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Abstract: In order to address the challenge of non-destructive detection of tomato fruit ripeness in controlled environments,
this study proposed a real-time instance segmentation method based on the edge device. This method combined the principles
of phenotype robots and machine vision based on deep learning. A compact and remotely controllable phenotype detection
robot was employed to acquire precise data on tomato ripeness. The video data were then processed by using an efficient
backbone and the FeatFlowNet structure for feature extraction and analysis of key-frame to non-key-frame mapping from video
data. To enhance the diversity of training datasets and the generalization of the model, an innovative approach was chosen by
using random enhancement techniques. Besides, the PolyLoss optimization technique was applied to further improve the
accuracy of the ripeness multi-class detection tasks. Through validation, the method of this study achieved real-time processing
speeds of 90.1 fps (RTX 3070Ti) and 65.5 fps (RTX 2060 S), with an average detection accuracy of 97% compared to
manually measured results. This is more accurate and efficient than other instance segmentation models according to actual
testing in a greenhouse. Therefore, the results of this research can be deployed in edge devices and provide technical support for

unmanned greenhouse monitoring devices or fruit-picking robots in facility environments.
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1 Introduction

Tomato, as a significant vegetable crop, relies on an accurate
assessment of fruit ripeness, which is crucial for determining tomato
quality and optimizing harvest yields!. This research indicates that
non-destructive methods for evaluating fruit ripeness have become a
prominent area of study in precision agriculture within controlled
environments. The adoption of non-destructive data acquisition
techniques offers advantages such as reduced experimental costs
and shortened research cycles®. However, traditional non-
destructive approaches for tomato ripeness detection often rely on
labor-intensive manual selection and judgment® ', These methods
are susceptible to subjective factors and reduced efficiency,
resulting in lower detection speed and accuracy. Besides, inefficient
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operational practices lead to challenges in harvesting tomato fruits
in a timely manner based on market demands, causing economic
losses for growers and researchers!'?.

Presently, common non-destructive detection methods in
greenhouse environments can be categorized as static or real-time
dynamic, based on the continuity of data acquisition™. In terms of
data acquisition equipment, they can be classified as fixed devices,
such as gantry phenotype platforms, enabling overhead image data
acquisition, or single-scale devices like dark boxes or pipeline
platforms. Furthermore, these methods can be classified based on
the scale of data acquisition, encompassing population-scale
detection and individual plant-scale data detection. These methods
leverage streamlined procedures to analyze the acquired phenotype
information, facilitating subsequent qualitative or quantitative
analysis'"*"*.

In the current stage, fruit ripeness detection predominantly
occurs in static environments, where monitoring devices are
deployed in a fixed manner to initially assess the growth of tomato
plants in greenhouses. Researchers utilize sensors such as RGB
cameras to capture images of the vegetation at specific intervals and
subsequently perform identification. For example, in 2021, Sigit
Widiyanto presented a different approach in their paper, where they
adopted a fixed-point image acquisition strategy to periodically
gather information on tomato plants at a population scale!”. They
used an enhanced Mask R-CNN for real-time detection of fruit.
Experimental results demonstrated the method’s accuracy in
dynamically segmenting tomato fruits, providing valuable support
for subsequent qualitative analysis such as shape, color, and growth
assessment. The study also highlighted the limitations of traditional
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machine learning methods such as K-means and SVM in real-time
fruit segmentation tasks, emphasizing the necessity of utilizing deep
neural networks for data processing!***?!.

With the continuous advancement and modernization of
agricultural production, the cultivated areas for crops have
progressively expanded and become more intricate. The
aforementioned static detection methods evidently fall short of
meeting the escalating demands of agricultural automation.
Consequently, Jan et al.”” from the University of Bonn in Germany
devised a solution by using a large phenotype robot. This system
exhibits the capability to traverse rows in the field and is equipped
with an overhead RGB camera for capturing images of sugar beet
plants at the seedling stage. Subsequently, the research team
employed these images to conduct instance detection of sugar beet
plants, enabling differentiation from weeds. Additionally, they
utilized a keypoint-based deep learning algorithm to accurately
count the leaves of sugar beet plants. Nevertheless, methods like
this are processed on the server side, which means that these models
need strong computing power and require more power consumption
and larger devices. This also limits its deployment on high-
performance computing platforms.

