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Laser-range-finder-based target detection for human-robot
collaboration in hilly orchards
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(1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
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Abstract: Human-robot collaboration is a promising means to promote orchard intelligence and reduce the over-reliance on
manual work for complex agronomic practices such as fruit tree pruning, flower and fruit thinning, and harvesting. Accurate
target detection and recognition of robots on humans are the basis and prerequisite for subsequent autonomous human-robot
collaboration. In this study, detection and recognition of following robots for human torso were carried out in a standardized
hilly orchard. A LiDAR-based human torso detection method was proposed based on the actual orchard environment.
Breakpoint detection was used to cluster and segment the point clouds, and the segmentation thresholds were determined based
on experimental results. The geometric attributes of the human torso were trained in the classification detection model, resulting
in the extraction of six geometric attributes of the human torso. The classification model was then trained with various
combinations to obtain the optimal feature combination [girth-depth-average curvature (G-D-k)] for human torso recognition in
an orchard environment. Practical experiments were carried out to validate the feasibility and accuracy of the G-D-k feature
combination. The experimental results demonstrate that the G-D-k feature combination can accurately recognize human bodies
in orchards. The LiDAR-based detection method can achieve relatively accurate human detection and recognition in complex

orchard environments, providing a reference for target detection in human-robot collaboration in orchards.
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1 Introduction

Orchard management is rather labor-intensive!, as agronomic
practices such as pruning, flower and fruit thinning, and harvesting
of evergreen fruit trees such as citrus, litchi, and banana heavily rely
on human labor, which can account for about 60% of the production
cost?. To alleviate the constraint of labor costs, several companies
and research groups have developed a variety of orchard
management robots'. However, the performance of these robots is
severely limited by the complicated environment and challenging
working conditions in orchards because it is challenging for them to
identify fruits obscured by leaves, pick fruits inside fruit trees®, and
perform delicate management operations such as fruit tree pruning
and flower and fruit thinning!"!. Tri-Co robots can interact with the
operating environment, humans, and other robots and can better
adapt to unstructured, dynamic environments and understand human
behavioral intentions®”. The interaction and cooperation of robots
with humans are a prerequisite for human-robot collaboration™. The
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development of human-collaborative robots can greatly improve
production efficiency and reduce labor in orchard management,
which is crucial for the growth of the fruit industry.

In the
following of the target is the foundation and prerequisite for the

human-robot collaboration scenario, autonomous
collaboration. In previous research, most following robots have
been applied to cargo carrying”'”, tracking shopping carts!'""*, and
in the medical industry"*. Sales et al."”! designed a shopping cart
assistance robot called CompaRob to help older adults carry goods
in supermarkets with modularity, simplicity, and ease of use.
Guerrero et al.'’ employed the PeTra tool to track pairs of legs in a
chaotic environment and verified its accuracy on a public dataset.
Feng et al.'" designed a target-tracking method for human-tracking
robots based on ultra-wideband (UWB) technology. Although
significant progress has been made in the development and
application of following robots in the service industry, the
performance of autonomous following algorithms is largely limited
by hilly orchard environments and complex and variable
interference factors.

Compared with the data collected in an indoor environment, the
data acquired in the unstructured environment of an orchard
generally include more noise data, which may cause the obscuring
or temporary loss of human targets for the following of a mobile
robot. In such complicated external environments, following
humans remains a great challenge for mobile robots. Following
robots have been used in agriculture. Masuzawa et al.'"® employed a
mobile robot equipped with an RGB-D camera for the harvesting of
flowers in a greenhouse environment, with the RGB-D camera to
acquire various information such as color, texture, and depth.
Yorozu et al." proposed a human-following control method based
on the fuzzy control theory and improved the recognition accuracy
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of the following robot by having the leader wear a red jacket.
Polvara et al.”” achieved accurate localization and tracking of
workers in a greenhouse environment by extending a particle filter
and combining it with multi-sensor fusion techniques. Mao et al.”
designed a small orchard transport robot with a dual navigation
mode, which uses the OpenPose algorithm to estimate human
posture and extract the critical point of the human skeleton center as
a target tracking point to achieve pedestrian-led navigation.
Although machine vision technology is commonly employed in
following robots due to its real-time nature, laser range finder (LRF)
has higher robustness for complex and variable outdoor conditions
and light intensity.

