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Method for detecting dead caged laying ducks based on infrared
thermal imaging

Yu Yan, Qiaohua Wang, Weiguo Lin, Shucai Wang , Yue Gu, Yifan Heng
(College of Engineering, Huazhong Agricultural University, Wuhan 430070, China)

Abstract: To accurately and efficiently detect dead caged laying ducks, thereby reducing reliance on manual inspection, this
study proposes a method that integrates infrared thermography with deep learning technology. A lightweight object detection
algorithm is developed, utilizing YOLO v8n as the baseline model. The backbone network is replaced with StarNet, which is
based on “Star Operate”. Additionally, the C2f-Star structure is designed by combining the Star Block from StarNet with the
C2f module, and it is inserted into the Neck structure of the baseline model. Lightweight module L-SPPF replaces the SPPF
module in the baseline model to enhance feature augmentation. Furthermore, a lightweight shared convolutional detection head,
termed SCSB-Head, is introduced to reduce computational complexity. These improvements collectively form a lightweight
object detection algorithm named SLSS-YOLO. Experimental results show that SLSS-YOLO achieves mAP@50%-95%,
precision, and recall scores of 80.50%, 99.44%, and 98.46%, respectively. Compared to the baseline model, these metrics
improve by 1%, 1.98%, and 0.26%, respectively. In terms of model size and detection speed, SLSS-YOLO has 1.44 M
parameters and 4.6 G FLOPs, achieving an FPS rate of 134.9 f/s. This represents a reduction of 52.16% and 43.90% in
parameters and FLOPs, respectively, while increasing FPS by 5.4 f/s compared to the baseline model. Moreover, an object
tracking model is constructed using SLSS-YOLO and Hybrid-SORT. Tracking tests demonstrate that Hybrid-SORT achieves
zero ID-Switches, with a detection speed of 10.9 ms/f. It outperforms Bot-SORT, ByteTrack, Deep OC-SORT, and OC-SORT
in terms of tracking performance. Therefore, the proposed thermal infrared detection method can effectively identify and track

dead ducks in complex cage environments, providing a reference for automated inspection in caged duck farms.
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1 Introduction

China hosts over 90% of the world’s farmed laying ducks.
Large-scale caged farming of laying ducks is a critical approach to
enhancing production efficiency!". However, this method presents
common issues: manual inspections are still required to monitor
individual health, which can increase stress, trampling, and pecking
behaviors detrimental to their well-being!’. Additionally, if sick or
dead poultry are not promptly identified and removed, they can
severely contaminate the farm environment, leading to widespread
infections®®. Therefore, automating the rapid and accurate
identification of dead ducks is essential to addressing the reliance
on manual inspections in large-scale caged farming.

Advances in computer vision have deepened research areas
such as behavior recognition and health monitoring in livestock
animals”®. Currently, object detection algorithms based on CNN
and Transformer architectures are widely applied in livestock
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studies, showing significant effects”'". Xiao et al.'” proposed a
DHSW-YOLO model to automatically monitor and warn of
behavioral rhythms in ducks. Bist et al.'”! used the YOLOvSn-BFD
model to detect leg disorders in broilers. Li et al.'! employed the
EMSC-DETR algorithm to locate and detect free-range chickens in
complex environments. Sachin et al."* used the YOLOv5s-pecking
model to detect feather pecking behavior in laying hens in non-cage
settings. Additionally, infrared thermography is widely used in
livestock detection!*"™. Xie et al™ combined infrared
thermography with an improved YOLO v5s-BiFPN to automatically
detect body temperatures of pigs. Schreiter et al.”” analyzed pixel
data from infrared images of laying hens to assess feather damage.
Wang et al.®" used the YOLOVS5 deep learning model to obtain
temperature information from eyes and udders, enabling mastitis
detection in dairy cows. Pacheco et al.”? designed four deep
learning models based on a CNN architecture to identify and
evaluate the degree of heat stress in dairy cows.

