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Lightweight detection method for lotus seedpod in natural environment
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Abstract: In order to solve the problems of the current target detection algorithms, such as poor discrimination of occluded
targets, multiple parameters, complex networks, large amounts of computation, and not conducive to the deployment of mobile
terminals, a lightweight lotus seedpod detection method based on YOLOv5s model was proposed in this study. First, the dataset
was augmented by using a combination of offline and online augmentation, which improved the adaptability and robustness of
the model in complex environments. Then, a lightweight Ghost convolution module was introduced to replace the original
convolution, and a lightweight bidirectional feature pyramid network was designed, which could enhance the feature extraction
and fusion capability of the network and reduce the amount of calculation and model size; On this basis, the combination of
WiIoU loss function and Mish activation function was adopted to improve the accuracy of feature extraction. Finally, the
knowledge distillation training strategy was used to ensure the proposed lightweight model has the learning ability of a complex
network model, improving the recall and precision of model detection. The results of the ablation study show that the proposed
method effectively improves the detection performance of the YOLOv5s model for lotus seedpods. The mean average precision
of the improved model was 89.7%, compared with the original YOLOv5s model increased by 2.8%, and the parameters and
FLOPs were reduced by 2.36M and 7.3G, respectively. Compared with other detection algorithm models, the proposed
algorithm model has the advantages of less computation, smaller model size, and higher detection precision. Therefore, the
proposed improved optimization method based on the YOLOvS5s model can effectively detect lotus seedpods, which provides
theoretical research and technical support for intelligent picking of lotus seedpods in the actual operating environment.
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1 Introduction

As a traditional Chinese selectively harvested cash crop, the
lotus seedpods are mainly harvested for the purpose of harvesting
lotus seeds, which is characterized by strong regional production,
extensive cultivation area, long life cycle, rich nutritional value, and
high economic value!”. In recent years, the planting area and yield
of lotus in China have reached 613 thousand hm* and 15.48 million
t, respectively. China has become a major producer and exporter of
lotus seeds”. However, with the shortage of labor in the seasonal
agricultural industry and soaring labor costs, the development of the
lotus industry is facing the constraining problem of difficulties in
harvesting lotus seedpods™®. The current manual harvesting of lotus
seedpods requires shuttle operations in the lotus pond mud, which
has problems of difficulty in terms of labor demand and harvesting,
low harvesting quality and efficiency, and personal safety hazards,
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so it is very urgent and important to design a high-quality lotus
seedpods selective harvesting robot to realize intelligent harvesting
of lotus seedpods. The natural growth environment of lotus
seedpods is complex, with problems such as uneven lighting, branch
and leaf shading, inconspicuous color differences with lotus leaves,
etc.” Moreover, due to the limited computing power resources of
the embedded platform on which the harvesting robot is equipped,
the complex model cannot meet the real-time requirements of the
task and is also difficult to deploy. Therefore, it is the key to
accurately and quickly detect and identify the lotus seedpods for
achieving intelligent harvesting®'”, and it is also of great scientific
importance and application value to study the lightweight detection
algorithm of lotus seedpods in natural environment.

In recent years, with the rapid development of deep learning
techniques!"'’, convolutional neural networks can extract multilevel
features by unsupervised or semi-supervised feature learning and
have stronger generalization capability than manually extracted
features"*', so more and more deep learning algorithms are used
for target recognition and detection tasks of agricultural robots in
unstructured environments!*"”. Wang et al.’” proposed the CA-
ENet model for identifying different apple diseases, which
integrated a coordinate attention block in the EfficientNet-B4
network, used deeply differentiable convolution in the convolution
module, and introduced the h-swish activation function. The results
show that the proposed method can achieve competitive
performance on the apple disease identification task. Kang et al.”"
proposed the DaSNet-v2 model for ripe apple detection, which
instance branches and semantic

combined segmentation
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segmentation branches into the architecture of a first-level detection
network. Feature pyramid networks and Atrous spatial pyramid
pooling were used to improve the performance of fruit and branch
detection and segmentation. Tian et al.”” proposed an improved
YOLOv3 model for the detection of apples at different growth
stages using DenseNet instead of Darknet53, which had better
performance in the detection under overlapping and shading
conditions. Ma et al.”! proposed an improved YOLOvV5 network
model based on the coordinate attention (CA) module, which had
better detection performance for detecting overripe lotus seedpods
in different scenarios.