To enhance the tracking capability of autonomous following
robots, many researchers focused on human target
identification. For instance, Taipalus et al.®” introduced a new
algorithm for detecting and tracking human legs. The human leg
was scanned with 2D LiDAR and categorized using predetermined
conditions for monitoring. Chung et al.”* employed a single LRF to
detect and track human legs, constructed geometric features of
human legs, used inductive methods for data association, and then
applied Support Vector Data Descriptors (SVDD) to distinguish
human legs and other interfering objects. Cha et al.*" added angular
thresholding for point cloud segmentation to extract the human leg
region, and used SVDD to learn classification boundaries in the 3D
feature space. However, these studies were mostly conducted in

have

hallway and lounge settings, where the noise point cloud is much
lower than that in complicated orchard settings. When several
persons are in the background, leg detection-based LiDAR may
confuse the target with the interfering person and may fail to
recognize ladies wearing long skirts. Zainudin et al.” analyzed the
classification performance of different classifiers in extracting
human torso features using 2D LiDAR. Jung et al.* used the
SVDD model to extract a human torso point cloud and customize
the torso geometric attributes to accomplish the autonomous
following of a marathon service robot in an outdoor environment.
Kim et al.?” proposed an autonomous following robot system based
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on a single-line LiDAR and a two-degree-of-freedom balance
module to track the human torso on hilly and uneven terrain. In
summary, various human detection technologies based on legs and
torso have been applied in the field of robot autonomous following.
However, in an outdoor orchard environment, the shape of a tree
trunk scanned by LiDAR is highly similar to that of human legs,
which may lead to the misjudgment of tree trunks as human legs
and cause erroneous following. The detection of the human torso
can better distinguish humans from fruit trees.

This study proposed a single LiDAR-based target detection
method for efficient and accurate control of following robots in
orchards. Breakpoint detection and threshold segmentation were
combined to achieve clustering segmentation of the human torso
point cloud in an orchard environment. In addition, a new optimal
feature combination of geometric attributes of the human torso was
proposed, whose recognition performance was verified in a real
orchard environment.

2 Analysis of orchard environment and operational
tasks

2.1 Analysis of the orchard environment

Orchards can be classified as flatland, hilly, or mountainous
orchards based on their topography. In China, orchards are
predominantly located in hilly and mountainous areas, which
account for about 65% of the total orchard area®. The hilly
orchards are usually dispersed and dominated by terrace or slope
planting methods. According to age, they can be primarily divided
into traditional orchards and modern standardized orchards. The
research object of this study was a standardized hilly citrus orchard
(Figure 1). The orchard is located at the experimental base of citrus
at Huazhong Agricultural University in Wuhan, Hubei Province.
The overall slope of the orchard was about 5°-15°. The citrus trees
were planted in a ridge planting pattern with a ridge width of 1.5-
2.0 m and a ridge height of 0.2-0.4 m. The spacing between rows of
fruit trees was about 3.5-5.0 m, and the interplant distance between
fruit trees was approximately 0.8-2.0 m.

wide

b. Architecture of dwarf citrus trees

Note: The double-headed arrows in the figure indicate the range.

Figure 1

Dwarfing is an essential agricultural status quo for modern
orchard cultivation and effective management™. Dense planting of
dwarf citrus trees can realize the planting of wide rows and narrow
plant spacing, which can contribute to more fruiting branches and a
higher yield. At present, the tree shape of the citrus orchard includes
two types of tiny-crown and single-trunk trees, which are all short

Standardized hilly citrus orchard

enough for direct operation of humans without the assistance of
ladders (Figure 1b). For the tiny-crown trees, the main trunk height
is 35-50 cm; the crown height is 1.5-2.0 m; the crown diameter is
<2.0 m. The crown has several backbone branches as well as good
ventilation and light penetration. For single-trunk trees, the crown
height is <2.5 m, the crown diameter is <1.5 m, and the main trunk
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is 40-50 cm, with a uniform distribution of fruiting branches,
forming a hedgerow structure. The dense planting mode of dwarf
citrus trees is conducive to the combination of agricultural
machinery agronomy and mechanized operation to improve
production efficiency. Human-robot collaboration can efficiently
minimize the labor intensity and expense of some complicated
operation tasks such as flower and fruit thinning, pruning,
harvesting, and other agronomic procedures.
2.2 Analysis of orchard management tasks