Tomato, being the quintessential annual Solanaceae plant,
presents a distinctive vine-growing pattern which means the vine
needs to be hung up. It poses challenges to most large-scale
overhead phenotype platforms. Consequently, our primary focus
lies in the development of compact, agile, and side-view-capable
phenotyping robots as the optimal solution®**). In order to better
reduce the size of the robot and reduce the cost of experiment time,
we should also choose efficient computer vision models to match
smaller edge devices.

In line with the research conducted by Linlu Zu in 2021, they
successfully employed a small-scale phenotyping robot to achieve
real-time detection of mature green tomatoes within a greenhouse
environment®!. The underlying system employed computer vision-
based line-following techniques for efficient path planning, while a
surveillance camera mounted on the robot facilitated the acquisition
of video stream data on the tomatoes. Subsequently, the obtained
data was seamlessly transmitted to a server via a 4G network SIM
card slot. Leveraging the power of a Mask R-CNN instance
segmentation model, the researchers accomplished accurate
detection of the green tomatoes, demonstrating commendable
segmentation precision. This solution aptly addressed the
demanding requirement of acquiring high-frequency data in
compact cultivation environments and showcased the viability of
employing instance segmentation models for effective detection and
classification. Nonetheless, the transmission of high frame rate
video stream data over a 4G network poses inherent challenges,
potentially leading to reduced operational speed of the phenotyping
robot and consequent compromise in overall efficiency™’.

Furthermore, tomato fruits exhibit multiple distinct ripening
stages, each associated with different harvesting times and product
values. The accurate detection and classification of these diverse
ripening stages place high demands on the precision of computer
vision models, necessitating robustness in multi-class classification
tasks.

In recent years, the continuous development of computer vision
technology has provided novel approaches to address the
aforementioned challenges™*". Leveraging real-time instance
segmentation algorithms based on lightweight neural networks
enables automated detection and swift analysis of agricultural
products. Instance segmentation techniques merge object detection

and semantic segmentation into a cohesive framework. This
integration can be achieved through two-stage methodologies, such
as the Mask R-CNN model, which was introduced by He et al.®" in
2018 using a top-down paradigm. This approach initially employs
object detection to identify the regions of instances (bounding
boxes) and subsequently performs semantic segmentation within
each delineated region, resulting in distinct segmentation outputs for
individual instances. While this model exhibits higher parameter
complexity and slower inference speed, it ensures relatively precise
detection outcomes. Nevertheless, akin to the methods proposed by
Zu et al.”, Widiyanto et al.'! achieved real-time detection on low-
computational edge devices remains a significant challenge.

In order to achieve faster speeds while maintaining overall
accuracy, researchers have proposed single-stage methods. Inspired
by single-stage object detection methods, such as the Yolact model
introduced by Bolya et al.®”, these methods aimed to improve
instance segmentation tasks. Specifically, the proposed approach
utilizes two parallel subtasks: 1) generating a set of prototype
masks; 2) predicting mask coefficients for each instance. The
instance masks are then generated by linearly combining the
prototypes with the mask coefficients. Additionally, a Fast NMS
method is employed to consolidate bounding boxes, reducing
training and inference time while ensuring high segmentation and
detection accuracy.

In practical application scenarios, small-sized and low-power
(low computational capability) edge devices emerge as the optimal
choice for phenotype detection robots and other agricultural robots.
The data processing speed of the aforementioned models is
evidently insufficient to achieve real-time execution at high frame
rates on edge devices. Therefore, this study takes note of the more
efficient YolactEdge proposed by Liu et al.®”l. This model reduced
feature redundancy by distinguishing between keyframes and non-
keyframes during prediction. Additionally, the model was optimized
using TensorRT, enabling it to achieve a performance of up to
30.8 fps on Jetson AGX Xavier (and 172.7 fps on RTX 2080 Ti).