Although the above studies have achieved good detection
results in the field of target detection, the number of network layers
has been deepened and the number of model parameters has been
increased due to the powerful feature extraction capability and
robustness of convolutional neural networks. Therefore, many
researches have also started to focus on the lightweight of target
detection algorithms. Bhagat et al.® proposed a lightweight
WheatNet-Lite architecture for wheat spikes detection, which
integrated Mixed Depthwise Conv (MDWConv), Modified Spatial
Pyramidal Polling (MSPP), and Depthwise Convolution
(DWConv), with 54.2 M fewer network parameters compared with
YOLOvV3. Zha et al.” proposed YOLOv4 MF model for pest
detection, using MobileNetV2 as a feature extraction block to
reduce model parameters and focus loss instead of cross-entropy
loss, and designing an improved feature fusion structure, finally the
mean average precision (mAP) of the model was 4.24% higher than
YOLOV4, while the volume was reduced to 1/6 of YOLOv4. Cui et
al.” proposed a YOLOv4-Tiny model for pine cone detection,
using LESNet as the backbone to extract pine cone features and a
feature pyramid network with SE attention to fuse multi-scale
information, and the average precision of the improved model was
improved by 56.4% over the original, and the parameters and
computation were compressed to 12.22% and 17.35% of the

original network, respectively.

The above researches show that the lightweight target detection
algorithms can effectively reduce the scale of the model and
improve the detection precision. Therefore, in consideration of no
study on the lightweight model of lotus seedpod detection, a
lightweight lotus seedpod detection algorithm model based on
YOLOvVS5s was constructed. YOLOVSs can achieve faster inference
speed while maintaining high precision. By improving the model,
the model params and model size were reduced, which improved
the real-time performance of detection while the model precision
was maintained.

2 Materials and methods

2.1 Image acquisition

Dataset creation is a key step in deep learning algorithms for
target detection. In this study, lotus seedpods were taken as the
research object, and the image data were collected at a thousand-mu
lotus pond planting base in Canal Street, Linping District,
Hangzhou, Zhejiang Province, China, which were photographed
from August to October 2022. In order to fully consider the
complexity of natural scenes, image acquisition was carried out
from different illumination, angles, and distances. It is convenient
for the target detection algorithm to better learn the detailed features
of the labeled lotus seedpods target, so as to improve the
recognition accuracy of the overall model. Figure 1 shows the
schematic diagram of the experimental image acquisition process.
The image acquisition was carried out by aerial view photography,
and images were acquired at three time points: morning, afternoon,
and evening, as well as under three occlusion conditions: no
occlusion, slight occlusion, and severe occlusion. The acquisition
device was an MV-CA013-20GC type Haikon camera, and a total
of 1853 high-definition lotus seedpods images were finally
acquired, with the image format of BMP and the resolution of
1280 pixelsx1024 pixels for each image.

d. Unobstructed image
Figure 1

2.2 Image dataset construction
In order to improve the quality of the experimental dataset,

e. Slightly blocked image

f. Heavily occluded image

Schematic diagram of the acquisition process of experimental images

different data augmentation methods as well as combined
augmentation methods were used to train and test the augmented
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lotus seedpods dataset”. The original dataset was divided into
training, validation, and test sets in the ratio of 7:1:2. The
augmented dataset was divided into training set and validation set in
the ratio of 8:2. The results of the division of the datasets are listed
in Table 1.

