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Abstract: Human-robot  collaboration  is  a  promising  means  to  promote  orchard  intelligence  and  reduce  the  over-reliance  on
manual work for complex agronomic practices such as fruit  tree pruning, flower and fruit  thinning, and harvesting. Accurate
target  detection and recognition of  robots  on humans are  the  basis  and prerequisite  for  subsequent  autonomous human-robot
collaboration. In this study, detection and recognition of following robots for human torso were carried out in a standardized
hilly  orchard.  A  LiDAR-based  human  torso  detection  method  was  proposed  based  on  the  actual  orchard  environment.
Breakpoint detection was used to cluster and segment the point clouds, and the segmentation thresholds were determined based
on experimental results. The geometric attributes of the human torso were trained in the classification detection model, resulting
in  the  extraction  of  six  geometric  attributes  of  the  human  torso.  The  classification  model  was  then  trained  with  various
combinations to obtain the optimal feature combination [girth-depth-average curvature (G-D-k)] for human torso recognition in
an orchard  environment.  Practical  experiments  were  carried  out  to  validate  the  feasibility  and accuracy of  the G-D-k  feature
combination. The experimental results demonstrate that the G-D-k feature combination can accurately recognize human bodies
in orchards. The LiDAR-based detection method can achieve relatively accurate human detection and recognition in complex
orchard environments, providing a reference for target detection in human-robot collaboration in orchards.
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1    Introduction
Orchard  management  is  rather  labor-intensive[1],  as  agronomic

practices such as pruning, flower and fruit thinning, and harvesting
of evergreen fruit trees such as citrus, litchi, and banana heavily rely
on human labor, which can account for about 60% of the production
cost[2,3]. To alleviate the constraint of labor costs, several companies
and  research  groups  have  developed  a  variety  of  orchard
management robots[4].  However,  the performance of these robots is
severely  limited  by  the  complicated  environment  and  challenging
working conditions in orchards because it is challenging for them to
identify fruits obscured by leaves, pick fruits inside fruit trees[5], and
perform delicate  management  operations  such as  fruit  tree  pruning
and flower and fruit  thinning[1].  Tri-Co robots can interact  with the
operating  environment,  humans,  and  other  robots  and  can  better
adapt to unstructured, dynamic environments and understand human
behavioral  intentions[6,7].  The  interaction  and  cooperation  of  robots
with humans are a prerequisite for human-robot collaboration[8]. The

development  of  human-collaborative  robots  can  greatly  improve
production  efficiency  and  reduce  labor  in  orchard  management,
which is crucial for the growth of the fruit industry.

In  the  human-robot  collaboration  scenario,  autonomous
following  of  the  target  is  the  foundation  and  prerequisite  for  the
collaboration.  In  previous  research,  most  following  robots  have
been applied to cargo carrying[9,10],  tracking shopping carts[11-13],  and
in  the  medical  industry[14].  Sales  et  al.[15]  designed  a  shopping  cart
assistance robot called CompaRob to help older adults carry goods
in  supermarkets  with  modularity,  simplicity,  and  ease  of  use.
Guerrero et al.[16] employed the PeTra tool to track pairs of legs in a
chaotic  environment  and  verified  its  accuracy  on  a  public  dataset.
Feng et al.[17] designed a target-tracking method for human-tracking
robots  based  on  ultra-wideband  (UWB)  technology.  Although
significant  progress  has  been  made  in  the  development  and
application  of  following  robots  in  the  service  industry,  the
performance of autonomous following algorithms is largely limited
by  hilly  orchard  environments  and  complex  and  variable
interference factors.