Infrared thermography is a non-invasive monitoring
technology™. For intensively farmed laying ducks, automatic
inspection equipment must quickly and accurately identify dead
ducks, unaffected by lighting conditions. This is an important
technological means for advancing intelligent inspection in caged
duck farming. Therefore, this study developed a lightweight object
detection network, SLSS-YOLO, using infrared thermographic
images. Combined with Hybrid-SORT, this study proposes a
method for detecting and tracking dead ducks in caged duck farms.

2 Materials and methods

2.1 Collection of infrared thermal images
The experimental data was collected at a welfare laying duck
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farm in Anlu City, Hubei Province. The subjects were ducks raised
in stacked cages. Data collection occurred in May 2022, with
temperatures in the duck house ranging from 26°C to 28°C. Visible
light and thermal infrared images taken on-site are shown in
Figure 1a and 1b. The visible light images of the cages appear dim
with a complex background, whereas the pseudo-color thermal
images are clearer. The experimental duck house was an H-shaped
five-story facility. Each story housed 132 ducks. Each cage was
446 mm long, 416 mm wide, and 300 mm high. Most cages held
two ducks, with a few holding only one.

TN

“ WAL

b. Thermal infrared image

a. Visible light image
Figure 1 Visible light camera and thermal infrared

camera photography

Figure 2

The acquisition device was a FLIR T530 infrared thermal
imager (FLIR Inc., Wilsonville, OR, USA). The infrared resolution
was 320x240 pixels, with a wavelength range of 7.5 to 14.0 um.
The measurement temperature range was —20°C to 120°C, with an
accuracy of £2°C. The lens had a focal length of 17 mm (24°) and a
thermal sensitivity of <30 mK. The thermal imager was mounted on
a tripod beside the cages, positioned 600 mm from the cages and
1000 mm above the ground. Due to obstructions from feed troughs
in the cage structure, the thermal imager was set at a 30° angle to
the horizontal ground. The schematic diagram of image acquisition
and the actual setup are shown in Figure 2.

Since the positions of dead ducks were not fixed, the tripod was
manually moved to collect videos, simulating the inspection
process. The video shooting process is shown in Figure 3. As shown
in Figure 3, the feeding trough obscures part of the cage area.
Therefore, the shooting angle in Figure 2 can reduce the obstruction
of the feeding trough on dead ducks in the cage. To simulate the
inspection process of the robot, this study performed horizontal
movements of the infrared thermal camera according to the method
shown in Figure 3.

1000 mm 4

Image acquisition schematic diagram

2

Note: 1. Drinking equipment 2. The bottom of the cage net 3. Infrared thermal camera 4. Camera moving path 5. Feeding trough 6. Egg trough

Figure 3 Appearance diagram of duck cage and image acquisition process

2.2 Dataset creation

First, dynamic thermal infrared videos of dead ducks in cages
were captured using a thermal infrared camera. Using video
software, images were extracted at every fifth frame, resulting in
12 890 pictures. After removing images with no useful information
or high overlap, 7848 images remained for the dataset. These
images were manually annotated using Labellmg software
(Tzutalin. Labellmg. Git code (2015). https://github.com/tzutalin/
labellmg), labeling dead ducks as “dead_duck”. The annotations

were formatted according to the Visual Object Class (VOC) dataset
standard. The dataset was then randomly divided into test, training,
and validation sets at a ratio of 1:8:1. The final distribution was 749
images for testing, 6061 for training, and 647 for validation.

3 Research methods

3.1 Baseline model: YOLO v8
YOLO v82" is the latest object detection algorithm released by
the Ultralytics team. It comes in five versions, varying by model
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size. YOLO v8n is the smallest model in this series. The
architecture of YOLO v8 is primarily inherited from the team’s
previous one-stage algorithm, YOLO v5. Compared to YOLO v5,
YOLO v8 uses a more lightweight C2f module instead of the
original C3 module in the backbone network. It removes the
original convolutional structure during upsampling in the feature
pyramid network. In the detection head, it adopts an Anchor-Free
mechanism, replacing the previous Anchor-Based system.
Additionally, it introduces the Distribution Focal Loss (DFL)
function to calculate regression losses. Overall, YOLO v8 better
adapts to detecting irregularly shaped objects and reduces model
complexity. Considering the requirements for later deployment on
embedded devices, this study will use the smallest model, YOLO
v8n, for detecting dead laying ducks in caged systems.
3.2 Improved model: SLSS-YOLO