Therefore, in order to achieve real-time, non-destructive, high-
precision, unmanned, high-throughput, and multi-class ripeness
detection of tomatoes, an edge device-based approach was proposed
using real-time instance segmentation models, which the method
can be deployed on phenotype robots. This method harnesses the
flexible and intelligent nature of phenotype detection robots to
dynamically acquire continuous and comprehensive tomato images
from multiple perspectives. It enables efficient and non-invasive
ripeness detection of tomato fruits, which belong to the Solanaceae
family. Specifically, a phenotype robot equipped with a remote
control module, optical sensors, and edge devices were utilized®".
Tomato images were acquired in constrained environments using
remote  control techniques. Subsequently, RP-YolactEdge
(YolactEdge with Random Enhancement & PolyLoss) was
employed to perform automated and accurate classification and
counting of tomato ripeness®>*. This study aimed to explore the
application of phenotype robots in controlled environments for
unmanned and non-invasive fruit ripeness detection, providing
valuable insights for future research on phenotype robots and other
agricultural robots in controlled environments®”*".

2 Materials and methods

2.1 Experimental platform

To achieve non-destructive detection of tomato fruit ripeness in
controlled environments, this experiment considers various aspects
including phenotype platforms, control methods, data acquisition
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and preprocessing, model development and deployment, and
practical testing (Figure I, including the selection of phenotype
devices and control methods, data acquisition and preprocessing,
model deployment, and testing). In the preparation phase, first, the
phenotype devices, sensors, power supply equipment, and network
communication devices deployed were used. Next, tomato plant
images were captured from the hanging vines according to the plan,
and the data were selected and processed accordingly. The
processed data were then used to train a deep learning model, and
the model’s details were dynamically adjusted based on the training
results to improve accuracy and prediction efficiency. Finally, the
model was deployed on edge devices, and field testing and

Data acquisition

validation were conducted.

The small-scale plant phenotyping robot utilized for real-time
detection of tomato fruit ripeness incorporates the Autolabor PM1
robot (manufactured by Autolabor, Beijing, China) as its underlying
mobile platform. This device employs a three-wheel differential
drive system with dimensions measuring 750x520x1150 mm’ and
weighing approximately 45 kg. It offers a ground clearance of about
50 mm and provides three distinct control modes: handle control,
SLAM mapping and navigation, and remote control. The equipment
configuration includes an upper computer, a front-to-back single-
line LiDAR, a 4G/5G signal transmitter positioned at the top, and a
monocular camera mounted on each side.
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Taking into consideration the requirements of the experimental
site environment, autonomous mobility, obstacle avoidance, and
data acquisition, the remote control mode for operation was opted
for. During usage, connections with the robot’s control equipment
were established through 5G signals. Therefore, the client can
receive real-time road condition data transmitted by the camera,
enabling remote control of the device. The remote client utilizes a
simulated driving system, which employs split screens or multiple
displays to provide a 360° perception of the robot’s operating
environment. Moreover, the bottom-mounted LiDAR sensor was
equipped with auxiliary obstacle avoidance capabilities, ensuring
safe operations by preventing incidents such as chassis collisions.

To capture side-view images of tomato fruits, the phenotype
robot was equipped with a sensor box (on the left) and a control
device box (on the right), serving as the data acquisition platform.
The sensor box features multiple fixed slots for sensors, allowing
for the integration of various devices such as the depth camera
sensor used in this experiment, as well as industrial cameras (RGB
sensors), multispectral sensors, thermal infrared sensors, and
LiDAR sensors. These sensors were integrated within the right box,
which houses an edge computing device (industrial computer with
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Overall flowchart of the experiment

RTX 2060S) and was connected to power adapters, enabling real-
time data acquisition and processing®!.