Table 1 Dataset partitioning

Datasets Training set Validation set Test set Total
Original 1297 185 371 1853
Original+Mix up 2780 926 3706
Original+Mosaic 2780 926 3706
Offline 2780 926 3706
Offline+Mix up 5930 1482 7412
Offline+Mosaic 5930 1482 7412

Prior to the training of the network model, the richness of the
experimental dataset was enhanced by employing Mix up
augmentation, Mosaic augmentation, and offline augmentation
(adding noise, changing luminance, simulating occlusion, and
performing affine transformation), as shown in Figure 2. The
robustness of the model was improved by enhancing the image
features and preventing overfitting.

2.3 Overview of the method

Compared with the two-stage detection network RCNN target
detection network, YOLO network can significantly improve the
operation speed of the model while keeping the detection accuracy
basically unchanged™. YOLO, one of the available fastest target
detection models, can directly obtain the class and the estimated
probability of the target. In this study, considering the detection

-

a. Original dataset

b. Original dataset by
mix up

c. Original dataset by
mosaic

d. Offline dataset

N

f. Offline dataset by
mosaic

e. Offline dataset by
mix up

Figure 2 Dataset augmentation sample images

accuracy and lightweight requirements of the network, YOLOvS5s
was used as the basic framework of the lotus seedpod detection
model. First, images of lotus seedpods in lotus ponds were acquired
by cameras, and different data augmentation methods were used to
construct the detection dataset of lotus seedpods. Then, a
lightweight lotus seedpod detection model based on YOLOvVSs was
proposed, and the model was improved by modifying the backbone
network and neck network, so as to improve the lotus seedpod
feature extraction while also making lightweight improvements to
the model. Finally, the knowledge distillation strategy was used to
train the model and further improve the network accuracy. An
overview of the method’s technical route is shown in Figure 3.

Lotus seedpod detection based on Yolov5s algorithm

Manual Data
lab: augmentation

7 Deployment experiment

Lotus seedpod detection algorithm N
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Figure 3  Overall technical route of the proposed lotus seedpod detection algorithm

2.4 Improvement of the YOLOVSs model

The model was improved with YOLOVS5s as the base network.
The improvement processes are as follows: 1) GhostNet was used to
replace the DarkNet backbone; 2) Bi-directional Feature Pyramid

Network (BiFPN) structure was introduced; 3) Group Shuffle
Convolution (GSConv) was used to replace Conv at the neck layer;
4) VoV-GSCSP was used to replace C3 at the neck layer. The final
network structure is shown in Figure 4.
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Figure 4 Structure of the improved Yolov5s model

2.4.1 Improvement of the backbone network

The YOLOvSs network model contains more layers of CBL
convolutional blocks, consisting of convolutional layers, batch
normalization layers, and activation layers®. However, due to the
limitation of storage space and computational power resources on
mobile, the computational volume and size of the model need to be
further reduced to enable subsequent deployment on mobile.
Therefore, Ghost convolution was proposed to replace the normal
convolution in the YOLOvVSs network model, and Figure 5 shows

the structure of Ghost convolution.

Common conv

Intrinsic feature map

Input

hxwxce Ghost feature map

Output
h'xw'xn
Note: A, w, and ¢ are the height, width, and number of channels of the input
image, respectively; 4, w', and n are the height, width, and number of channels of
the output image, respectively; @,, ®,, and @, are linear transformations.

Figure 5 Structure diagram of Ghost module

Ghost convolution can extract more features with fewer
parameters compared to ordinary convolution. As shown in Figure 5,
the Ghost module first performs the regular convolution operation
on the input feature layer to generate a part of the real feature layer.
Then the Ghost feature layer is obtained by performing a linear
transformation on each channel of the real feature layer. Finally, the
real feature layer and Ghost feature layer are connected to obtain a

complete output feature layer. Suppose the input feature map is
hxwxc, the output feature map is A’ w'xn, the convolution kernel
size is kxk, and the input feature layer is divided into s parts. The
floating-point operation for ordinary convolution, the floating-point
operation of Ghost convolution, and the theoretical acceleration
ratio of Ghost convolution instead of ordinary convolution
operation are defined as follows, respectively.