The task of identifying dead laying ducks will be performed by
an inspection robot based on an embedded development platform.
However, YOLO v8 is designed for multi-category object detection.
This study focuses on detecting dead ducks as a single target. Thus,
redundant structures in the original model need improvement to
reduce unnecessary computations and enhance overall recognition
speed. Building upon the baseline model YOLO v8n, several
modifications were made to the network structure. These include
changes to the Backbone, Spatial Pyramid Pooling - Fast (SPPF),
Neck, and Head components.
3.2.1 Backbone

To reduce computational load and enhance feature extraction,
this study replaced the original CSPDarkNet backbone with
StarNet™. StarNet is a new neural network model based on
“element-wise multiplication” (Star Operate). “Star Operate” is a
method that fuses features from different subspaces through element-
wise multiplication. It resembles a multiplication operation denoted

by a “star” symbol, demonstrating excellent performance and
efficiency across multiple fields.

Compared to traditional convolutions or self-attention
mechanisms, “Star Operate” exhibits higher computational
efficiency. It maps inputs to a high-dimensional, nonlinear feature
space, similar to polynomial kernel functions, thus improving model
expressiveness. When integrated into neural networks and stacked
in layers, each layer exponentially increases the hidden dimension
complexity, allowing the model to achieve nearly infinite
dimensions within a compact feature space.

As shown in Figure 7, the StarNet structure uses a hierarchical
network design. It directly reduces resolution with convolutional
layers and doubles the number of channels at each stage. Multiple
Star Blocks repeat to extract features, with “Star Operate” used for
feature fusion within each block.

3.2.2 Neck modifications

The C2f module is a crucial component of the Neck structure.
Its design aims to extract and transform input data features through
operations like feature transformation, branching, and fusion,
generating more representative outputs. In the C2f module,
Bottleneck structures reduce the number of channels in feature maps
using 1x1 convolutional layers to decrease computation and
memory consumption. Feature extraction follows via 3x3
convolutional layers, and the channel count is restored using
another 1x1 convolutional layer.

To further reduce computational complexity and enhance
efficiency, this study replaced the Bottleneck structures in the C2f
module with Star Blocks, designing a new C2f variant called Star-
C2f. This approach leverages the high computational efficiency of
“Star Operate” to boost feature extraction capabilities within the
C2f module. The redesigned Star-C2f module structure is illustrated
in Figure 4.

Conv —»  Split

Star blocks —> -

\ 4

Concat —» Conv

FC

—» DW-Conv

RuLU6 > FC

Star operate

BN
FC —» DW-Conv —p

Star block

Figure 4 Structure diagram of Star-C2f module

3.2.3 SPPF modifications

SPPF is a feature fusion module in YOLO v8n that performs
downsampling at different scales on the input feature maps through
multiple max pooling operations. These downsampled feature maps,
along with the original feature map, are concatenated (concat). The
concatenated feature map is then processed by a convolutional layer
(conv) to increase its dimensionality, producing the output feature
map. However, SPPF does not distinguish between important and
non-important regions of the feature map. When dealing with
occluded objects, it captures too much local information, affecting
model accuracy.

To address this issue, the SPPF structure was optimized by
incorporating the Large Separable Kernel Attention (LSKA)
module™, creating an L-SPPF structure. LSKA is an improved
version of the Large Kernel Attention (LKA) found in Visual
Attention Network (VAN)®., LSKA decomposes the 2D

convolutional kernel of a depthwise convolution into cascaded
horizontal and vertical 1-D kernels. This decomposition allows for
direct use of large-kernel depthwise convolutions in the attention
module without additional blocks.