For data acquisition, the Microsoft Azure Kinect DK depth
camera (located in Redmond, Washington, USA) was employed in
this experiment. With dimensions of approximately 12.5 cm in
length and 10.3 cm in width and a weight of 440 g, this sensor
operates at a maximum power consumption of only 5.9 W while
achieving a frame rate of 30 fps for RGB image acquisition at a
resolution of 5 million pixels. RGB channel data from the depth
camera were utilized as the training and validation datasets for
tomato fruit images, facilitating dynamic detection of fruit ripeness
using real-time video stream data (Figure 2).

2.2 Image acquisition and processing

The experiment was conducted from November 5, 2022, to
December 2, 2022, at the Beijing Academy of Agriculture and
Forestry Sciences greenhouse, located at 39°56'N, 116°16'E. The
tomato cultivation area consisted of two plots measuring 10 mx
40 m. The tomatoes were grown using soil cultivation techniques,
and the plants were trained using string trellises. The selected
tomato variety was “Fen Yan No. 1” (GPD Tomato (2017) 110007),
and standard irrigation and fertilization practices were followed.
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Note: a and b: The front and rear views of the robot’s structure, respectively; ¢ and d: The sensor gimbal on the left side and the control box on the right side of the robot;

e: The camera and signal transmission device used for remote control; f: The bottom-mounted LiDAR sensor employed for obstacle avoidance; g: The actual workflow of

remote control operations.

Figure 2 Structure and operational images of the employed phenotyping robot

To collect images of the tomato fruits in the horizontal
direction, the robot’s sensors, industrial computer, and mobile
power supply were installed before the experiment. The robot was
placed in the experimental area (field roads) and connected to a
power source. After establishing the connection with the remote
control computer, the robot was operated remotely at a constant
speed of 0.5 m/s along the tomato experimental field. The camera
captured images at a rate of 1 photo per 2 s to ensure high-quality
data acquisition.

An image acquisition plan was developed based on the actual
conditions of the experimental field (Figure 1): the robot was
remotely driven at a constant speed of 0.5 m/s (equivalent to a travel
speed of 2 km/h) between the rows of tomato plants. A total of over
3700 images were captured during the experiment.

According to research, tomato fruits exhibit four stages of
maturity: green stage, turning stage, mature stage, and fully ripe
stage. The turning stage and firm stage are considered the semi-ripe
stage, characterized by differences in internal biochemical
components while displaying minimal external variations in terms
of shape, color, and texture. The specific characteristics of each
stage are as follows:

1) Green stage: The fruit has reached its full size, but the skin
remains entirely green, and the flesh maintains firmness;

2) Turning stage: The top of the fruit begins transitioning from
green to yellow-white, accompanied by a softening of the flesh and
an increase in sugar content. This stage is ideal for harvesting when
the fruit requires long-distance transportation or storage;

3) Mature stage: Approximately three-fourths of the fruit’s
surface turns red or yellow, indicating the highest nutritional value.
This stage is optimal for immediate consumption or when the fruit
needs to be transported over shorter distances;

4) Fully ripe stage: The entire surface of the fruit turns red, and
the flesh reaches a soft consistency while attaining its maximum
sugar content. This stage is also suitable for harvesting when the
fruit requires short-distance transportation or immediate use.

Therefore, the tomato images were first annotated using three
different labels: “Mature”, “Semimature”, and “GreenRipening”.
Next, the normalization and cropping operations were performed on
the images used for training. In this experiment, 332 images were
selected as the original training set and 32 images as the original
validation set. Additionally, 10 segments of 160 frames of video

data were obtained for model testing and accuracy validation.

To enhance the classification accuracy and generalization of the
model, random data augmentation techniques were employed to
increase the diversity and quantity of the training data. Specifically,
the following data augmentation operations were applied to the
original image data:

1) Random perspective: The images were randomly rotated
along the X-axis, Y-axis, or Z-axis to introduce diversity into the
dataset. Additionally, random translation operations were performed
on the images. This approach makes the dataset more representative
of real-world scenarios where fruit ripeness detection occurs from
different perspectives;

2) Salt and pepper noise: Salt and pepper noise (impulse noise)
was randomly added to the images.