Compared with the data collected in an indoor environment, the
data  acquired  in  the  unstructured  environment  of  an  orchard
generally include more noise data,  which may cause the obscuring
or  temporary  loss  of  human  targets  for  the  following  of  a  mobile
robot.  In  such  complicated  external  environments,  following
humans  remains  a  great  challenge  for  mobile  robots.  Following
robots have been used in agriculture. Masuzawa et al.[18] employed a
mobile robot equipped with an RGB-D camera for the harvesting of
flowers  in  a  greenhouse  environment,  with  the  RGB-D  camera  to
acquire  various  information  such  as  color,  texture,  and  depth.
Yorozu et  al.[19] proposed a human-following control  method based
on the fuzzy control theory and improved the recognition accuracy
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of  the  following  robot  by  having  the  leader  wear  a  red  jacket.
Polvara  et  al.[20]  achieved  accurate  localization  and  tracking  of
workers in a greenhouse environment by extending a particle filter
and combining it with multi-sensor fusion techniques. Mao et al.[21]

designed  a  small  orchard  transport  robot  with  a  dual  navigation
mode,  which  uses  the  OpenPose  algorithm  to  estimate  human
posture and extract the critical point of the human skeleton center as
a  target  tracking  point  to  achieve  pedestrian-led  navigation.
Although  machine  vision  technology  is  commonly  employed  in
following robots due to its real-time nature, laser range finder (LRF)
has higher robustness for  complex and variable outdoor conditions
and light intensity.

To  enhance  the  tracking  capability  of  autonomous  following
robots,  many  researchers  have  focused  on  human  target
identification.  For  instance,  Taipalus  et  al.[22]  introduced  a  new
algorithm  for  detecting  and  tracking  human  legs.  The  human  leg
was scanned with 2D LiDAR and categorized using predetermined
conditions for monitoring. Chung et al.[23] employed a single LRF to
detect  and  track  human  legs,  constructed  geometric  features  of
human legs,  used  inductive  methods  for  data  association,  and then
applied  Support  Vector  Data  Descriptors  (SVDD)  to  distinguish
human legs and other interfering objects. Cha et al.[24] added angular
thresholding for point cloud segmentation to extract the human leg
region, and used SVDD to learn classification boundaries in the 3D
feature  space.  However,  these  studies  were  mostly  conducted  in
hallway  and  lounge  settings,  where  the  noise  point  cloud  is  much
lower  than  that  in  complicated  orchard  settings.  When  several
persons  are  in  the  background,  leg  detection-based  LiDAR  may
confuse  the  target  with  the  interfering  person  and  may  fail  to
recognize ladies wearing long skirts. Zainudin et al.[25] analyzed the
classification  performance  of  different  classifiers  in  extracting
human  torso  features  using  2D  LiDAR.  Jung  et  al.[26]  used  the
SVDD model  to  extract  a  human  torso  point  cloud  and  customize
the  torso  geometric  attributes  to  accomplish  the  autonomous
following  of  a  marathon  service  robot  in  an  outdoor  environment.
Kim et al.[27] proposed an autonomous following robot system based

on  a  single-line  LiDAR  and  a  two-degree-of-freedom  balance
module  to  track  the  human  torso  on  hilly  and  uneven  terrain.  In
summary,  various human detection technologies based on legs and
torso have been applied in the field of robot autonomous following.
However,  in  an  outdoor  orchard  environment,  the  shape  of  a  tree
trunk  scanned  by  LiDAR  is  highly  similar  to  that  of  human  legs,
which  may  lead  to  the  misjudgment  of  tree  trunks  as  human  legs
and  cause  erroneous  following.  The  detection  of  the  human  torso
can better distinguish humans from fruit trees.

This  study  proposed  a  single  LiDAR-based  target  detection
method  for  efficient  and  accurate  control  of  following  robots  in
orchards.  Breakpoint  detection  and  threshold  segmentation  were
combined  to  achieve  clustering  segmentation  of  the  human  torso
point  cloud in  an  orchard environment.  In  addition,  a  new optimal
feature combination of geometric attributes of the human torso was
proposed,  whose  recognition  performance  was  verified  in  a  real
orchard environment. 

