the relative water content (RWC) of plants with a prediction
accuracy of 95.6%.

Therefore, in order to explore the effect of feature wavelength
fusion methods, the evaluation method of wheat ear FHB resistance
was optimized based on hyperspectral feature band image fusion
and Faster R-CNN. In this study, the spectral data from 400-
1000 nm were preprocessed by the multiple scattering correction
(MSC) algorithm. Three feature wavelengths were selected by
analyzing the X-loading weights (XLW) according to the absolute
value of the peaks and troughs in different principal component
(PC) load coefticient curves. Then, the different fusion methods of
the three feature wavelengths were explored with different weight
coefficients. Faster R-CNN was trained on the fusion and RGB
datasets with VGG16, AlexNet, ZFNet, and ResNet-50 networks
separately. Then, the other detection models SSD, YOLOVS,
YOLOV7, CenterNet, and RetinaNet were used to compare with the
Faster R-CNN model. The best deep learning model was selected to
evaluate the FHB resistance in wheat ears. This work provides a
primer for future studies on the genetic improvement of wheat with
high FHB resistance.

2 Materials and methods

2.1 Sample preparation

The experimental materials were winter wheat harvested from
the test rotation fields in Yun Sheng Road, Liu He District, Nanjing,
China (32°42.33 'N, 118°64.02 'E). The moderate sensitivity of
wheat samples to the Fusarium variety (cv. “YangMai 23”) were
provided by Jiangsu Academy of Agricultural Sciences””. The
wheat ears were infected by single-floret inoculation to evaluate
resistance to fungal diffusion in the spike (type II). The spores of
Fusarium suspensions for inoculation were provided by Jiangsu
Academy of Agricultural Sciences. The wheat ovary was the site for
spore suspension injection®®. Generally, the disease levels of the
wheat ears fell within a certain range after inoculation with the same
resistant variety. Thus, to increase the number of samples with
different disease levels and improve the robustness of the models,
the inoculated wheat ears were divided into three groups and
inoculated separately with three solutions. In the first group of 50
wheat ears, each wheat ear was injected once with 0.02 mL of spore
suspension (1x10° CFU/mL). In the second and third groups of 50
wheat ears, each wheat ear was injected twice and three times,
respectively (Figure 1). Another fifty healthy samples without
injection were selected as controls. After injection, the glume and
bag were closed to maintain moisture, and the bag was removed
after 3 d to allow natural disease onset. After being injected for 21
d, wheat ears with different injection levels were cut according to
the label and brought back to the laboratory. In total, 133 wheat ears
were selected with the same proportion of infected spikelets on both
sides to facilitate and simplify the evaluation of the resistance of a
single wheat ear.
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Figure 1 Diagram of the three wheat ear inoculation solutions

2.2 Resistance identification by an artificial method

Wheat FHB resistance (fungal diffusion in the spike (type II))
has traditionally been evaluated by artificial methods®’*. The
process of resistance evaluation by the artificial method is as
follows. First, the percentage of diseased spikelets is determined by
the ratio of the number of diseased spikelets to the number of
spikelets in the whole wheat ear. The number of diseased spikelets
and the number of spikelets in the whole wheat ear were manually
counted, and the severity level of each wheat ear was determined
according to Table 1“. Second, FHB resistance (type II) was
evaluated according to the average severity (AS) of each wheat ear
in Table 2", The AS is defined in Equation (1).

4

AS= (1)

where, G; is the ith severity level, and N, is the sample number of
the ith severity level.