Pruning, flower and fruit thinning, and harvesting are the three
most labor-intensive and time-consuming tasks in orchard
maintenance (Figure 2). Pruning is meant to manage tree size and
structure and reduce crop load during early fruit tree growth. It is
currently implemented manually in most orchards. Farmers will
determine whether the fruit tree should be pruned based on their

examination of the tree structure with their knowledge, skills, and
experiences. In addition, flower and fruit thinning can increase fruit
setting and fruit quality, minimize nutrient consumption, and
achieve steady production of fruit trees through selective removal of
tiny or malformed flowers and fruits. Flower and fruit thinning
requires precise treatment on each fruiting position of each tree and
the selection or removal of each flower by manual operation. Fruit
harvesting is a labor-intensive and repetitive operation with high
labor costs. Farmers must spend much unproductive time walking
and carrying fruit baskets, resulting in a significant waste of labor.
The development of collaborative robots can help reduce the labor
required by pruning, flower and fruit thinning, and intensive and
repetitive harvesting in orchards to improve production efficiency.
Here, orchard harvesting was used as an example to study the target
detection of human-following robots in orchard practice.

a. Pruning

b. Flower and fruit thinning

c. Harvesting

Figure 2 Orchard management operations

3 Human torso detection and recognition in orchard
human-robot collaboration

3.1 LiDAR point cloud segmentation

Many information points, such as the human torso, leaves, and
branches, are included in a point cloud acquired by scanning a
frame of 2D LiDAR in an orchard. Figure 3 shows the original point
cloud before segmentation. The human torso point cloud is within

a. Experimental environment

the red circle, which is flanked by the point clouds of tree trunks
and branches, and the red dot represents the coordinate origin of the
LiDAR. These point clouds must be divided into clusters so that
each cluster includes the same information. The point cloud data are
preprocessed before segmentation. The points in the lower half-
plane of the LiDAR are filtered out, and theit\fhoise points are
smoothed by one-dimensional median filtering to improve the
computational speed and detection accuracy.
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Figure 3 Laser range finder (LRF) data in the experimental environment

Given that the point cloud of 2D LiDAR constitutes 2D data (7,
6), the breakpoint detection method is used for point cloud
segmentation, which mainly involves the calculation of the distance
between two adjacent points. Generally, two points are considered
as breakpoints if their distance exceeds the threshold J. The
threshold size can greatly influence the effect of point cloud
segmentation, and we here chose =20 cm based on the torso point
cloud properties. The set threshold divides the » points in each
frame of point cloud data into m subsets.

P={pi,pss-.sDis-- -, Dulp: = (11,6}
S = {81,828} 80 = {Pis Pict>- - Pu}

Q)

where, P denotes a set of points detected by scanning of a frame by
LiDAR; r; (m) and 6; (°) represent the distance and angle sensed by
the ith laser beam, respectively; s,, denotes the segmented cluster of
n points; and S represents a set of segmented point cloud clusters.
When the distance d; between two adjacent points p; and p;.; is
shorter than the threshold ¢ (m), the two points are classified into one
subset; otherwise, the point p;,, is classified into the next subset as
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the first point. The iteration is repeated until all points are classified.
3.2 Detection of human torso by SVDD

Due to the complex and dynamic environment of orchards,
LiDAR may be misled by interfering objects such as the branches
and trunks of fruit trees. AdaBoost and random forest algorithms are
commonly used for human detection and classification. The
AdaBoost classification algorithm uses the supervised learning
method and manually selects some features to complete the
classification, but it employs a linear classifier to classify normal
and abnormal data, which requires greater classification accuracy.
The random forest algorithm is a combined learning approach for
generating multiple decision trees as classifiers, and the
classification result with the most votes is used as the final
classification boundary output. However, this algorithm can
produce overfitting in an orchard environment with high
disturbance. The SVDD classification algorithm can generate
alternative kernel functions to construct different classification
boundaries, and the classifier performs better. Therefore, the SVDD
classification algorithm is used to distinguish the human torso and
other interfering targets. We compared the classification accuracy of
several kernel functions and selected the Gaussian kernel function
to build the curve classifier for human torso detection. The main
principle of SVDD is to map the 2D raw data of LiDAR to the
feature space and find a hypersphere with the smallest volume. The
optimal feature space is calculated as follows:

min F(R,a,&) = R* +C Zf @

St llx—all <R +&, >0, i=1,2,....N
where, & is the slack variable representing the distance of the data
point from the boundary, R is the sphere radius, a is the hypersphere
center, and C regulates the trade-off between sphere volume and
error. To prevent overfitting of the classification boundary, a small
number of negative samples were added to the training set.
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a. Human back torso point cloud

Assuming that the positive and negative samples in the training set
are labeled with y=+1 and y=—1, respectively, the optimization
problem in its original form is transformed into a Lagrange function
L denoted as:

minL = Z Zyiyjaia/K(xi’xj) - Zy,'a’iK(xi,xi)
=1 j=1 i=1 3)

S.t. i:y,a,. =1
i=1

where, 0; is the x; Lagrange coefficient corresponding to the sample,
and K(x;, y;) is the radial basis function (RBF).