2    Analysis  of  orchard  environment  and  operational
tasks
 

2.1    Analysis of the orchard environment
Orchards  can  be  classified  as  flatland,  hilly,  or  mountainous

orchards  based  on  their  topography.  In  China,  orchards  are
predominantly  located  in  hilly  and  mountainous  areas,  which
account  for  about  65%  of  the  total  orchard  area[28].  The  hilly
orchards  are  usually  dispersed  and  dominated  by  terrace  or  slope
planting methods.  According to age,  they can be primarily divided
into  traditional  orchards  and  modern  standardized  orchards.  The
research object of this study was a standardized hilly citrus orchard
(Figure 1). The orchard is located at the experimental base of citrus
at  Huazhong  Agricultural  University  in  Wuhan,  Hubei  Province.
The overall slope of the orchard was about 5°-15°. The citrus trees
were  planted in  a  ridge planting pattern  with  a  ridge width  of  1.5-
2.0 m and a ridge height of 0.2-0.4 m. The spacing between rows of
fruit trees was about 3.5-5.0 m, and the interplant distance between
fruit trees was approximately 0.8-2.0 m.

 
 

a. Planting pattern of citrus trees in citrus orchards b. Architecture of dwarf citrus trees
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Note: The double-headed arrows in the figure indicate the range.

Figure 1    Standardized hilly citrus orchard
 

Dwarfing  is  an  essential  agricultural  status  quo  for  modern
orchard cultivation and effective management[29].  Dense planting of
dwarf citrus trees can realize the planting of wide rows and narrow
plant spacing, which can contribute to more fruiting branches and a
higher yield. At present, the tree shape of the citrus orchard includes
two types  of  tiny-crown and single-trunk trees,  which are  all  short

enough  for  direct  operation  of  humans  without  the  assistance  of
ladders (Figure 1b). For the tiny-crown trees, the main trunk height
is  35-50 cm;  the  crown height  is  1.5-2.0  m;  the  crown diameter  is
≤2.0 m. The crown has several backbone branches as well as good
ventilation  and  light  penetration.  For  single-trunk  trees,  the  crown
height is ≤2.5 m, the crown diameter is ≤1.5 m, and the main trunk
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is  40-50  cm,  with  a  uniform  distribution  of  fruiting  branches,
forming  a  hedgerow  structure.  The  dense  planting  mode  of  dwarf
citrus  trees  is  conducive  to  the  combination  of  agricultural
machinery  agronomy  and  mechanized  operation  to  improve
production  efficiency.  Human-robot  collaboration  can  efficiently
minimize  the  labor  intensity  and  expense  of  some  complicated
operation  tasks  such  as  flower  and  fruit  thinning,  pruning,
harvesting, and other agronomic procedures. 

2.2    Analysis of orchard management tasks
Pruning, flower and fruit thinning, and harvesting are the three

most  labor-intensive  and  time-consuming  tasks  in  orchard
maintenance  (Figure  2).  Pruning  is  meant  to  manage  tree  size  and
structure  and  reduce  crop  load  during  early  fruit  tree  growth.  It  is
currently  implemented  manually  in  most  orchards.  Farmers  will
determine  whether  the  fruit  tree  should  be  pruned  based  on  their

examination  of  the  tree  structure  with  their  knowledge,  skills,  and
experiences. In addition, flower and fruit thinning can increase fruit
setting  and  fruit  quality,  minimize  nutrient  consumption,  and
achieve steady production of fruit trees through selective removal of
tiny  or  malformed  flowers  and  fruits.  Flower  and  fruit  thinning
requires precise treatment on each fruiting position of each tree and
the selection or removal of each flower by manual operation. Fruit
harvesting  is  a  labor-intensive  and  repetitive  operation  with  high
labor  costs.  Farmers  must  spend  much  unproductive  time  walking
and carrying fruit  baskets,  resulting in a significant waste of labor.
The development of  collaborative robots can help reduce the labor
required  by  pruning,  flower  and  fruit  thinning,  and  intensive  and
repetitive  harvesting  in  orchards  to  improve  production  efficiency.
Here, orchard harvesting was used as an example to study the target
detection of human-following robots in orchard practice.