Table 1 Severe wheat FHB classification under different
wheat ear inoculation conditions

Severity level Symptom description

0 Inoculated spikelet with no visible disease symptom (0%)

1 Diseased spikelet under a quarter of total spikelet (0-25%)

2 Diseased spikelet accounts for 1/4-1/2 of total spiketlet (25-50%)
3 Diseased spikelet accounts for 1/2-3/4 of total spiketlet (50-75%)
4 Diseased spikelet more than 3/4 of total spikelet (75%-100%)

Table 2 Evaluation of resistance to wheat FHB under different
wheat ear inoculation conditions

Resistance evaluation
High resistance (HR)
Moderately resistance (MR)
Moderately susceptible (MS)
High susceptible (HS)

Average severity (AS)
0.00<AS<0.25
0.25<AS<0.50
0.50<AS<0.75
0.75<AS<1.00

2.3 Hyperspectral imaging system

As shown in Figure 2, hyperspectral images of wheat ears were
obtained using a line-scan HSI system that primarily consisted of
the following sections: a spectral imaging unit, a lighting unit, a
sliding unit and a controlling unit. The spectral unit mainly includes
an imaging spectrograph (ImSpectorV10E-1621, Spectral Imaging
Ltd., Finland) with a spectral range covering 616 bands from 358-
1021 nm, a 1555x1200 pixel resolution CCD camera (GEV-
B1621M-TC000, Imperx, USA), and a standard C-mount 2.4/
23 mm zoom lens (Schneider Optics Inc., Germany). The lighting

unit consisted of a 21 V/150 W quartz tungsten-halogen light source
(Illumination, USA), and the samples were illuminated by 2
separated linear light guides. The sliding unit included a sample
holder and a horizontal stepping-motor-driven slider. The HSI
system was controlled by computer software.

tral
Spectral camera Blackbox

?&Lﬁ

\ Tungsten-halogen

light source
Computer EJ

] Cable Sample holder
‘ A Stepping-mortor-driven
= s

- BP0

Figure 2 Hyperspectral imaging system

To maintain the integrity and accuracy of the hyperspectral
images, it was necessary to set the system parameters at fixed
values before scanning the samples. The HSI system was preheated
for 15 minutes before acquiring the images. The regulated height
between the wheat surface and lens was 330 mm, and the slider
moving speed was 3.5 mm/s. The exposure time was 53 s, which
could ensure hyperspectral image clearance and accuracy. To
reduce the influence of illumination and different physical
configurations of cameras and imaging systems, the images were
immune to dark-current effects, and the original hyperspectral
images (/,) were corrected”', as shown in Equation (2).

I-1,

1. =
I,-1,

2)

where, the [, is the calibrated hyperspectral image; I, is the
hyperspectral wheat sample image, I, is the dark reference image
with O reflectance, and 7, is the white reference image with 1
reflectance. The calibrated hyperspectral images formed the
following spectral collection. After the exclusion of the wheat ears
with different severity levels over both surfaces, 133 wheat ears
were selected and scanned by the HSI system over both surfaces.
The number of wheat ear hyperspectral images at different severity
levels are listed in Table 3. Therefore, the number of samples for
ecach severity level was half of the number of collected
hyperspectral images.

Table 3 Accuracy test of the technical specifications for FHB
in wheat ears

Level 0 Level 1 Level2 Level3 Level4

0%-25% 25%-50% 50%-75% 75%-100%

Number of wheat ears images 38 52 58 64 54

Severity level

Diseased spikelet rate 0%

2.4 Spectral data analysis
2.4.1 Spectral data extraction and preprocessing

The region of interest (ROI) from calibrated hyperspectral
images was selected for further spectral processing by Environment
for Visualizing Images (ENVI) software (version 5.1, Research
Systems Inc., Boulder, CO, USA). The ROI of each wheat ear was
manually selected from the calibrated hyperspectral images. The
average spectrum was obtained through the calculated spectral data
of every extracted pixel, and the average spectrum was considered
the spectral information. Because of the noise disturbance at the
beginning and end of the spectral range, spectrum data analysis was
performed in the 400-1000 nm wavelength range with 555
bands***. The spectral data over 400-1000 nm were preprocessed
by the MSC algorithm to remove noise and enhance the spectral
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features in MATLAB R2014a (MathWorks Inc., Natick, MA)“*.
2.4.2 Feature wavelengths acquisition
XLW analysis is an effective feature variable selection method.
The principle is to select the most relevant primary components of
different variables that contain their distinctive features and then
extract the eigenvector with the largest eigenvalue as the weight and
bias parameters to derive the relationship between the extracted
primary components and the variables and then screen out the
feature variables*!. XLW analysis was carried out on the spectral
information of the feature wavelengths. First, the spectral data of
the diseased and healthy areas in the hyperspectral images of wheat
spikelets were selected. Second, two kinds of spectral data were
input to the PCA algorithm, PCA was used to select the appropriate
number of PCs, and the individual and cumulative explained
variances of the PCs were calculated in Figure 3. The first three PCs
explained 97.78% of the cumulative variance and were selected as
the PCs. Under each principal component variable, the weight
coefficient corresponding to each wavelength could be calculated.