Salt and pepper noise refers to the presence of random black
and white pixels scattered throughout an image, resulting from
factors such as image sensor artifacts, transmission channel
distortions, or decoding and processing errors. In Equation (1), N
represents the modified color values of the three channels after pixel
manipulation. This method emulates the interference caused by
sensor device anomalies, ultimately contributing to enhancing the
model’s resilience and robustness in handling noisy input data.

0, eppe
N= pepper (1)
255, salt

1) Gaussian noise: Gaussian noise was added to images.
Gaussian noise, denoted as f(x), refers to a type of noise
characterized by a probability density function that follows a
Gaussian distribution (also known as a normal distribution). The
Gaussian distribution is symmetric about x=u, with an amplitude of
V2no and e represent the natural constant. By applying this
statistical property, each pixel in the image is modified to introduce
noise. This method effectively simulates the interference caused by
various lighting conditions and environmental factors, thus
enhancing the model’s generalization capabilities.

1 (x—p)’
Vore P (‘ 20 > @

2) HSV augment: Adjustments were performed to the
brightness and contrast of the images to simulate variations in data
obtained under different times and lighting conditions, thereby

fx) =
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enhancing the overall accuracy of the method.

In order to enhance the variability of the samples and optimize
the training effectiveness of the model, a single random method
from the aforementioned techniques was applied to each individual
image during the preprocessing stage. Additionally, the parameters
used for the processing were randomly determined. This approach
maximizes the diversity of the samples and improves the efficacy of

the model training. Following the data augmentation process, the
training set was expanded to include 664 images (approximately
containing 2000 instances of tomato fruit), while the validation set
comprised 64 images (approximately containing 200 instances of
tomato fruit) (Figure 3). To test the limited frame rate of the model
processing, the video frame rate was also adjusted to 160 fps, and
the experimental results are illustrated in the next section.

Note: First column: The original images after screening; Second column: Randomly rotated images; Third column: Images with randomly removed pixels; Fourth column:

Images subjected to random noise processing; Fifth column: Images with randomly adjusted brightness and contrast.

Figure 3 Experimental image data of tomatoes

2.3 RP-YolactEdge

RP-YolactEdge (YolactEdge with Random Enhancement &
PolyLoss) is an advanced single-stage real-time instance
segmentation model that builds upon the foundations of
YolactEdge. This model introduces several targeted improvements
to enhance its performance (Figure 4). It utilizes a lightweight
backbone network along with more efficient neck and head
structures, resulting in significantly improved prediction speed.
Additionally, the proposed method incorporates the PolyLoss
optimization technique to refine the cross-entropy loss function,
reducing the overall parameter count and enhancing the accuracy of
maturity classification. To further enhance its real-time capabilities,
the model was accelerated by using TensorRT. The real-time

detection results were presented in video format and can be
accessed on the website at https://youtu.be/mY31sPLOrel.
2.3.1 Backbone

In RP-YolactEdge, MobileNetV2 was chosen as the backbone
network for training. MobileNetV2 retains the depthwise separable
convolution units from MobileNetV1, which decomposes the
standard convolution operation into two smaller operations:
depthwise convolution and pointwise convolution. The depthwise
convolution performs lightweight convolutions on each input
channel to extract spatial features, while the pointwise convolution
integrates these features and generates the output by performing a
set of 1x1 convolutions on each output channel".
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Figure 4 RP-YolactEdge reduces network computations by transforming a subset of features from keyframes (left) to non-keyframes (right)
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Depthwise separable convolution offers several advantages
over standard convolution. Firstly, depthwise separable convolution
requires fewer computations than standard convolution since it
performs fewer operations. This enables faster training and
deployment of networks using depthwise separable convolution.
Secondly, it exhibits better generalization to unseen data because
the convolutions performed on each input channel are lightweight.
This allows it to better handle variations and noise in the data.
Moreover, depthwise separable requires  less
computation than standard convolution because it requires fewer

convolution

operations to perform. This means that deep separable convolutional
networks can be trained and deployed in a faster time frame.