Due to the left and right sway during movement and constant
changes in the cloth surface, the human torso shape cannot be
characterized as oval or circular. LIDAR was used to scan the torsos
of five persons with different heights and body types in an open and
unobstructed setting to determine the association between the torso
points and collected 1100 sample datasets to train the SVDD model.
To ensure the safety of human-robot cooperation, the following
range was set at 1-3 m. As a result, the distance between the subject’s
torso and the LRF in the sample data is 1-3 m, and the LiDAR
scanning height is 1.1 m.

Six attributes were defined to describe the shape of the torso
LRF data, as shown in Figure 4.

G denotes the girth feature of the torso LRF clustering data,
which is obtained by superimposing the distances between two
adjacent points in the torso data with the following equation:

G=> Ippal )
i=1

where, W denotes the clustered data of torso width. ¥ is defined as
the distance between the two endpoints of the torso data and
expressed as follows:

W =|pip.l (5)
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b. Human side torso point cloud

Note: G denotes the arc length of the human torso (m); W denotes the width of the human torso (m); D denotes the depth of the human torso (m); and 6 denotes the angle

of the human torso (°).

Figure 4 Human torso point cloud attributes

D represents the depth feature of the torso data and is defined
as the maximum distance from the point on the torso to the line
connecting the two endpoints as follows:

D= (}m”ﬁ)"‘) 6)

[p1pal

k denotes the average curvature of the torso. Three consecutive
points x,, xz, and x. are defined on the segment, and 4 is used to

denote the area of the triangle formed by x xzx., and d, dp, and d¢
indicate the length of the three sides of the triangle, respectively.
The discrete curvature k; at x; is approximated as:

k= Zki
i=1
_4A
"7 dydyd,

(M
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0 represents the angle of the torso data, and is defined as the
angle formed between the lines connecting the farthest point to the
first point and the last point, as represented by the following
equation:

|Pipi| X |Pipl ®)

6 = arccos |m|x|m

In addition, the ratio of torso width was defined to girth as a
new feature to describe the degree of circularity of the clustered
data.

The above six geometric attributes are combined into different
feature vectors, and the feature vectors of each cluster are labeled.
The torso segments are labeled as positive samples, and other
segments are labeled as negative samples, which are input into the
SVDD model for training to generate the classification boundary.
As shown in Figure 5, all clustered data inside the boundary are
considered human torso data, and those outside the boundary are
considered non-human data.

1400 ' e Decision boundary ® Training data ()
@ Support vectors
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Figure 5 SVDD training boundary

4 Experiments

4.1 Following robot-assisted picking in orchard

The robot utilized to assist in picking is shown in Figure 6. The
following robot consists of a power supply system, a drive system,
and a control system. The LiDAR is mounted on the centerline of
the following robot at a height of 1.1 m from the ground. The
SLAMTEC RPLiDAR S2 from Silan is selected for the LiDAR,
with a 360° scanning area, a resolution of 0.12°, and a scanning
distance of 30 m. The parameters of the following robot are listed in
Table 1, and the LiDAR specifications are listed in Table 2.

SRR

Power supply
system

K
L

Figure 6 Following robot for assistance in picking

Table 1 Parameters of the following robot

Description Parameter
Dimension LxWxH/mmxmmxmm 1200%900%60
Width between tracks/mm 900
Track length/mm 1200
Power supply 48 V Lithium battery
Battery life/h About 2 h

Table 2 Parameters of laser ranging sensor

Description Parameter

Time-of-flight ranging (TOF)
White object (m): 0.05-30.00
Black object (m): 0.05-10.00

Distance measuring method

Measuring radius

Measuring range 360°
Ranging accuracy +5cm
Angular resolution 0.12°
Sampling frequency 32 kHz