As shown in Figure 5, the LSKA module was placed after the
concat operation in the SPPF structure. In the L-SPPF structure, the
original SPPF achieves multiscale feature fusion through multiscale
pooling. Meanwhile, the LSKA attention mechanism captures ex-
tensive contextual information from images using its large separable
convolutional kernels and spatial dilated convolutions, generating
richer feature representations. Combining these two approaches
enhances the model’s ability to extract features at different scales.
Additionally, while LSKA improves accuracy, it does not
significantly increase computational load or parameter count. This
means that the overall model does not suffer from increased
computational burden due to the introduction of this module.
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Figure 5  Structure diagram of L-SPPF

Therefore, the proposed L-SPPF structure enhances the model’s
overall feature attention capability without compromising inference
speed, thereby improving performance in laying duck detection tasks.
3.2.4 Head modifications

The Head section of the YOLO v8 model includes a Decoupled-
Head structure designed to accelerate convergence during training.
This structure no longer uses a single convolution to share
parameters for both classification and regression tasks. However,
this design increases the number of convolutional operations,
leading to higher computational demands. Consequently, under
limited computational resources, YOLO v8 struggles to achieve
optimal detection performance.

To address this issue, this study adopted a strategy inspired by

HxWxCye  HXWxCige

H3 x W3 x Chldc

[ 1x1 Conv
Reg Conv

RTMDet™ and designed a Head structure called Shared
Convolutional Separated Batch Normalization Head (SCSB-Head).
As shown in Figure 6, the P3, P4, and P5 feature maps output from
the Neck structure undergo 1x1 convolutions to adjust their channel
sizes to a unified Chide. Subsequently, shared 3x3 convolution
extracted features are then fed into separate Batch Normalization
(BN) layers. Finally, a 1x1 convolution regression module predicts
bounding box coordinate offsets. Further adjustments to feature
scaling and target size are made by a Scale layer to locate dead
laying ducks of different sizes. Simultaneously, a 1x1 convolution
classification module predicts class probabilities. The weights of the
convolutional layers in the classification and regression modules are
independent, allowing the model to perform localization and
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—
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L
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Figure 6 Structure diagram of SCSB-Head
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classification tasks separately.

As shown in Figure 7, the modifications and reconstructions
yield the new object detection network, SLSS-YOLO. From
the figure, it is evident that the Backbone section has been

updated from CSPDarkNet+SPPF to StarNet+L-SPPF. In the
Neck structure, the C2f-Star module replaces the original C2f
module. The Decoupled-Head structure has been redesigned into
SCSB-Head.

Conv2d l
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3.3 Object tracking algorithm

During inspections, multiple dead ducks are often present in the
duck house. To distinguish and accurately track different
individuals, this study combines the multi-object tracking model
Hybrid-SORT™ to track the status of dead ducks simultaneously.
Hybrid-SORT addresses the shortcomings of traditional multi-
object tracking algorithms in judging spatial and appearance
information by introducing confidence state, height state, and
velocity direction as weak cues. This model performs well when
dealing with occlusion and clustering of objects.

In the confidence state cue, the Kalman filter state of each

target is represented by Equation (1).
x=[u,v,s,c,ri,v,s,¢] (N

In Equation (1), x represents the Kalman filter state of
trajectory confidence, while u and v denote the coordinates of the
target’s center. The parameter s represents the area of the target
bounding box, and ¢ represents the confidence of the trajectory.
Additionally, r represents the aspect ratio of the target bounding
box. The variables #, v, §, and ¢ represent the velocity components.
The
estimation and modeling when targets are not heavily occluded.

Kalman filter demonstrates effective continuous state
Hence, this method incorporates the trajectory confidence ¢ and its
velocity component ¢ into the standard Kalman filter state equation.
However, when targets experience severe occlusion and
clustering, the Kalman filter exhibits lagging behavior. To address
this issue, linear prediction based on the trajectory history is
employed when the confidence is low. The linear modeling
equation is represented by Equation (2):
. Ch!, Ci? =None
Chl—(CZ-C5h, else

2

trk

In Equation (2), Cu represents the confidence of the trajectory,

~ Neck

 Head

Figure 7 SLSS-YOLO model structure diagram

and ¢ represents the frame number. Therefore, the confidence cost
formula for this model is represented by Equation (3):

A
CConf = Clrk - Cdel

)

Cecont Tepresents confidence cost, and Cg, represents
detection confidence.

where,

In height state cue, the calculation disparity between
Intersection over Union (IoU) and Height IoU (HIoU) is illustrated
in Figure 8. The height of the target within the image recognition
box across different frames to some extent reflects the depth
information of the target, thereby compensating for the
discrimination against strong cues.