The larger the absolute value of the weight coefficient is, the greater

the influence of the wavelength*. Therefore, the wavelength with

the larger absolute value of the weight coefficient in each PC was
selected as the feature wavelength (Figure 4). The selected feature
wavelengths were 682 nm, 714 nm and 553 nm.
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Figure 3 Individual and cumulative explained variance ratios for
the first ten PCs
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Figure 4 Load coefficient curves of the first three PCs

2.5 Deep learning methods
2.5.1 Algorithm operating environment

The graphics processing unit (GPU) was a GTX2080Ti NVIDA
(11 GB graphic memory), while the central processing unit (CPU)
was an Intel Core 17-9700 (16 GB memory), the Ubuntu operating
system (version 16.04) and Python language (version 2.7). Based on
the Caffe frame, computed unified device architecture (CUDA)
version 9.0.176 and version 7.3.1 were used to improve the use rate
of the graphic card. The Caffe framework was widely used, and the
overall code was simple to write. It had comprehensive functions
and was widely used in target detection.

2.5.2 Datasets preprocessing

After the XLW analysis, three feature wavelengths of the
spectral images were screened, and different fusion methods of the
three feature wavelengths were investigated. Three wavelengths of
663 nm, 555 nm and 450 nm were selected as the Fusion Image-
RGB dataset, and its performance was compared with the different
fusion datasets of the three feature wavelengths. Figure 5 shows the
three feature wavelengths selected by XLW analysis. The red head
feature of FHB wheat ears was distinguished at 682 nm wavelength,
which was the red absorption region of visible light. Therefore,
according to naked eye observations, the images at a wavelength of
682 nm had the richest wheat ear information and the most
significant difference between diseased and normal wheat spikelets.
Moreover, different weight coefficients for each feature wavelength
image were added as a new approach to explore the effect of fusion
image datasets. The element-level weighted fusion of hyperspectral
images at three selected feature wavelengths was performed to
obtain a feature-fused image. Three fusion images (Fusion Image-1,
Fusion Image-2 and Fusion Image-3) with different feature
wavelengths and weight coefficients are listed in Table 4. For
Fusion Image-2 and Fusion Image-3, the weight coefficient of the
feature wavelength at 682 nm was increased to retain more
information clearly distinguishing between diseased and normal
wheat ears by naked eye observation. The information from all three
feature bands was presented in Fusion Image-1, which included
more comprehensive information. The Fusion Image-2 highlighted
the 682-nanometer red band while filtering the 714-nanometer red
band to highlight the most prominent features of the FHB spike.
Fusion Image-3 also highlighted the 682-nanometer red band,
eliminating the 553-nanometer green band, which focused entirely
on the red band about the FHB feature.

The flow chart of detection by Faster R-CNN models based on
HSI data is shown in Figure 6. The MSC method was used for
spectral pretreatment, and feature wavelengths were selected by
XLW algorithm. After the feature wavelength fusion datasets were
created, the performance of three feature wavelength fusion datasets
and the RGB dataset were compared in different Faster R-CNN
models along with four different pretrained networks, AlexNet,

a. 553 nm wavelength image

b. 682 nm wavelength image

c. 714 nm wavelength image

Figure 5 Feature wavelength images of wheat ears
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VGG16, ZFNet, ResNet-50""" models. To reduce overfitting and
improve precision in the Faster R-CNN model, four datasets were
expanded by brightness, color, contrast and rotation enhancement®,
and then the number of images in each dataset was increased to
1330 images. The labeled images in each dataset were divided into
training (931 images, 70%) and testing (399 images, 30%) sets, and
the images of each level by manual method in each dataset were
randomly placed into the training and test sets at a ratio of 7:3.
2.5.3 Faster R-CNN model