 
 

a. Pruning b. Flower and fruit thinning c. Harvesting

Figure 2    Orchard management operations
 
 

3    Human torso detection and recognition in orchard
human-robot collaboration
 

3.1    LiDAR point cloud segmentation
Many information points, such as the human torso, leaves, and

branches,  are  included  in  a  point  cloud  acquired  by  scanning  a
frame of 2D LiDAR in an orchard. Figure 3 shows the original point
cloud  before  segmentation.  The  human  torso  point  cloud  is  within

the  red  circle,  which  is  flanked  by  the  point  clouds  of  tree  trunks
and branches, and the red dot represents the coordinate origin of the
LiDAR.  These  point  clouds  must  be  divided  into  clusters  so  that
each cluster includes the same information. The point cloud data are
preprocessed  before  segmentation.  The  points  in  the  lower  half-
plane  of  the  LiDAR  are  filtered  out,  and  the  ‘‘inf’’  noise  points  are
smoothed  by  one-dimensional  median  filtering  to  improve  the
computational speed and detection accuracy.

 
 

a. Experimental environment b. LRF original point cloud data
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Figure 3    Laser range finder (LRF) data in the experimental environment
 

Given that the point cloud of 2D LiDAR constitutes 2D data (r,
θ),  the  breakpoint  detection  method  is  used  for  point  cloud
segmentation, which mainly involves the calculation of the distance
between two adjacent  points.  Generally,  two points  are  considered
as  breakpoints  if  their  distance  exceeds  the  threshold  δ.  The
threshold  size  can  greatly  influence  the  effect  of  point  cloud
segmentation, and we here chose δ=20 cm based on the torso point
cloud  properties.  The  set  threshold  divides  the  n  points  in  each
frame of point cloud data into m subsets.

P = {p1, p2, . . . , pi, . . . , pn|pi = (ri, θi)}
S = {s1, s2, . . . , sm} , sm = {pi, pi+1, . . . , pn}

(1)

where, P denotes a set of points detected by scanning of a frame by
LiDAR; ri (m) and θi (°) represent the distance and angle sensed by
the ith laser beam, respectively; sm denotes the segmented cluster of
n points;  and S  represents  a  set  of  segmented  point  cloud  clusters.
When  the  distance  di  between  two  adjacent  points  pi  and  pi+1  is
shorter than the threshold δ (m), the two points are classified into one
subset; otherwise, the point pi+1 is classified into the next subset as
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the first point. The iteration is repeated until all points are classified. 

3.2    Detection of human torso by SVDD
Due  to  the  complex  and  dynamic  environment  of  orchards,

LiDAR may be  misled  by  interfering  objects  such  as  the  branches
and trunks of fruit trees. AdaBoost and random forest algorithms are
commonly  used  for  human  detection  and  classification.  The
AdaBoost  classification  algorithm  uses  the  supervised  learning
method  and  manually  selects  some  features  to  complete  the
classification,  but  it  employs  a  linear  classifier  to  classify  normal
and  abnormal  data,  which  requires  greater  classification  accuracy.
The  random  forest  algorithm  is  a  combined  learning  approach  for
generating  multiple  decision  trees  as  classifiers,  and  the
classification  result  with  the  most  votes  is  used  as  the  final
classification  boundary  output.  However,  this  algorithm  can
produce  overfitting  in  an  orchard  environment  with  high
disturbance.  The  SVDD  classification  algorithm  can  generate
alternative  kernel  functions  to  construct  different  classification
boundaries, and the classifier performs better. Therefore, the SVDD
classification  algorithm is  used to  distinguish  the  human torso  and
other interfering targets. We compared the classification accuracy of
several  kernel  functions  and  selected  the  Gaussian  kernel  function
to  build  the  curve  classifier  for  human  torso  detection.  The  main
principle  of  SVDD  is  to  map  the  2D  raw  data  of  LiDAR  to  the
feature space and find a hypersphere with the smallest volume. The
optimal feature space is calculated as follows:

min F(R,a, ξ) = R2 +C
N∑

i=1

ξi

s.t. ∥xi −a∥2 ≤ R2 + ξi, ξi > 0, i = 1,2, . . . ,N

(2)

ξiwhere,   is the slack variable representing the distance of the data
point from the boundary, R is the sphere radius, a is the hypersphere
center,  and C  regulates  the  trade-off  between  sphere  volume  and
error. To prevent overfitting of the classification boundary, a small
number  of  negative  samples  were  added  to  the  training  set.