Ll

IoU HIoU
Figure 8 Computing method of IoU and HloU

Therefore, the model integrates the two by introducing Height
Modulated IoU (HMIoU), as shown in Equations (4)-(6).

AN B]|
ToU = 4
YT ausB @)
min(y},y;) —max(y;,y;)
HloU = S e O]
max(y;,y;) —min(y;, y7)
HMIoU = HIoU - IoU (6)

where, y}, y3, ¥, and y3 respectively denote the coordinates of the
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top and bottom boundaries of the two boxes.

In the velocity state cue, the velocity state of the target box’s
four corners is utilized instead of the velocity state of the original
center point. This approach better expresses the direction and speed
of the target’s movement. The velocity cost function is illustrated by
Equation (7).

3
— (Ch +CR +CP +CR)
CVcl - Z ( A A . A A (7)

Ar=1

where, C!, C%, C*, and C? respectively represent the velocity

YWEEELIITN - N

costs of the four vertices of the target box, while Cy, denotes the
average velocity cost of these four vertices. Thus, the total cost
matrix is depicted by Equation (8):

C = Cumiov + A1 Cye + ,Ccont + 3:C s (8)

where, Cj,, represents the appearance cost, Cyyoy denotes the
height cost, and 4,, 4,, and A; are the weighting parameters for
each sub-cost function.

This study uses detection results for tracking, combining SLSS-
YOLO with Hybrid-SORT to establish an object tracking model.
The flowchart of the algorithm is shown in Figure 9.

High-confidence Kalman filter

—»  Bounding Box position

First round of association
Re-ID feature

i rediction
detection B T Velocity information
Camera motion correction
SLSS-YOLO .
results (Enhanced correlation
coefficient)
Get predicted tracks
for the next frame
Low-confidence
detection
N . Y
Matching ———

Second round of association
(Objeet candidate Re-identification)

Re-ID feature
Bounding Box position

Velocity information

————» Matching Y——>

Track management

Create new tracks

Update kalman filter
¢ N Discard unmatched tracks

Discard low-score

unmatched
detections

Figure 9 Target tracking model based on the combination of SLSS-YOLO and Hybrid-SORT

3.4 Evaluation metrics

1) Precision

Precision is the ratio of correctly predicted positive samples to
all predicted positive samples. The calculation is shown in
Equation (9):

TP

e 9
TP + FP ©)
where, True Positives (TP) is the number of correctly detected
positive samples; False Positives (FP) is the number of incorrectly

Precision =

detected positive samples.
2) Recall
The Recall is the ratio of correctly predicted positive samples
to all actual positive samples. The calculation is shown in
Equation (10).
TP

Recall = m

(10)

In the equation, TP (True Positives) is the number of correctly
detected positive samples; FN (False Negatives) is the number of
missed positive samples or incorrectly detected negative samples.

3) Mean Average Precision

Mean Average Precision (mAP) is a commonly used metric to
evaluate the performance of object detection algorithms. mAP at an
IoU of 50%-95% (mAP @50%-95%) indicates the average
precision where the IoU threshold ranges from 50% to 95%,
incrementing by 5%. It comprehensively evaluates the model’s

performance across multiple different overlap thresholds. mAP is
the average of the Average Precision (AP) values at different loU
(Intersection over Union) thresholds, which can be calculated by
Equation (11).

C N
1 1
mAP = C E XN E xAP., (11)
C=1 n=1

where, C is the total number of classes, NV is the number of IoU
thresholds, and AP., is the AP for class ¢ at the n-th IoU threshold.