Furthermore, MobileNetV2 incorporates the novel Inverted
Residuals and Linear Bottlenecks units (Figure 5). These units
differ from traditional residual network units in that they have
reduced input and output dimensions. They achieve this by
employing linear convolution to expand the dimensions, followed
by depth-wise convolution for feature extraction (Equation (3)).
This design significantly reduces the number of parameters in the
entire model.
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Figure 5 Schematic diagram of the linear neck reverse residual in MobileNetV2

MobileNetV2 =25 pw,, % pw,, =5 PW,,, =% FPN (3)
where, ReLUG6 represents the nonlinear activation function, PW and
DW represent convolution kernels of different sizes.

The term “linear bottleneck” refers to the reduction of channel
dimensionality by mapping a high-dimensional space to a lower-
dimensional space. It is evident that a reverse residual layer with a
linear bottleneck is highly suitable for mobile designs because it
allows for a significant reduction in memory usage during the
inference process by partially decoupling large intermediate tensors.
This methodology lessens the requirement for accessing the primary
memory in numerous embedded hardware configurations and
introduces a compact yet highly effective software-managed cache.
Consequently, it aligns well with the constraints of edge devices,
which typically operate on platforms with limited computational
capabilities.

2.3.2 Neck and head

The neck component of RP-YolactEdge incorporates the
Feature Pyramid Network (FPN) structure to effectively handle
feature information at various scales and enhance the accuracy of
object detection. The feature pyramid mechanism facilitates the
fusion of low-resolution, high-semantic features with high-
resolution, low-semantic features, resulting in improved detection
precision across multiple scales. This capability mitigates detection
errors arising from inconsistent camera distances, leading to
enhanced multi-class classification accuracy, and holds significant
practical implications.

To further optimize model execution speed, a multi-level
feature pyramid structure (P3-P7) was adopted for processing non-
keyframes in video streams. This approach maximizes feature reuse
efficiency and ensures consistent execution accuracy throughout the
video stream. Leveraging the interplay between adjacent keyframes
and non-keyframes, the deformed feature pyramid connections were
exploited, specifically utilizing the P5 and P4 layers from
keyframes for downsampling predictions. This strategy minimizes

iterations in the backbone network for non-keyframes, thereby
accelerating the prediction process.

This approach yields superior results in practical testing
scenarios, such as when a robot moves at a constant speed in a
tomato field, where consecutive frames in the captured video stream
exhibit high similarity. The aforementioned processing technique
ensures significant improvements in operational efficiency while
maintaining segmentation and detection accuracy (Figure 5).

Instead of using a linear network to process the raw RGB
frames, a set of semantically rich features computed by the model’s
backbone network was
Specifically, the FeatFlowNet structure is employed to input the

leveraged for repeated utilization.

features already extracted from the backbone network, requiring
fewer convolutional layers. This strategy reduces the parameter
complexity resulting from iterative connections in deep networks
and consequently decreases the overall computational time of the
model (Figure 6).

Specifically, the FeatFlowNet structure estimates the flow map
M(F', I') between the preceding keyframe /* and the current non-
keyframe [ in the video stream. It then performs an inverse
mapping transformation of features from /* to I": by projecting each
pixel in /" using X+dX onto I, where OX=M (", I') (Equation (4)).
The pixel values F(x) are then computed using the bilinear
interpolation equation as follows:

0, x+0%)

For(x) = Z F*(x) “4)

where, u is a fixed value; 6 represents the weights of different point
positions in bilinear interpolation; k represents the k-th keyframe
around the flow data /; n represents the 4-th non-keyframe around
the flow data /.