4.2 Results of point cloud clustering segmentation for LIDAR

We performed clustering segmentation on point clouds scanned
by LiDAR in outdoor situations to evaluate the adaptability of the
clustering segmentation algorithm to challenging contexts. Figure 7
shows the segmented point cloud data. The five central segments
are five human torso point cloud data for clustering segmentation,
while those on both sides are the wall point cloud data for clustering
segmentation. The segmentation threshold parameters are manually
modified based on the segmentation effect, and the threshold value
is set to 6 =20 cm.
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Figure 7 Point cloud segmentation results in outdoor environment

4.3 Results of SVDD classification in the orchard environment

LRF data were obtained from the orchard environment,
combining different features and the optimal feature combination
for human torso recognition by testing the SVDD classifier. Many
leaves and branches in the actual orchard setting resemble the shape
of the human torso, and we identified this information as other
distractor information. First, 2188 clustered datasets were obtained
in 120 consecutive frames of scanned data, including 1987 human
torso datasets and 199 other distractor datasets. Then, feature
extraction was performed on these clustered data and each of the
torso attributes was calculated. Finally, different combinations of
these features were used to train and test the SVDD model, where
the ratio of the training set to the test set is 7:3. By analyzing the
sample data, the range of each feature of the human torso and non-
human torso was obtained as listed in Table 3.

In the classification and detection model, relying solely on
accuracy may lead to misinterpretation. Therefore, in this study, the
Receiver Operating Characteristic (ROC) curve was plotted and the
Area Under the Curve (AUC) was calculated as the evaluation
criterion to assess the recognition performance under different
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feature combinations. To calculate the value of AUC, sensitivity
(TPR) and specificity (FPR) were introduced. The sensitivity
represents the proportion of all human torso samples that are
correctly predicted, and the specificity represents the proportion of
all non-human torso samples that are incorrectly predicted as human
torsos, which are specifically expressed as follows:

TP
TPR= 15 r FN ©)
FP

where, TP represents the number of positive samples detected
correctly, FP represents the number of positive samples detected
incorrectly, FN represents the number of negative samples detected
incorrectly, and TN represents the number of negative samples
detected correctly.

The AUC is calculated by integration:

AUC = Ll TPRd (FPR) (11)

In the discrete case, the AUC can be approximately calculated
by the trapezoidal method:
n-1
AUC ~ Z (FPR,,, — FPR,)

i=1

TPR, + TPR,,
i i+1 ( 12)
2
Table 3 Comparison of the range of each feature for human
and non-human torsos

T Girth/  Width/ Depth/  Average Angle/ Width/
ype mm mm mm curvature ©) Girth
Human torso [162, [113, [18, [0.0717, [48.095, [0.3173,
Y 1567]  1283] 422] 39.306] 164.33]  0.9763]
Non-human [28, [25, [0, [0.0017, [30.512, [0.2865,
torso 3558]  1361] 426] 15.707] 178.92]  0.9999]

The results of SVDD model detection for different feature
combinations are shown in Table 4. The first row in Table 4
presents different feature combinations: G represents the girth; W
represents the width; D denotes the depth; & means the average
curvature; 4 means the angle; and B represents the width/girth ratio.
The model’s training set accuracy and test set accuracy are shown in
the second and third rows, respectively. The last row indicates the
AUC value for each combination of features.

Table 4 SVDD classification results for different feature
combinations
W-D G-W-D G-W-A G-D-A W-A-B G-W-k G-D-k

Index G-B

Accuracy of
training set/%

72.59 9476 95.16 95.09 9516 94.50 98.69 95.68

Accuracy
of test set/%

AUC 0.5003 0.8556 0.8250 0.8499 0.8266 0.8149 0.8275 0.8748
Note: G represents the girth (m); W represents the width (m); D denotes the depth

(m); k means the average curvature; 4 means the angle (°); and B represents the
width/girth ratio. Same below.

7336 9299 93.60 92.69 9330 9391 89.00 93.60

In the performance evaluation process, a larger value of AUC
indicates a better human torso detection performance with this
feature combination. According to the training and test accuracy,
the use of multiple features in SVDD is relatively more effective.
As the number of feature combinations increases, the detection
performance of the model is enhanced, while the computational
complexity is higher, and the model training time is longer.
Therefore, combining judgment of feature variability, detection
performance, and computational complexity of model training and
testing, we chose the girth-depth-average curvature (G-D-k) feature

combination to detect the human torso. The classification boundary
of the optimal feature combination is shown in Figure 8. A positive
sample is represented by the blue diamond square, which means
human torso data and other interfering data classified as negative
samples are represented by the orange square. Support vector data
are shown in yellow circles. The light blue-green color indicates the
classification boundary trained by using SVDD. Since the majority
of negative samples in the orchard are branches and trunks, the
negative examples are primarily concentrated in the 100 mmx
1000 mm cube in Figure 8.