4 Results and analysis

4.1 Training environment and model parameter settings

The experimental conditions included a 64-bit Windows 10
operating system, an Intel(R) Core(TM) i5-10200H CPU @
2.40 GHz, and an NVIDIA GTX1650Ti GPU. The PyTorch
environment version was 1.10.1, and CUDA version was 11.3.
During training, each model underwent 100 epochs with a batch
size of 32. Mosaic data augmentation was applied for the first 10
epochs, and stochastic gradient descent (SGD) was used as the
optimizer for model training.
4.2 Loss value comparison

During training, loss values were recorded at each iteration and
written to the validation set. To evaluate the performance before and
after model improvements, this study compared the loss values on
the validation set. The changes in loss values are shown in Figure 10.
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Figure 10 Change curves of loss value

The comparison includes Box Loss, Classification Loss, and
Distribution Focal Loss, represented as Box, Cls, and Dfl,
respectively. It is clear that the improved model shows almost
identical convergence in Box Loss and Cls Loss. However, in Dfl
Loss, the improved model demonstrates significantly faster
convergence. This indicates that the improved model can quickly
adjust its weight parameters from an initial state within a shorter

training time. Thus, the improved model exhibits better learning
capability and adaptability, positively impacting time costs and
computational resources.

4.3 Ablation study

To verify the impact of each modification on the overall model
training results, this study built four detection models using the
aforementioned improvement strategies. These models were
compared against the baseline model, YOLO v8n. The comparison
results are listed in Table 1.

From the results in Table 1, Experiment 2 used StarNet as the
backbone for YOLO v8n, reducing the number of parameters and
FLOPs by 26.24% and 20.73%, respectively, compared to the
baseline model. Performance metrics such as mAP@50%-95%,
Precision, and Recall all improved. This network simplified the
backbone using a hierarchical structure based on “Star operate”,
also enhancing efficiency in handling complex images.

Experiment 3 further modified the Neck section with the C2f-
Star module, reducing parameters to 32.89% and FLOPs to 25.60%
of the baseline model. Precision and Recall showed improvements
over Experiment 2, due to the efficient feature extraction of the Star-
C2f module.

Table 1 Ablation study results

NO. StarNet Star-C2f SCSB-Head L-SPPF mAPs; 5/% Precision/% Recall/% Parameters/M FLOPs/G FPS/f's!
1 X X X X 79.50 97.46 98.20 3.01 8.2 129.5
2 '4 X X X 78.89 98.97 98.80 222 6.5 134.2
3 v v X X 79.34 97.90 97.95 2.02 6.1 122.3
4 v v 4 X 79.91 98.48 97.42 1.37 4.6 128.2
5 v v v v 80.50 99.44 98.46 1.44 4.6 134.9

Note: v indicates that the modification was applied to the baseline model, while X indicates that the modification was not applied.

In Experiment 4, the model parameters and FLOPs changed
significantly, decreasing by 54.49% and 43.90%, respectively,
compared to the baseline model. Performance metrics such as
mAP@50%-95% and Precision improved over Experiment 3. This
indicates that the SCSB-Head structure can substantially reduce
computational load and parameter count while maintaining overall
detection accuracy. The proposed method’s shared convolutional
structures merged multiple convolutions, reducing total parameters
by sharing convolutional parameters across detection heads at
different scales. However, each scale’s detection head used an
independent BN layer. BN layers help mitigate internal covariate
shift by normalizing the distribution of each mini-batch, enhancing
model stability and generalization.

Experiment 5 utilized the LSKA module to modify the SPPF
structure. Results showed parameter reductions of 52.16% and
FLOPs reductions of 43.90% compared to the baseline model.
Compared to Experiment 4, the parameter count slightly increased,
but FLOPs remained largely unchanged. The model’s mAP@50%-
95% and Precision reached the highest levels among the four
improvement strategies, with Recall only slightly below Experiment
2’s 98.8%. This suggests that the L-SPPF structure, through large
separable convolutional kernels and spatial dilated convolutions,
generates richer feature representations and achieves multiscale
feature fusion via multiscale pooling.

Thus, the proposed improvements in this study are effective.
4.4 Comparison with other object detection models

To further validate the performance of the improved model in
detecting dead laying ducks in caged systems, this study conducted
a comprehensive comparison with smaller versions of other object
detection algorithms in the YOLO series. Using the same dataset,

we trained the models on YOLO v4-tiny®™”, YOLO v5n, YOLO
vontl, YOLOv7-tiny®, and YOLOV9-T¥. The environment
parameters were set identically for each model. The results are
listed in Table 2.