Assuming that the positive and negative samples in the training set
are  labeled  with  yi=+1  and  yj=−1,  respectively,  the  optimization
problem in its original form is transformed into a Lagrange function
L denoted as:

min L =
n∑

i=1

n∑
j=1

yiy jαiα jK(xi, x j)−
n∑

i=1

yiαiK(xi, xi)

s.t.
n∑

i=1

yiαi = 1

(3)

where, αi is the xi Lagrange coefficient corresponding to the sample,
and K(xi, yi) is the radial basis function (RBF).

Due  to  the  left  and  right  sway  during  movement  and  constant
changes  in  the  cloth  surface,  the  human  torso  shape  cannot  be
characterized as oval or circular. LiDAR was used to scan the torsos
of five persons with different heights and body types in an open and
unobstructed setting to determine the association between the torso
points and collected 1100 sample datasets to train the SVDD model.
To  ensure  the  safety  of  human-robot  cooperation,  the  following
range was set at 1-3 m. As a result, the distance between the subject’s
torso  and  the  LRF  in  the  sample  data  is  1-3  m,  and  the  LiDAR
scanning height is 1.1 m.

Six  attributes  were  defined  to  describe  the  shape  of  the  torso
LRF data, as shown in Figure 4.

G  denotes  the  girth  feature  of  the  torso  LRF  clustering  data,
which  is  obtained  by  superimposing  the  distances  between  two
adjacent points in the torso data with the following equation:

G =
n−1∑
i=1

|pi pi+1| (4)

where, W denotes the clustered data of torso width. W is defined as
the  distance  between  the  two  endpoints  of  the  torso  data  and
expressed as follows:

W = |p1 pn| (5)
 
 

a. Human back torso point cloud b. Human side torso point cloud
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of the human torso (°).

Figure 4    Human torso point cloud attributes
 

D  represents  the depth feature of  the torso data and is  defined
as  the  maximum  distance  from  the  point  on  the  torso  to  the  line
connecting the two endpoints as follows:

D =

Ç ∣∣−−−→p1 pn ×−−−→p1 pi

∣∣
|p1 pn|

å
max

(6)

k̄ denotes the average curvature of the torso. Three consecutive
points xA, xB,  and xC  are  defined  on  the  segment,  and A  is  used  to

denote the area of the triangle formed by xAxBxC, and dA, dB, and dC

indicate  the  length  of  the  three  sides  of  the  triangle,  respectively.
The discrete curvature ki at xB is approximated as:

k̄ =
n−2∑
i=1

ki

ki =
4A

dAdBdC

(7)
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θ  represents  the  angle  of  the  torso  data,  and  is  defined  as  the
angle formed between the lines connecting the farthest point to the
first  point  and  the  last  point,  as  represented  by  the  following
equation:

θ = arccos
|pi p1| × |pi pn|∣∣−−−→pi p1

∣∣× ∣∣−−−→pi pn

∣∣ (8)

In  addition,  the  ratio  of  torso  width  was  defined  to  girth  as  a
new  feature  to  describe  the  degree  of  circularity  of  the  clustered
data.