Decision boundary

Decision boundary ® Training data (—)
o Support vectors

¢  Training data (+)

60

3000

2000

1000
o

00

Note: & is the average curvature. Same below.
Figure 8 Classification boundaries for optimal
feature combinations

The proposed torso-based human detection method was
compared with the leg-based human detection method. The
comparison results are listed in Table 5. It can be known from the
recognition accuracy that the method proposed in this study has a
better effect compared with other methods. There are two segments
in the human leg point cloud data. Due to the randomness of human
body movements, the leg point cloud data is prone to problems such
as association errors and occlusion losses. In the orchard
environment, the detection method based on legs is likely to identify
objects such as tree trunks and cylindrical obstacles as human legs,
resulting in incorrect following. Therefore, in the complex
environment of the orchard, the detection method based on the
human torso has a better effect.

Table 5 Comparison results of different human
detection methods

Human body detection parts Detection methods Accuracy/%
Method proposed in this study 95.68
Human torso L
G-I feature combination method™” 83.00
Heuristic detection method®! 77.80
Human legs G-W feature combination method™” 85.60

G-W-D feature combination method™" 89.80

To verify the performance of SVDD classification with the
optimal feature combination, we selected different kinds of point
cloud clustering information in the orchard environment, as shown
in Figure 9, mainly including the human torso, electric cabinet,
branches, and leaves. The LRF data were clustered and segmented
to construct a clustered dataset, and features were extracted. As
shown in Figure 9a, leaves and branches of the fruit tree are the
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most frequent disturbance on following robots in orchards. The
leaves and/or trunks are connected to form point clouds with similar
shapes to the human torso. Therefore, we extracted the point clouds
of leaves and branches, as shown in Figures 9b-9c, to analyze the
differences in geometric properties between leaves/branches and

human torso. Point cloud data extraction was also performed for
obstacles such as electrical cabinets and display screens that appear
randomly in the orchard, as shown in Figures 9d-9h. The clustered
LRF data were extracted based on the defined features, and the
results are listed in Table 6.
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Figure 9 Different objects in the orchard and the corresponding LRF data

The training boundaries obtained from the optimal feature
combination were used to determine whether the clustered data
belonged to the human torso. The results in Figure 10 show that the

Table 6 Different kinds of LRF clustering feature data
Small

Electric Electric

Index Human cabinet cabinet Display s electric Cylindrical Citrus ~ Citrus
creen . obstacle leaves trunk
1 2 cabinet
G/mm 632 683 478 1914 354 199 59 58
D/mm 143 261 30 13 22 43 6 12

k 2.6481 22.2894 35.6407 7.7085 3.5874  8.992  45.7331 24.2839

Decision boundary and test data

Decision boundary ¢ Teat data (+) = Teat data (—)
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2000

1000

o

500 G

00

Figure 10 Human torso and interferer data differentiation

human torso data are inside the boundary, and the interfering data
are all outside the boundary, indicating that the feature combination
can distinguish the interfering clustering data from those of humans.

5 Conclusions

In this study, a target detection method of following robots was
proposed for the human torso in an orchard environment using a
single-line LiDAR range finder. Compared with the following
method based on scanning and correlation to human legs, the
proposed target method has
differentiation and better detection effect in a cluttered orchard
environment. The point cloud data acquired by the 2D LiDAR

detection more  significant

deployed at the human torso position can be segmented by
clustering using the breakpoint detection method. The segmentation
threshold is set as =20 cm according to the properties of the torso
point cloud, whose reliability was verified by experiments. Six
geometric attributes were extracted from the human torso, and the
SVDD classification model was used to explore alternative feature
combinations. Finally, girth-depth-average curvature (G-D-k) was
identified as the optimal feature combination with a recognition
accuracy of 95.68%. This feature combination was evaluated in a
environment, and the experimental
demonstrated that it could accurately distinguish between humans
and disturbances. This method can provide a reference for the target
detection of following robots in orchards.

real orchard results
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