Table 2 Comparison results of different models
mAPs, s/ Precision Recall Parameters/ FLOPs/ FPS/

Model

% P/% R/% M G f-s
SLSS-YOLO 80.50 99.44 98.46 1.44 4.6 134.9
YOLO v4-tiny  77.60 95.26 94.53 5.92 16.1 83.7
YOLO v5n 78.72 96.46 97.92 2.51 72 128.1
YOLO v6n 79.29 96.44 97.10 4.24 11.9 11438
YOLO v7-tiny  78.18 97.58 98.26 6.2 346  131.2
YOLO v9-T 78.26 97.46 96.41 2.00 7.8 59.7

In terms of model size, SLSS-YOLO achieved the smallest
number of Parameters and FLOPs among the small versions of
YOLO models. In terms of performance, SLSS-YOLO’s mAPs o5,
precision, and Recall were at the highest levels among the compared
models. Therefore, SLSS-YOLO achieved the best detection
performance with the smallest model size.

4.5 Comparison of detection effect for dead laying ducks in
caged systems

To more significant compare the detection effectiveness before
and after model improvements, images collected under the same
conditions but not used for training were tested. As shown in
Figure 11, four groups of comparison images were selected. In
Groups A and B, both the YOLO v8n model and the SLSS-YOLO
model detected dead ducks obscured by panels and live ducks.
However, SLSS-YOLO exhibited higher confidence scores. In
Group C, the dead duck was obstructed by live ducks and panels.
Both models accurately identified the dead duck’s location, but
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YOLO v8n had lower confidence scores and produced multiple
overlapping detection boxes. In Group D, where the dead duck was
largely obscured by a panel, SLSS-YOLO accurately and
completely detected the dead duck. YOLO v8n generated two
detection boxes with lower confidence scores than SLSS-YOLO.

Across all four groups, when faced with detection tasks
involving different positions and occlusions, the improved model
SLSS-YOLO consistently demonstrated superior detection
performance. Therefore, the improvement strategies in this study

are effective.

a. Original visible light
of image. The red ox
represents dead duck

Figure 11

4.6 Comparison of object tracking performance

This study used SLSS-YOLO combined with the Hybrid-SORT
object tracking algorithm for tracking dead ducks. To compare the
effectiveness of different tracking algorithms in identifying and
tracking dead ducks, this study used randomly selected dead duck
videos to validate and compare Bot-SORTP Y, ByteTrack™!, Deep
OC-SORT®, and OC-SORT"".

In object tracking, each object has a unique identifier (ID) to

Bot-SORT

[1ID-Switch

OC-SORT ByteTrack

Hybrid-SORT Deep OC-SORT
a. Number of ID-Switch

b. Detection results
YOLO v8n on the
infrared thermal image

c. Detection results
of SLSS-YOLO on the
infrared thermal image

Inspection diagram of cage-reared laying ducks

maintain consistency throughout the video sequence. ID-Switch, a
common error, occurs when the tracking algorithm incorrectly
assigns an ID from one object to another, leading to inconsistent
tracking results and affecting overall performance. In this study, the
number of IDs is key information for assessing the number of dead
ducks. Therefore, Figure 12a shows the number of ID-Switches for
five different tracking algorithms. Hybrid-SORT had zero ID-
Switches, fewer than the other four algorithms.

Bot-SORT
[ Time/ms

OC-SORT ByteTrack

Hybrid-SORT

b. Processing time for a single image

Deep OC-SORT

Figure 12 ID-Switch and processing time for a single image
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Figure 12b illustrates the processing time per frame for the five
algorithms, which includes preprocess time, inference time, and
postprocess time. As shown, the processing time per frame for the
OC-SORT algorithm was 10.7 ms. For Hybrid-SORT, it was 10.9
ms. The remaining three algorithms had processing times exceeding
11.6 ms. Although Hybrid-SORT had a slightly longer processing

ByteTracker

BotSORT

DeepOCSORT

time than OC-SORT, the difference was minimal.