The above six geometric attributes are combined into different
feature  vectors,  and the feature  vectors  of  each cluster  are  labeled.
The  torso  segments  are  labeled  as  positive  samples,  and  other
segments are labeled as negative samples,  which are input into the
SVDD  model  for  training  to  generate  the  classification  boundary.
As  shown  in  Figure  5,  all  clustered  data  inside  the  boundary  are
considered  human  torso  data,  and  those  outside  the  boundary  are
considered non-human data.
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Figure 5    SVDD training boundary 

4    Experiments
 

4.1    Following robot-assisted picking in orchard
The robot utilized to assist in picking is shown in Figure 6. The

following robot consists of a power supply system, a drive system,
and  a  control  system.  The  LiDAR is  mounted  on  the  centerline  of
the  following  robot  at  a  height  of  1.1  m  from  the  ground.  The
SLAMTEC  RPLiDAR  S2  from  Silan  is  selected  for  the  LiDAR,
with  a  360°  scanning  area,  a  resolution  of  0.12°,  and  a  scanning
distance of 30 m. The parameters of the following robot are listed in
Table 1, and the LiDAR specifications are listed in Table 2.
  

Rplidar S2

Fruit basket

Control system

Power supply
system

Drive system

Figure 6    Following robot for assistance in picking

 

Table 1    Parameters of the following robot
Description Parameter

Dimension L×W×H/mm×mm×mm 1200×900×60
Width between tracks/mm 900
Track length/mm 1200
Power supply 48 V Lithium battery
Battery life/h About 2 h

  
Table 2    Parameters of laser ranging sensor
Description Parameter

Distance measuring method Time-of-flight ranging (TOF)

Measuring radius
White object (m): 0.05-30.00
Black object (m): 0.05-10.00

Measuring range 360°
Ranging accuracy ±5 cm
Angular resolution 0.12°
Sampling frequency 32 kHz

  

4.2    Results of point cloud clustering segmentation for LiDAR
We performed clustering segmentation on point clouds scanned

by LiDAR in  outdoor  situations  to  evaluate  the  adaptability  of  the
clustering segmentation algorithm to challenging contexts. Figure 7
shows  the  segmented  point  cloud  data.  The  five  central  segments
are  five  human  torso  point  cloud  data  for  clustering  segmentation,
while those on both sides are the wall point cloud data for clustering
segmentation. The segmentation threshold parameters are manually
modified based on the segmentation effect, and the threshold value
is set to δ = 20 cm.
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Figure 7    Point cloud segmentation results in outdoor environment
  

4.3    Results of SVDD classification in the orchard environment
LRF  data  were  obtained  from  the  orchard  environment,

combining  different  features  and  the  optimal  feature  combination
for  human torso recognition by testing the  SVDD classifier.  Many
leaves and branches in the actual orchard setting resemble the shape
of  the  human  torso,  and  we  identified  this  information  as  other
distractor  information.  First,  2188 clustered datasets  were obtained
in  120 consecutive  frames  of  scanned data,  including  1987 human
torso  datasets  and  199  other  distractor  datasets.  Then,  feature
extraction  was  performed  on  these  clustered  data  and  each  of  the
torso  attributes  was  calculated.  Finally,  different  combinations  of
these features  were used to  train  and test  the SVDD model,  where
the  ratio  of  the  training  set  to  the  test  set  is  7:3.  By  analyzing  the
sample data, the range of each feature of the human torso and non-
human torso was obtained as listed in Table 3.

In  the  classification  and  detection  model,  relying  solely  on
accuracy may lead to misinterpretation. Therefore, in this study, the
Receiver Operating Characteristic (ROC) curve was plotted and the
Area  Under  the  Curve  (AUC)  was  calculated  as  the  evaluation
criterion  to  assess  the  recognition  performance  under  different
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feature  combinations.  To  calculate  the  value  of  AUC,  sensitivity
(TPR)  and  specificity  (FPR)  were  introduced.  The  sensitivity
represents  the  proportion  of  all  human  torso  samples  that  are
correctly predicted,  and the specificity represents the proportion of
all non-human torso samples that are incorrectly predicted as human
torsos, which are specifically expressed as follows:

TPR =
TP

TP + FN (9)

FPR =
FP

FP + TN (10)

where,  TP  represents  the  number  of  positive  samples  detected
correctly,  FP  represents  the  number  of  positive  samples  detected
incorrectly, FN represents the number of negative samples detected
incorrectly,  and  TN  represents  the  number  of  negative  samples
detected correctly.