As a classic object detection model, the Faster R-CNN adopted
a two-stage detection approach. This approach integrated the
Region Proposal Network (RPN) to effectively generate a series of
object candidate regions. Subsequently, the targets in the candidate
regions were fed into the detection network for further classification
and localization. In contrast, one-stage networks like SSD and
YOLO directly completed both region proposal and target detection

Feature extraction

in a single network, which had faster detection speed but may lost
detection accuracy. In this study, the Faster R-CNN was used as the
detection model to obtain higher FHB wheat ear detection
accuracy®.

Table 4 Four fusion methods of the image datasets

Input imagel Input image2 Input image3
Feature Weight Feature Weight Feature Weight
wavelength coefficient wavelength coefficient wavelength coefficient

Datasets

Fusion

682nm 1/3 714nm 1/3 553nm 1/3
Image-1
Fusion  cernm 23 - - 553nm 13
Image-2
Fusion o> nm 2/3 - - 714nm 13
Image-3
Fusion
Image-  663nm 1/3 555nm 1/3 450nm 1/3
RGB

| ! =~ T

The selection of

characteristic wavelengths Raw spectral data

ROI
pooling
Y

L J
Classification and regression

Region proposal network

Figure 6 Flow chart of detection by Faster R-CNN models based on HSI data

The Faster R-CNN object detection algorithm was combined
with AlexNet, VGG16, ZFNet and ResNet-50 to form four models.
There were three parameters adjusted in the experiment, namely,
learning rate, iterations and batch size. The learning rate directly
controlled the magnitude of the network gradient update during
training, and the learning rate affected the effective tolerance
capability of the model. If the learning rate is set too small, the
convergence process will become extremely slow. If the learning
rate is set too large, the gradient will oscillate back and forth near
the minimum value and may even fail to converge. Iterations
influenced the restraint of the loss curve and model accuracy. If the
iterations are set too small, the loss curve will not be constrained,
and the network will not select complete features. Moreover, when
the number of iterations reached a certain value, the increase in
iterations had no optimization effect on the model®. To share
features between RPN and Faster R-CNN, stochastic gradient
descent (SGD) was used as a training optimization method in Faster
R-CNN, and batch size influenced the performance of SGD. In the
process of training, choosing too few training samples leads to a
longer runtime, and the loss function oscillates and fails to
converge. A large number of sample calculations made too many
weight update changes, which caused the model to fall into a local
optimal point, and the high memory occupancy rate caused the
training to fail“**. In this study, the loss function oscillated and did

not converge when the initial learning rate was set to 0.1. After
adjusting the learning rate and the number of iterations many times,
the loss function stabilized when the learning rate was set to 0.001
and the number of iterations was set to 20,000. According to the
limitation of the graphics card and the size of the data sets, the batch
size was set to 64, 128, 256, and 512. The performance was
compared with other classical target detection models, such as SSD,
YOLOvV5, YOLOv7, CenterNet, and RetinaNet. Then, the
optimized model was used to evaluate the wheat ear FHB
resistance.
2.6 Model evaluation

The inference time, precision (P), recall (R), average precision
(AP) and mAP were used to precisely evaluate the performance of
the model. The inference time showed the time spent on model
inference. The precision-recall (PR) curve showed variations in the
precision and recall values as the sample size changed™. A good
classifier retains a high precision as the recall increases, and a poor
classifier loses much precision as the recall increases. The P and R
were defined in Equation (3) and Equation (4), respectively.

TP

P=T1p+1p )
TP

R=T7rmN “)
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where, TP is the number of correctly detected diseased objects (true
positives), FP is the number of falsely detected diseased objects
(false positives), and FN is the number of diseased samples
incorrectly classified as normal.

AP was defined in Equation (5) as the area under the PR curve
and indicated the detection accuracy of diseased and normal wheat
samples, and mAP was defined in Equation (6) as the average of all
the AP values.