To visually compare the tracking detection results of the five
algorithms, this study selected five sets of images from the detection
outcomes, as shown in Figure 13. In the detection results, the
correct ID for each dead duck was 0, and any other ID indicated an
ID-Switch.

HybridSORT OCSORT

Figure 13 Comparison of object tracking performance

In Group A, the dead duck appears in the lower-left corner with
only part of its body visible. It is evident that Deep OC-SORT and
OC-SORT generated multiple detection boxes with obvious ID-
Switches. Bot-SORT and ByteTrack failed to accurately track the
dead duck, assigning IDs 2 and 7, respectively.

In Group B, the dead duck is located in the lower-right corner,
partially obscured by another live duck. Bot-SORT, ByteTrack, and
Deep OC-SORT all accurately detected the number and position of
the dead duck but exhibited one ID-Switch each. OC-SORT’s
tracking results showed multiple detection boxes with noticeable
ID-Switches.

In Group C, the dead duck is in the center, with only a few
body parts obscured by a feeding trough board. All five algorithms
accurately detected the position and number of the dead duck, but
Bot-SORT, ByteTrack, and Deep OC-SORT each had one ID-
Switch. Hybrid-SORT and OC-SORT correctly assigned the ID to
the dead duck.

In Group D, the dead duck is partially obscured by a cage
panel. All five algorithms accurately detected the position and
number of the dead duck, but Bot-SORT, ByteTrack, and Deep OC-
SORT each had one ID-Switch. Hybrid-SORT and OC-SORT
correctly assigned the ID to the dead duck.

In Group E, the dead duck is partially obscured by a cage panel.
All five algorithms accurately detected the position and number of
the dead duck. Bot-SORT had two ID-Switches, ByteTrack had one
ID-Switch, and Deep OC-SORT had four ID-Switches. Hybrid-
SORT and OC-SORT did not exhibit any ID-Switches.

Therefore, combining the results in Figures 12 and 13, the
tracking detection method using SLSS-YOLO and Hybrid-SORT

outperforms other algorithms in tracking dead ducks in caged laying
duck systems.

5 Conclusions

1) Addressing the issue of detecting dead ducks in caged laying
duck systems, this study proposes a visual detection method based
on infrared thermal imagery and deep learning. An infrared thermal
camera was used as the image acquisition device for dead ducks,
which can produce very clear images even under poor lighting
conditions inside the cages. Additionally, this study mimicked the
movement trajectory of inspection robots and selected a fixed angle
to collect images of dead caged laying ducks, thereby avoiding the
obstruction caused by the feeding trough.

2) In terms of detection methods, using YOLO v8n as the
baseline model, this study developed a lightweight object detection
algorithm, SLSS-YOLO. This algorithm employs StarNet as the
backbone network. This study designed a C2f Star structure by
integrating the Star Block module with the C2f module and inserted
it into the Neck structure of the baseline model. Additionally, this
study constructed a lightweight SPPF structure, L-SPPF, using the
LSKA module to enhance feature augmentation. Furthermore, this
study designed a lightweight shared convolution detection head,
SCSB-Head, to further reduce the model’s computational load. In
terms of detection performance, SLSS-YOLO improved the
evaluation metrics mAP@50%-95%, Precision, and Recall by 1,
1.98, and 0.26 percentage points, respectively, compared to the
baseline model. In terms of model size and detection speed, SLSS-
YOLO reduced Parameters and FLOPs by 52.16% and 43.90%,
respectively, compared to the baseline model. FPS increased by
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5.4 frame/s. This lightweight object detection algorithm provides a
reference for real-time detection of dead ducks by inspection robots.
3) To achieve tracking and detection of individual dead ducks,
the object detection model SLSS-YOLO and the tracking model
Hybrid-SORT were used to implement tracking recognition. Based
on SLSS-YOLO, this study established five multi-object tracking
models including Hybrid-SORT. In the comparative experiments,
the proposed method achieved 0 ID-Switches and a detection speed
of 10.9 ms/frame in test videos, demonstrating the best performance
among the five algorithms. This method can accurately track and
detect individual dead ducks, providing an effective approach for
automated detection in intensive caged laying duck systems and
offering technical references for analyzing individual dead ducks.
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