The AUC is calculated by integration:

AUC =
w 1

0
TPRd (FPR) (11)

In the discrete case, the AUC can be approximately calculated
by the trapezoidal method:

AUC ≈
n−1∑
i=1

(FPRi+1 −FPRi)
TPRi +TPRi+1

2
(12)

  

Table 3    Comparison of the range of each feature for human
and non-human torsos

Type Girth/
mm

Width/
mm

Depth/
mm

Average
curvature

Angle/
(°)

Width/
Girth

Human torso [162,
1567]

[113,
1283]

[18,
422]

[0.0717,
39.306]

[48.095,
164.33]

[0.3173,
0.9763]

Non-human
torso

[28,
3558]

[25,
1361]

[0,
426]

[0.0017,
15.707]

[30.512,
178.92]

[0.2865,
0.9999]

 

The  results  of  SVDD  model  detection  for  different  feature
combinations  are  shown  in  Table  4.  The  first  row  in  Table  4
presents  different  feature  combinations: G  represents  the  girth; W
represents  the  width;  D  denotes  the  depth;  k  means  the  average
curvature; A means the angle; and B represents the width/girth ratio.
The model’s training set accuracy and test set accuracy are shown in
the  second and third  rows,  respectively.  The last  row indicates  the
AUC value for each combination of features.
  

Table 4    SVDD classification results for different feature
combinations

Index G-B W-D G-W-D G-W-A G-D-A W-A-B G-W-k G-D-k
Accuracy of
training set/% 72.59 94.76 95.16 95.09 95.16 94.50 98.69 95.68

Accuracy
of test set/% 73.36 92.99 93.60 92.69 93.30 93.91 89.00 93.60

AUC 0.5003 0.8556 0.8250 0.8499 0.8266 0.8149 0.8275 0.8748
Note: G represents the girth (m); W represents the width (m); D denotes the depth
(m); k means the average curvature; A means the angle (°); and B represents the
width/girth ratio. Same below.
 

In  the  performance  evaluation  process,  a  larger  value  of  AUC
indicates  a  better  human  torso  detection  performance  with  this
feature  combination.  According  to  the  training  and  test  accuracy,
the  use  of  multiple  features  in  SVDD is  relatively  more  effective.
As  the  number  of  feature  combinations  increases,  the  detection
performance  of  the  model  is  enhanced,  while  the  computational
complexity  is  higher,  and  the  model  training  time  is  longer.
Therefore,  combining  judgment  of  feature  variability,  detection
performance,  and  computational  complexity  of  model  training  and
testing, we chose the girth-depth-average curvature (G-D-k) feature

combination to detect the human torso. The classification boundary
of the optimal feature combination is shown in Figure 8. A positive
sample  is  represented  by  the  blue  diamond  square,  which  means
human  torso  data  and  other  interfering  data  classified  as  negative
samples  are  represented  by  the  orange  square.  Support  vector  data
are shown in yellow circles. The light blue-green color indicates the
classification boundary trained by using SVDD. Since the majority
of  negative  samples  in  the  orchard  are  branches  and  trunks,  the
negative  examples  are  primarily  concentrated  in  the  100  mm×
1000 mm cube in Figure 8.
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The  proposed  torso-based  human  detection  method  was
compared  with  the  leg-based  human  detection  method.  The
comparison results  are listed in Table 5.  It  can be known from the
recognition  accuracy  that  the  method  proposed  in  this  study  has  a
better effect compared with other methods. There are two segments
in the human leg point cloud data. Due to the randomness of human
body movements, the leg point cloud data is prone to problems such
as  association  errors  and  occlusion  losses.  In  the  orchard
environment, the detection method based on legs is likely to identify
objects such as tree trunks and cylindrical obstacles as human legs,
resulting  in  incorrect  following.  Therefore,  in  the  complex
environment  of  the  orchard,  the  detection  method  based  on  the
human torso has a better effect.
  