AP = jP(R)dR %)
mAP =" % (6)

n=1

2.7 Resistance evaluation
For each wheat ear in a band fusion image, diseased spikelets
and healthy spikelets were labeled ‘diseased’ and ‘normal’ in the
outputs of the Faster R-CNN models, respectively. The prediction
result of each wheat ear is presented in a visualization image. The
total numbers of ‘diseased’ and ‘normal’ labels were calculated by
traversing the visualization image. The diseased spikelet rate was
defined in Equation (7).
L= S
S+M

()

where, S is the total number of spikelets labeled ‘diseased’, M is the
total number of spikelets labeled ‘normal’, and L is the diseased
spikelet rate of a single wheat ear image. Then, the resistance
evaluation process based on deep learning is summarized in the
algorithm given below:

Step 1: Determine the severity level of the image.

L is the diseased spikelet rate of a single wheat ear image, as
defined above. D is assumed to be the severity level of each wheat
ear image, as shown in Equation (8)"’.

0, L=0%

, 0% < L<25%

2, 25% < L<50% (8)
3, 50% < L<75%

4, 75% < L < 100%

—_

Step 2: Calculate the number of wheat ear images at each level.

Step 3: Determine the AS of the wheat ear samples.

P is assumed to be the AS of each wheat ear and #; is the
number of wheat ear images at each severity level from 0 to 4, as
shown in Equation (9)“".

p=__ 9)

Step 4: Evaluate the resistance
The resistance of the samples that are predicted by the deep
learning method according to Table 2 is evaluated. The sample
resistance was defined in Equation (10)“".,
HR, 0<P<2
. MR, 2<P<3
Resistance = (10)
MS, 3<P<35

HS, P>35

3 Results and discussion

3.1 Raw spectral reflectance analysis

After selecting the ROI from the calibrated hyperspectral
images, the raw spectral range from 358-1021 nm was used to
obtain the average wheat ear spectrum. Spectral data ranging from
400 to 1000 nm were selected for spectral preprocessing with the
MSC algorithm. The
preprocessing by eliminating the spectral differences caused by
different scattering levels and enhancing the spectral absorption

algorithm completed spectral data

information related to component content*. The preprocessed
spectral data were used for subsequent feature wavelength selection.
3.2 Hyperspectral feature band image fusion

The three fusion images with feature wavelengths and Fusion
Image-RGB were shown in Figure 7. The 553 nm, 682 nm, and
714 nm wavelength fused images (Fusion Image-1, Fusion Image-
2, and Fusion Image-3) were all exhibited more distinctive color
and texture characteristics compared to RGB images. The
characteristic of spike red head of FHB wheat was more obvious in
the fusion images. The fusion images in Figure 7b and Figure 7c
highlighted the red light wavelength information at 682 nm, making
the red head feature of the FHB ear, but it was also accompanied by
the loss of some other key band information. However, Figure 7a
contained hyperspectral image information in three bands of 553
nm, 682 nm, and 714 nm, and this fused image exhibited a more
distinct FHB spike signature, at the same time, the characteristics of
normal ears become more distinct. This fusion method effectively
improved the ability to distinguish between diseased and normal
ears.