Flopl = nx W xw' xcxkxk (1)
Flop2=ﬁ><h’><w’><c><k><k+(s—1)><h’><w’><2><kxk (2)
N N

_ Flopl
"= Flop2 ~

nxXh xXw xXcxXkxk

E><h'><w'><c><k><k+(s—1)><h'><w'><ﬁ><k><k
s N

cxXkxk sXc
T st+e—1

xS 3)

1 -1
7><C><k><k+s—><k><k
S S

It can be found that compared with the ordinary convolutional
operation, Ghost convolutional operation has lower computational
consumption. The original operation of generating feature maps
using all convolutional kernels is changed to retaining only a small
number of convolutional kernels, and other parts of convolutional
operations are replaced by Ghost convolutional operation, which
can achieve a significant reduction in the amount of computation
and time required to generate feature maps.

2.4.2  Improvement of the neck network

In order to ensure the precision and speed of lotus seedpod
detection during the automatic picking process, a lightweight
bidirectional feature pyramid network was designed, which consists
of BiFPN network structure, GSConv, and VoV-GSCSP module.
Since lotus seedpods grow in complex environments, there are often
detection errors and omission problems when they are obscured or
small. To solve these problems for improving the detection
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performance of the model for obscured or small targets, a BiFPN
network structure based on PANet was introduced, as shown in
Figure 6. Although PANet can effectively fuse different feature
layers, it is essentially a simple summation of different features. In
contrast, BiFPN adopts a cross-scale connectivity approach to fuse
features in the feature extraction network directly with features in
the bottom-up path relative to size by adding an extra edge, so that
the network retains more shallow semantic information without
losing too much relatively deep semantic information, thus
alleviating the inaccurate recognition problem of lotus seedpods
caused by occlusion or smaller size.

P7
P6
Ps
P4

P3

b. BiFPN
Figure 6 Structure of the PANet and BiFPN

a. PANet

The introduction of BiFPN module has a certain improvement
in detection accuracy, but it introduces a certain number of
parameters, which is not optimal for application to the accurate and
fast identification of detection models for lotus seedpods. In order to

enhance the network feature extraction and fusion capability while
the params and FLOPs of the model can be reduced, the GSConv
and VoV-GSCSP module were proposed, as shown in Figure 7. In
the basic structure of lightweight networks, the depth-wise
separable convolution (DSC) can effectively reduce the params and
FLOPs of the model, but the channel information of the input image
is separated by DSC during the computation, which leads to the
feature extraction and fusion capability of DSC is much lower than
that of standard convolution (SC). To make up for the shortcoming,
the GSConv module consisting of the Conv module, the DSConv
module, the Concat module, and the shuffle module was proposed,
which effectively utilizes the computational power of DSC while
enabling the detection precision of DSC to reach the standard of SC.
With the introduction of the GSConv module, the params and
FLOPs effort is reduced, but to enhance the expressiveness of the
algorithmic model, the cross-stage partial network module VoV-
GSCSP designed by using the one-shot aggregation method was
proposed, which consists of the Conv module, the GS bottleneck
module, and the Concat module. The module adds a new jump
connection to the GS bottleneck so that the two branches perform
separate convolutions without sharing weights. It also splits the
number of channels using the split channel method so that the
number of channels is propagated through different network paths,
thus reducing the computational effort of the model and the
complexity of the network structure while ensuring the accuracy of
the propagated channel information.
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2.4.3 Loss function and activation function v=— (arctan = - arctan E) (6)
T

In the actual picking environment, there is an overlap of lotus
seedpods. If the bounding boxes with IoU values greater than the
threshold are arbitrarily deleted, it may discard bounding boxes
belonging to different targets, directly leading to missed detection.
The CloU_Loss (L¢joy) is currently most commonly used as the loss
function in YOLO algorithm®”, which is defined as follows:

”Z(f; B v av )

Loy =1-IoU+

Vv

" T ©

where, IoU is the ratio of intersection and concatenation between
the prediction frame and the real frame; p(4, B) is the Euclidean
distance between the center coordinates of the prediction frame and
the real frame; c¢ is the length of the diagonal of the external
rectangle formed by the prediction frame and the real frame; « is the
weight factor; v is the difference in aspect ratio between the
prediction frame and the real frame; w, 4, w¥, and A are the width
and height of the prediction frame and the real frame, respectively.
However, the CloU loss function relies too much on the
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aggregation of the bounding box regression metrics and does not
take into account the direction of mismatch between the real frame
and the predicted detection frame, which may lead to slower and
less efficient convergence. In order to solve this problem, a more
balanced loss function WIoU is introduced in this study, which uses
the dynamic non-monotonic focusing mechanism of outlier instead
of IoU to evaluate the quality of anchor frames, reducing the
competitiveness of high-quality anchor frames while reducing the
harmful gradients generated by low-quality examples, so that WloU
can focus on the common quality anchor frames and improve the
whole performance of the detector. It is defined as follows:

Luiou = rRwiou Loy (7)
(X - xg/)z + (y _ygz)z
Rwiou = exp ((wﬁ-i—H;) (®)
where, (x,, ,,) is the center coordinate of the enclosing frame; w,

and H, are the width and height of the minimum enclosing frame,
respectively; r is the non-monotonic focusing factor; Ry,y is the
normalized length of the centroid connection.

The use of activation functions allows the addition of nonlinear

Teacher model

La%/er | Lager R

Layer | ] La%/er .,

Layer
1 " on

factors to the network and advances the model expression. The most
commonly used activation functions in the YOLO family are Swish
and Mish, which are defined as follows:

)
(10)

where, x is the parameter value passed in via the normalization

Swish = xsigmoid(Bx)

Mish = xtanh(log(1 + ¢"))

layer; £ is the variable coefficient.

Since the Swish activation function has problems such as large
computational effort and unstable network performance, the Mish
activation function was used to replace the Swish activation
function in the backbone network. Its smooth characteristics can
make the information penetrate deeply into the neural network,
which makes the lotus seedpod detection more stable and accurate.
2.5 Knowledge distillation training strategy

In the lightweight process of the model, the performance of the
detection model inevitably decreases as the number of parameters
decreases. To compensate for the performance loss caused by the
lightweight detection model, knowledge distillation is used to
retrain the lightweight model, as shown in Figure 8.

I . Soft
—— Softmax (7=¢) Sy |
Loq
. Soft
Sl ) predictions
Hard
Softmax (7=1) — prediction j
Student L
loss =
Hard
targets

Ground truth

Note: T and ¢ are the distillation temperatures; L,y is the loss function between the student model predictions and the teacher model predictions; Ly, is the loss function of

the student model predictions to the true labels of the samples.

Figure 8 Structure of knowledge distillation

The enhanced lotus seedpods dataset is used to train a teacher
network with deeper layers and stronger extraction ability, and then
the probability prediction value of the lotus seedpods output by the
teacher network is distilled at temperature 7, and the predicted
probability distribution of the lotus seedpods is obtained through the
softmax layer as soft targets. At the same time, the probability
prediction value of the lotus seedpods output by the student network
is distilled at the same temperature 7, and the predicted probability
of the lotus seedpods is obtained after passing through the softmax
layer, which is used as soft predictions. The loss function Ly is
defined as the follows:

N
Lo==Y_pllog(g))

J

(11)

where, p? and qlare the jth class predicted probability output
through the softmax layer at temperature 7 in the teacher network
and student network, respectively; N is the total number of labels.
The teacher network may have a certain error rate. The
possibility of errors propagated to the student network can be
effectively reduced by using real labels as hard targets. Ly, is
obtained by using the cross-entropy of the softmax output and hard
targets of the student network under the condition of 7=1, which is

defined as the follows:

N

Ly = — Z C;log((ﬂ)

i

(12)

where, ¢; is the real label value of jth class.