Table 5    Comparison results of different human
detection methods

Human body detection parts Detection methods Accuracy/%

Human torso
Method proposed in this study 95.68

G-W feature combination method[27] 83.00

Human legs
Heuristic detection method[22] 77.80

G-W feature combination method[23] 85.60
G-W-D feature combination method[24] 89.80

 

To  verify  the  performance  of  SVDD  classification  with  the
optimal  feature  combination,  we  selected  different  kinds  of  point
cloud clustering information in the orchard environment,  as shown
in  Figure  9,  mainly  including  the  human  torso,  electric  cabinet,
branches,  and leaves.  The LRF data were clustered and segmented
to  construct  a  clustered  dataset,  and  features  were  extracted.  As
shown  in  Figure  9a,  leaves  and  branches  of  the  fruit  tree  are  the
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most  frequent  disturbance  on  following  robots  in  orchards.  The
leaves and/or trunks are connected to form point clouds with similar
shapes to the human torso. Therefore, we extracted the point clouds
of  leaves  and  branches,  as  shown in Figures  9b-9c,  to  analyze  the
differences  in  geometric  properties  between  leaves/branches  and

human  torso.  Point  cloud  data  extraction  was  also  performed  for
obstacles such as electrical cabinets and display screens that appear
randomly in the orchard, as shown in Figures 9d-9h. The clustered
LRF  data  were  extracted  based  on  the  defined  features,  and  the
results are listed in Table 6.
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e. Small electric cabinet f. Electric cabinet 1 g. Electric cabinet 2 h. Cylindrical obstacle
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Figure 9    Different objects in the orchard and the corresponding LRF data
 

The  training  boundaries  obtained  from  the  optimal  feature
combination  were  used  to  determine  whether  the  clustered  data
belonged to the human torso. The results in Figure 10 show that the

human torso  data  are  inside  the  boundary,  and  the  interfering  data
are all outside the boundary, indicating that the feature combination
can distinguish the interfering clustering data from those of humans. 

5    Conclusions
In this study, a target detection method of following robots was

proposed  for  the  human  torso  in  an  orchard  environment  using  a
single-line  LiDAR  range  finder.  Compared  with  the  following
method  based  on  scanning  and  correlation  to  human  legs,  the
proposed  target  detection  method  has  more  significant
differentiation  and  better  detection  effect  in  a  cluttered  orchard
environment.  The  point  cloud  data  acquired  by  the  2D  LiDAR
deployed  at  the  human  torso  position  can  be  segmented  by
clustering using the breakpoint detection method. The segmentation
threshold is set as δ=20 cm according to the properties of the torso
point  cloud,  whose  reliability  was  verified  by  experiments.  Six
geometric  attributes  were  extracted  from the  human  torso,  and  the
SVDD classification model  was used to explore alternative feature
combinations.  Finally,  girth-depth-average  curvature  (G-D-k)  was
identified  as  the  optimal  feature  combination  with  a  recognition
accuracy  of  95.68%.  This  feature  combination  was  evaluated  in  a
real  orchard  environment,  and  the  experimental  results
demonstrated  that  it  could  accurately  distinguish  between  humans
and disturbances. This method can provide a reference for the target
detection of following robots in orchards. 

 

Table 6    Different kinds of LRF clustering feature data

Index Human
Electric
cabinet

1

Electric
cabinet

2

Display s
creen

Small
electric
cabinet

Cylindrical
obstacle
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leaves

Citrus
trunk

G/mm 632 683 478 1914 354 199 59 58
D/mm 143 261 30 13 22 43 6 12

k 2.6481 22.2894 35.6407 7.7085 3.5874 8.992 45.7331 24.2839
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Figure 10    Human torso and interferer data differentiation
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