a. Fusion Image-1

b. Fusion Image-2

c. Fusion Image-3

d. Fusion Image-RGB

Figure 7 Fusion images of wheat ear

3.3 Faster R-CNN model
3.3.1 Detection results of the Faster R-CNN model based on the
pretraining network

Faster R-CNN models were trained with pretrained AlexNet,
VGG16, ZFNet, and ResNet-50 networks. The trained datasets were
Fusion Image-1, Fusion Image-2, Fusion Image-3, and Fusion
Image-RGB,respectively. The overall trend in the mAP of the four
Faster R-CNN models as the number of iterations increased is
shown in Figure 8. The mAP results of the four networks at 20 000
iterations are listed in Table 5. The overall results of Faster R-CNN
with VGG16 and ResNet-50 for the four fusion image datasets were
better than those of the Faster R-CNN models with AlexNet and
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ZFNet; the highest mAP of the VGG16 and ResNet-50 models
trained on Fusion Image-1 was 98.8%, and the lowest mAP of the
model trained on Fusion Image-RGB was 97.7%. The reason might
be because the Faster R-CNN model with VGG16 and ResNet-50
had better feature extraction networks than AlexNet and ZFNet.
Moreover, the parameters of the convolution in the feature
extraction network affect the memory, speed and performance of
the detector’™. The runtimes of the training and prediction phases
for the four networks are shown in Figure 9. Considering the
complexity of the network structure, Faster R-CNN with ZFNet had
the shortest training time, which was approximately 52 min. The
training time for Faster R-CNN with AlexNet was approximately
1.6 h, which was longer than that of Faster R-CNN with ZFNet.
Faster R-CNN with ResNet-50 had the longest training time of
approximately 6 h. Compared to ResNet-50, the Faster R-CNN with
VGG16 has a shorter training time of approximately 3 h. In the
prediction time of pretrained Faster R-CNN networks, Faster R-
CNN with AlexNet and ZFNet had shorter prediction times of 0.014 s
per image and 0.016 s per image, respectively. Faster R-CNN with
VGG16 had a relatively short prediction time of 0.044 s per image.
Faster R-CNN with ResNet-50 had the longest prediction time of
0.182 s per image. The better performance of VGG-16 feature
extraction may be due to the relatively deep network structure and
efficient design. Compared to AlexNet and ZFNet, VGG-16 had a
deeper network that better captured the complex features and
abstract representations in images. VGG-16 used a smaller 3x3
convolution kernel to capture these local subtle features well, and
enable parameter sharing, thus reducing model complexity and
computational cost. Overall, Faster R-CNN with VGG16 performed
best, and the parameters of this network was optimized and trained
with different datasets to obtain the optimized deep learning model.
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88.0% r /| / AlexNet Fusion Image-3 -~ Fusion Image-RGB
/ > Fusion Image-1 - Fusion Image-2

mean Average Precision (mAP)

86.0% -4 VGGI6 Fusion Image-3 - Fusion Image-RGB
o/ | * Fusion Image-1 = Fusion Image-2
84.0% ZFNet .. Fysion Image-3 — Fusion Image-RGB

82.0% I | Fusion Image-1 — Fusion Image-2
’ ResNet-50 __ pygion Image-3 — Fusion Image-RGB
80.0%

N RN RN RN RN RN RN RN RN RN RN RN RN RN RN R NN R
TP PITIITITITITITET ITIETTITITISISIENSSN
Q@@g bg‘\Q%QO)Q\QQ\\Q{\,B\%Q\b«Q@Q\‘QQ\'\Q@Q\QQ,»QQ

Iterations

Figure 8 Detection results of the four pretrained Faster R-CNN
models with increasing numbers of iterations

Table 5 The mAP of four Faster R-CNN networks at

20,000 iterations
Datasets
Faster R-CNN network  Fysion Fusion Fusion  Fusion Image-

Image-1 Image-2 Image-3 RGB
F a“er\%gf? With  9gg0%  98.40%  98.20% 97.70%
Faster RONNwith o7 150, 94500, 95.20% 93.50%

AlexNet
Faster R-CNNwith g0 5000 9700%  97.30% 97.80%
ZFNet

Faster R-CNN with o o o 0,

A 98.80%  98.20%  97.70% 98.40%
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Figure 9 Training and prediction time of the four pretrained Faster
R-CNN models

In Faster R-CNNs, the batch size determines the direction of
gradient descent. The memory utilization rate and parallelization
efficiency of large matrix multiplication can be improved by
reasonably increasing the batch size to achieve the optimal
convergence accuracy. The number of iterations required to run an
epoch was decreased to accelerate the processing of the same
amount of data'. The initial value of the batch size confirmed in the
experiment was 64, and the dereferencing of the batch size was 64,
128,256 and 512.