The loss functions Ly, and L are weighted together as the
loss function L of the final distillation model so that the student
model learns the teacher model while it is learning by comparison
with the real label, which can effectively prevent the error
information in the teacher network from being distilled into the
student network. In this study, the YOLOv5m model is used as the
teacher model, and the YOLOVSs with the above-improved method
is used as the student model for distillation, thus improving the
performance of the lightweight lotus seedpod detection model.

3 Results and analysis

3.1 Evaluation index

To validate the performance of the improved algorithm model,
evaluation indexes such as Precision (P), Recall (R), Fl-score,
mAP, and FPS were used to evaluate the training model on the test
dataset®. Intersection over Union (IoU)>0.5 indicates a true case;
IoU<0.5 indicates a false positive case; loU=0 indicates a false
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negative case. IOU, precision, recall, mAP, and Fl-score are
defined as follows:

_|AnB
ToU AUE 13)
.. TP
Precision = 75— (14)
TP
Recall = TP I EN (15)
l k
mAPZEZAPi (16)
i=1
F,-score = 2PR (17)
P+R

where, A is the prediction bracket; B is the true bracket; TP is the
number of true positive cases; FP is the number of false positive
cases; FN is the number of false negative cases; k is the number of
detection categories; AP is the average precision.
3.2 Experimental platform and parameter setting

All experiments in this study are based on the Pytorch deep
learning framework, programmed in Python, and run on Windows
11 with an Intel® Core™ i5-12400F (2.50 GHz) hexa-core CPU and
NVIDIA GeForce RTX 3060 GPU. The image input size is
640%640 pixels and the initial learning rate of the model is 0.01. To
speed up the training process and prevent overfitting, the
momentum parameter is chosen to be 0.937. The model optimizer is
SGD, the total number of epochs trained is 200, the batch size is 16,
and the number of workers is 2. In order to reduce the training time,
the migration learning method was used and the official pre-training
weights were loaded, then the training of the model was started. The
hyperparameters of the model training are listed in Table 2.

Table 2 Hyperparameters for model training

Parameters Value
Input size/pixels 640x640
Learning rate 0.01
Momentum 0.937
Iterations 200
Batch size 16
Workers 2

3.3 Evaluation of the dataset augmentation

Using YOLOvVSs as the basic framework of the lotus seedpod
detection model, the effect on the validation set after each round of
training with different amplification methods was analyzed, as
shown in Figure 9. From the results, it can be seen that either Mix
up or Mosaic online amplification with only the original dataset
improves the mean average precision (mAP), and the results are
mostly close in terms of precision and recall. Without any online
augmentation, the offline augmentation-only approach also
outperforms the model trained on the original dataset in terms of
performance evaluation index, indicating that data augmentation
can bring some improvement to the model performance.

After training the optimal model with different datasets, the
model performance was tested on the test set and the results are
listed in Table 3.

From Table 3, it can be seen that when using Mix up and
Mosaic online augmentation strategies on the basis of the original
dataset, the index mAP performance improves by 5.1 percent and
9.5 percent, respectively, while using the offline augmentation
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Figure 9 Performance evaluation results of validation sets during
training of different datasets

Table 3 Performance evaluation results of model test sets
obtained from different training data

Datasets Precision/% Recall/% mAP/%
Original 94.5 88.1 73.4
Original+Mix up 94.1 87.8 77.3
Original+Mosaic 95.4 91.7 81.1
Offline 97.1 93.8 83.9
Offline+Mix up 96.7 93.4 84.8
Offline+Mosaic 96.9 94.3 86.9

method, its mAP performance improves by 12.5%. When using Mix
up and Mosaic online augmentation strategies on the basis of the
offline augmentation dataset, the index mAP performance improves
by 13.4 percent and 15.5 percent, respectively. Therefore, this study
uses a combination of offline and online augmentation to maximize
the data capacity and enrich the diversity of the dataset, thus
achieving the greatest improvement in the mean average precision,
as shown in Figure 10.
3.4 Experimental
improvement