After the parameter splitting process, the parameters will be
decoupled through the prediction Head and ProtoNet, ultimately
achieving the output of instance segmentation results.
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Figure 6 FeatFlowNet in video stream estimation method
k
2.3.3 Loss function Z (AP)
The main objective of maturity detection is to accurately — '
distinguish between different ripeness stages of fruits and annotate mAP = (M

the results on the video (image). Therefore, the accuracy in multi-
class classification plays a crucial role in evaluating this approach.
However, the dataset used in this experiment captures various real-
world scenarios encountered during tomato data acquisition. For
instance, there is a substantial variation in the number of tomato
fruit images at different ripeness stages obtained within a short time
span. Furthermore, the progression of ripeness in tomatoes can vary
under differing environmental conditions. Ignoring the disparities in
the quantity of samples from different maturity stages could
markedly impact the detection outcomes. On the other hand,
consciously equalizing the number of samples from each category
could either diminish the dataset’s size or necessitate additional
time for data collection, thereby introducing further complications.
Furthermore, the objective of this task is to achieve multi-stage
classification detection, which differs from single detection or
binary classification tasks. It often requires higher classification
accuracy. Therefore, the PolyLoss loss function was used in the
classification task“”. PolyLoss treats the loss function as a linear
combination of polynomial functions and designs it to optimize the
cross-entropy function using gradient descent (Equation (5)).
Specifically, within the PolyLoss framework, the polynomial terms
in the gradient expansion capture different sensitivities to P,
(Equation (6)). The first gradient term is 1, providing a constant
gradient independent of the value of P,. In contrast, when j > 1 and
P, approaches 1, the ;" term is strongly suppressed. Thus, the

1
coefficient ; precisely offsets the j* power of the polynomial base,

resulting in the gradient of the cross-entropy loss being the sum of
the polynomial (1—-P,).

Lop=-log(P)= Y (1=P) =(1=P)+ 3(1-P} 4+ (5)

J=1

ZL;E =Y (A=P)T =1+(1=P)+(1=PY+  (6)

J=1

Through this improvement, the training errors caused by the
differences were successfully addressed in sample quantities, and
further, the loss rate was reduced, resulting in excellent multi-
classification accuracy. This improvement has also been proven to
reduce the false positive rate in testing.

The model was evaluated using mean Average Precision (mAP)
(Equation (7)).

k
where, k represents the total number of evaluations; AP; represents
the accuracy at different recall conditions (Equation (8)), as follows:
n—1
AP =" (1 = 1)Puer (1 + 1) ®)
i=1
where, r; corresponds to the recall value at the first interpolation
point, which is sorted in ascending order of Precision as follows:
TP
—_— 9
TP +FP ©)

where, TP represents the count of true positives and FP represents

Precision =

the count of true positives false positives
2.4 Tomato counting

To evaluate the model’s classification results in real-time
detection, the intersection of the detection box and a vertical
counting line to track the total number of fruit instances at different
stages (Equation (9)) were utilized. It was determined whether the
centrally positioned vertical line (L,) intersects with the detection
box, satisfying specific conditions based on the width of the image
or video frame (). To avoid duplicate counting of the same fruit
instance across frames, the centroid of the detection box was replied
to as the counting criterion. If the centroid intersects with the line
L., the count for the corresponding maturity stage is incremented by
one (Equation (10)).

1

L.=-W

W, (10)

1
M,=—-(U,+L,
=g Gtk (M, Uy Lo L)€ (0.W,) (11

M, =L.

The coordinates of the top-left and bottom-right corners of the
detection box are denoted as (U,, U,) and (L,, L,), respectively. The
subscripts 1 and 2 represent the previous frame and the current
frame’s detection boxes, while the centroid coordinates are
represented as (M,, M,). Based on experimental comparisons, this
method effectively reduces duplicate counting during dynamic
detection. The real-time counting results can be viewed on the
webpage https://youtu.be/mY31sPLOrel.

In summary, the RP-YolactEdge model was utilized to
incorporate several optimizations and enhancements compared to
Yolact. It offers higher real-time performance and accuracy, making
it suitable for real-time object detection and segmentation tasks such
as the tomato fruit ripeness detection in this study.
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3 Results and discussion

3.1 Ripeness detection accuracy

In this section, the RP-YolactEdge model was trained and tested
on the acquired dataset. The accuracy, speed, and ripeness detection
performance of the instance segmentation method were primarily
analyzed. Compared the proposed method in this study with state-of-
the-art real-time instance segmentation methods and conducted
ablation studies to dissect our design choices and modules™.