As shown in Figure 10 and Table 6, after training Faster R-
CNN with VGG16 with different parameters using the Fusion
Image-1 dataset, the mAP of the model was higher than that of the
models trained with the other datasets. When training the model
with Fusion Image-1, the mAP of the model reached 99.0% when
the batch size was 128 or 512. When training the models with the
Fusion Image-2, Fusion Image-3 and Fusion Image-RGB datasets, a
certain increase in the batch size was effective in improving the
mAP of the models. The Fusion Image-2 and Fusion Image-3
datasets yielded the highest mAPs of 98.6% and 98.5%,
respectively, when the batch size was 256. The Fusion Image-RGB
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Figure 10  Detection results of Faster R-CNN with VGG16 under
the different batch sizes and datasets

Table 6 The mAP of Faster R-CNN with VGG16 under the
different batch sizes and datasets

Batch size
Datasets
64 128 256 512
Fusion Image-1 98.80% 99.00% 98.80% 99.00%
Fusion Image-2 98.40% 98.40% 98.60% 98.50%
Fusion Image-3 98.20% 98.30% 98.50% 98.20%
Fusion Image-RGB 97.70% 98.40% 98.20% 98.10%
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dataset yielded the highest mAP of 98.4% when the batch size was
128. The mAP of the models trained on the Fusion Image-1, Fusion
Image-2 and Fusion Image-3 datasets was better than that trained on
the Fusion Image-RGB dataset, showing that the selection of the
feature wavelengths could effectively facilitate the extraction of the
spectral
dimensionality of the hyperspectral images. Although there was
relatively similar accuracy in the detection of terminal FHB wheat
ears in the hyperspectral feature wavelength fusion image dataset
and RGB image dataset models in this study, the experiment was
able to provide a more effective method for the early detection of
FHB wheat ears. In addition, the Fusion Image-1 dataset, with more
comprehensive information on feature wavelengths, yielded higher
mAP than the models trained by the Fusion Image-2 and Fusion
Image-3 datasets. Therefore, we selected Faster R-CNN with
VGGL16, set the batch size to 128, and trained the best deep learning
model with the Fusion Image-1 dataset for subsequent experiment.
3.3.2 Performance comparison

To compare the advantages of Faster R-CNN model in FHB ear
detection, the average detection accuracy of SSD, Yolov5, Yolov7,
CenterNet and RetinaNet algorithms were compared for the Fusion
Image-1 dataset, and the results were listed in Table 7. The mAP of
Faster R-CNN model was 99.00%, which was 23.89% higher than
the mAP of the SSD model. In the process of feature extraction,

information of wheat ears while reducing the

SSD algorithm may gradually pay attention to the whole semantic
information of the image, but neglect the local details, especially the
small grain size. In contrast, the Faster Faster R-CNN model has
higher detection accuracy because image features were extracted
and recognized in the RPN region of Faster Faster R-CNN, which
generated candidate boxes focused on ear size. However, this also
led to a large increase in the speed of model reasoning. The Yolo,
SSD and RetinaNet models saved the run time in ears of wheat
detection, but these algorithms are part of a one-stage network and
are less accurate than the two-stage network Faster R-CNN.
CenterNet algorithm had the second higher recognition accuracy,
because it could predict the center point of the object directly on the
input image, effectively solved the problem of dense object
detection, and was also suitable for wheat ear disease detection.
Thus, the advantage of the Faster R-CNN model in detection effect
was the most accurate detection effect, but the recognition speed
was lower, which would be further improved in future research.

experiment further verified that the model has higher detection
accuracy, and the method can accurately identify FHB wheat ears
and healthy wheat ears.