In order to verify the effectiveness of the lightweight network
model proposed in this study, the detection effects of different
lightweight networks were compared, as listed in Table 4. It can be
observed that GhostNet is larger than MobileNetv3 in terms of

comparison before and after model
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Figure 10  Offline and Mosaic combination of data enhancement

FLOPS with params, but it is superior to ShuffleNetv2 and
MobileNetv3 in terms of mAP and detection frame rate (speed).
Therefore, it verifies the effectiveness of using Ghost convolution
instead of the original YOLOvVSs model convolution. On this basis,
the proposed lightweight bidirectional feature pyramid network is
introduced. It can be found that after the introduction of BiFPN
network structure, the mAP improved by 4.1%, but the params and
FLOPs increased by 40.2% and 32.8% compared with the previous
ones. However, with the introduction of the GSConv and VoV-
GSCSP modules, the params and FLOPS decreased by 24.4% and
28.6%, respectively. Therefore, the lightweight network model
proposed in this study is effective and can reduce the params and
FLOPs of the model while ensuring detection accuracy.

Table 4 Comparative experiments of different

lightweight networks
Model mAP/ Params/ FLOPs/ Fl-score/ Size/ Speed/
% x10° x10° % MB fps

YOLOvS5s_ShuffleNetv2  80.6  3.80 8.2 90.9 7.8 9.1
YOLOv5s_MobileNetv3  79.8  3.55 6.3 91.8 7.3 9.2

YOLOvS5s_GhostNet 812  3.68 8 92.3 7.6 8.8
YOLOvS5s_ G-BiFPN 853  6.15 11.9 93.4 124 8.6
YOLOv5s_GBGV 84.6  4.65 8.5 92.4 9.5 9.6

Based on the improved network, the LeakyReLu, Mish,
HSwish activation functions, and CloU and WIoU loss functions
were compared in the experiments. As listed in Table 5, Mish is not
as fast as LeakyReLu and HSwish in terms of speed, but its mAP is
better; while CloU and WIoU are similar in terms of speed, but the
mAP of WIoU is better than CloU. So the combination of Mish
activation function and WloU loss function was chosen.

Table 5 Comparison results of different activation functions
and IoU loss under the same model

Activation/IoU Loss mAP/%  Params/x10°  Fl-score/%  Speed/fps
LeakyReLu/CloU 83.2 4.65 92.0 9.2
HSwish/CloU 83.6 4.65 922 9.1
Mish/CloU 84.2 4.65 923 10.6
LeakyReLu/WIoU 84.1 4.65 91.5 9.4
HSwish/WIoU 84.4 4.65 93.0 9.3
Mish/WIoU 85.5 4.65 93.4 10.9

In order to verify whether all the improved methods based on
the YOLOvSs algorithm model can improve the detection
performance, we conducted an ablation study of all the
improvements, and the experimental results are listed in Table 6.

Table 6 Comparison of ablation study
mAP/ Params/ FLOPs/ Fl-score/ Size/ Speed/

Model %  x10° x10' % MB fps
YOLOVSs 869 701 158 955 141 10.5
YOLOVSs_GBGV 846 465 85 924 95 96
YOLOvSs GBGV_M/W 85.5 465 85 934 95 109

YOLOv5s_GBGV_M/W+KD 89.7  4.65 8.5 96.2 9.5 144

Compared with the original YOLOvVSs model, when using the
proposed lightweight detection network algorithm model, the
params and FLOPS decrease by 33.7% and 46.2%, respectively.
After using the Mish activation function and WIoU loss function,
the mAP improves by 1.1 percent, and the other parameters remain
unchanged. With the knowledge distillation training strategy, the
mAP of the model improves by 4.7%. From the results of the
ablation experiments, all the improvements made in this study based
on YOLOvVSs have played their proper roles compared with the
original model.