f. Faster R-CNN

e. RetinaNet

Figure 11 Wheat ear detection results with different models

3.3.3 Detection results of the Faster R-CNN model

The accuracy of the deep learning method was identified by
comparing the disease classification results of the Faster R-CNN
model with manual classification. Artificial results of manual
classification was according to Table 1 and Table 2“”. The accuracy
rates of the deep learning method to predict severity levels of 0, 1,
2, 3 and 4 were 100%, 100%, 93.5%, 93.8% and 100%, respectively
(Table 8). In Table 8, the manual classification and algorithm
classification results showed the same performance for all levels
except at Level 2 and Level 3. It indicated that the algorithm was
able to accurately identify the health of the wheat ears in most
cases, which was the further evidence of the effectiveness of the
algorithm. However, differences in the performance of the two
methods emerged when the wheat ears were in a moderately
diseased state (levels 2 and 3). This may be because, in these cases,
the phenotypic characteristics of the diseased ear are not obvious
enough. The evaluation results of wheat FHB by the manual and
deep learning methods are listed in Table 9. Both methods
ultimately determined the sample resistance of FHB as moderately
resistant (MR), and the relative error in the AS was 0.9%.
Therefore, it was evident that the deep learning method was a viable
alternative to manual resistance assessment, and the assessment of
wheat FHB resistance (type II) could be optimized for rapid,
objective and accurate pattern evaluation.

Table 8 Accuracy rates of the algorithm incidence judgments

. . . Severity level Level 0 Level 1 Level 2 Level 3 Level 4
Table 7 Different algorithms detect results of the Fusion - i
Diseased Kernel Rate/% 0%  0%-25% 25%-50% 50%-75% 75%-100%
Image-1 dataset e
- Artificial results 38 52 58 64 54
Models mAP/% Inference time/ms .
Algorithm results 38 52 62 60 54
SSD 75.11 7.85
Accuracy/% 100% 100% 93.50%  93.80% 100%
YOLOvVS 97.79 11.67
YOLOv7 98.25 17.29
CenterNet 98.38 9.07 Table 9 Evaluation results of wheat FHB compared between
RetinaNet 90.54 23.94 deep learning and artificial methods
Faster R-CNN with VGG16 99.00 81.44 Method type Average severity Resistance evaluation
. . . Artificial 2.17 MR
To verify the detection effect of the model, the detection results .
Deep leaning 2.15 MR

of the six models with the same data are shown in Figure 11. As can
be seen from the figure, SSD had the lowest recognition accuracy,
while the other five models could correctly detect and locate FHB
wheat ears. The Faster R-CNN model had the highest confidence in
detecting the FHB spike in the graph, and the confidence level of
four FHB ears was higher than 0.95. We can also clearly see that the
healthy ear is in the upper right corner, which only the Faster R-
CNN model can detect, but none of the other models could. The

4 Conclusions

In this study, the evaluation method of wheat ear FHB
resistance was optimized based on the hyperspectral feature band
image fusion and Faster R-CNN. Three feature wavelengths were
selected by the XLW algorithm and different fusion methods for the
three feature wavelengths with different weight coefficients were
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explored. The fusion datasets were trained by Faster R-CNN model.
We compared different feature extraction networks, including VGG
16, AlexNet, ZFNet and ResNet-50. We compared the detection
performance of this model with models such as SSD, YOLOVS,
YOLOV7, CenterNet, and RetinaNet. The optimized Faster R-CNN
(VGG16) model was used to assess FHB resistance and compared
with manual resistance assessment results, and finally, the following
conclusions could be drawn:

1) The Fusion Image-1, Fusion Image-2, and Fusion Image-3
data were formed using different weights of three feature
wavelengths with the XLW method, and they were compared with
the RGB dataset. The Faster R-CNN model with different networks
was trained on the four datasets. It was found that the model with
the VGG16 network performed best, and the mAP ranged from
97.7% to 98.8%. The model showed the best performance for the
Fusion Image-1 dataset.

2) The Faster R-CNN model with VGG16 achieved an average
detection accuracy of 99.00%, which was 23.89%, 1.21%, 0.75%,
0.62%, and 8.46% higher than SSD, YOLOvS, YOLOV7,
CenterNet, and RetinaNet models, respectively. In addition, the
Faster R-CNN model was able to detect FHB wheat ears with high
confidence and performed well for healthy wheat ears.

3) Compared with the FHB resistance results of the manual
method, the accuracy of the optimized Faster R-CNN with the
VGG16 model was 100% for severity levels 0, 1, and 4 and 93.5%
and 93.8% for severity levels 2 and 3, respectively.
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