To visualize the effectiveness of the proposed improved
method for the lightweight lotus seedpod detection model, the heat
maps were used to visualize the extraction of feature maps and
target localization, as shown in Figure 11. Compared with the
YOLOVS5s model, the proposed lightweight lotus seedpod detection
algorithm model can successfully extract the features of the lotus
seedpods and make correct predictions. The detection results of the
model after distillation training are more based on the lotus
seedpods themselves and less dependent on the external
environment. Therefore, the model is less affected by the external
environment, making it more robust and semantically informative.
3.5 Experiment comparison with different detection algorithm
models

The proposed lightweight lotus seedpod detection algorithm
model is compared with the YOLOVSs detection algorithm model,
which reduces the params and FLOPs of the model while improving
the mAP. The effect of lotus seedpods detection before and after the
model improvement is shown in Figure 12.

The comparison with the state-of-the-art algorithm models at
the present stage was carried out, and the comparison results are
shown in Table 7. It can be found that compared with Faster-
RCNN, SSD, and YOLOV7-tiny algorithm models, the present
algorithm model has lower values of the params and FLOPs, which
effectively reduces the computational effort of the model. In the
process of lotus seedpod detection, the precision, recall, and mAP
values of this algorithm model are better than those of other models,
and the size of this model is smaller than that of other detection
models. It further verifies the effectiveness of the improved method
proposed in this study.

4 Conclusions

In order to apply the detection recognition model to the actual
lotus seedpod harvesting environment, a lightweight lotus seedpod
detection method based on the YOLOvSs model was proposed. The
effectiveness of the proposed method was verified through ablation
study. The following conclusions can be drawn:

1) The combination of offline and online augmentation
(Mosaic) was used to augment the lotus seedpods dataset, which
greatly improved the training accuracy and increased mAP by
15.5%. GhostNet was used as the backbone network, and a
lightweight bidirectional feature pyramid network was proposed,
which significantly reduced the params and FLOPs of the model by
33.7% and 46.2%, respectively. The combination of WIoU loss
function and Mish activation function was adopted, which enabled
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Figure 11 Visualization feature map of the improved model
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Figure 12 Comparison of actual detection effect before and after model improvement
the model to increase the training convergence speed as well as model have the learning capability of a complex network model;

improve the detection precision. The knowledge distillation training 2) The proposed model was evaluated through ablation study,
strategy was used to make the lightweight lotus seedpod detection including various performance evaluation metrics and visual feature
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Table 7 Comparison of the results of the most advanced
detectors at this stage

Model Precision/Recall/mAP/Params/FLOPs/ Size/ Speed/

% % % x10° x10° MB fps

Faster-RCNN 682 599 60.0 137.1 3702 110.8 11.3

SSD 949 48,6 604 263 62.8 933 783
YOLOv7-tiny 945 87.8 79.8 6.02 132 1198 9.5
YOLOV5s 96.7 943 869 7.01 158 14.1 105
Method proposed in this study 97.5 949 89.7 4.65 85 9.5 144

maps. The experimental results show that the proposed method
achieves the expected effect, with a precision of 97.5%, recall of
94.9%, mAP of 89.7%, params of 4.65M, FLOPs of 8.5G, and
model size of 9.5M. Compared with other mainstream detection
models, the proposed model has the advantages of less computation,
smaller model size, and higher detection accuracy, which is
beneficial to deploying the detection model on mobile terminals
with limited computational power and small storage space, and
provides theoretical research and technical support for intelligent
picking operations of lotus seedpods;

Since the present model does not classify the lotus seedpods for
maturity detection, future work will study the lotus seedpods
classification harvesting model to further improve the detection
speed and accuracy of lotus seedpods.
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