Transfer learning was implemented using a pre-trained model.
Through computational validation, mask mAP of 89.1% and 80.4%
were attained, and bounding box mAP (bbox mAP) of 72.2% and
70.1%, utilizing ResNet-101 and MobileNetV2 as backbone
networks, respectively (Figure 7). Additionally, the classification
loss, box loss, and segmentation loss of different methods were
examined. Our RP-YolactEdge model exhibited lower loss rates
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compared to other approaches, particularly in terms of classification
loss, where the proposed model significantly outperformed others.
This further demonstrates the necessity of employing the PolyLoss
loss function for multi-class ripeness detection of tomatoes.

Tests were conducted on the model using 64 images, which
included a total of 198 tomato instances. The results were compared
against manual annotations (R-101-FPN). Among the instances in
the “GreenRipening” stage (Table 1), 102 instances were correctly
detected, achieving an accuracy of 98.1%. For the instances in the
“Semimature” stage, 43 instances were accurately detected,
resulting in an accuracy of 93.5%. In the “Mature” stage, 47
instances were correctly detected, yielding an accuracy of 97.9%.
The average accuracy across all stages was 97.0%. It is important to
note that false positives and false negatives were not considered in
the model’s correct detections. Additionally, the segmented results
were dynamically saved to the local storage.
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Note: The solid line represents the proposed method in this study, and the dashed line represents the original YolactEdge model.

Figure 7 Comparison of Precision and Loss Rate between RP-YolactEdge Model and YolactEdge Model

Table 1 Accuracy comparison between improved YolactEdge
model and manual detection

Maturation period Legend Manual detection Model detection Accuracy
GreenRipening 104 102 98.1%
Semimature 46 43 93.5%
Mature 48 47 97.9%
Total - 198 192 97.0%

3.2 Execution efficiency

Tests were conducted using video stream data to evaluate the
performance and efficiency of the improved model in this study.
With this approach, the real-time dynamic detection of tomato fruit
ripeness was achieved. The results show that this method
outperforms the original YolactEdge and Yolact models in terms of
both detection and segmentation accuracy. The slight shaking of the
car body caused by the unevenness of the road has a limited effect

on the test results.

From the perspective of runtime and execution efficiency, the
method of this study achieved execution speeds of 80.9 fps (ResNet-
101) and 90.1 fps (MobileNetV2) on Nvidia 3070ti devices. Even
without using TensorRT for acceleration, the model still achieves
prediction speeds of 29.2 FPS (ResNet-101) and 54.0 FPS
(MobileNetV2) (Table 2). These speeds significantly outperform
the Mask R-CNN model or other commonly used instance
segmentation models.

Table 2 Comparison of detection performance between RP-
YolactEdge and other methods

Method Backbone RTX/fps Params/M
RP-YolactEdge R-101-FPN 80.9 49.6M
RP-YolactEdge R-50-FPN 82.3Y 31.7M
RP-YolactEdge MobileNetV2-FPN 90.1V 8.5M

Yolact R-101-FPN 30.2 55.1M

Yolact R-50-FPN 35.6 47.5M
Mask R-CNN R-101-FPN 12.1 62.9M
Mask R-CNN R-50-FPN 14.7 433M

Note: V denotes suitability for real-time detection tasks.



208  April, 2024 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 17 No. 2

Tests were also conducted on small industrial control
computers such as RTX2060 Super and edge devices like Jetson
AGX Xavier. With MobileNetV2 as the backbone network and
TensorRT for inference acceleration, the respective execution
speeds were 65.5 fps and 28.7 fps. Other key hardware models used
in the tests are shown in the table (Table 3). This demonstrates that
our method can function effectively even with lower computational
power and can be seamlessly integrated with higher-resolution
sensors, enabling precise dynamic detection of tomato fruit
ripeness.

Table 3 The hardware and software used for training
and testing

Hardware Training Testing
CPU 12" Gen Intel” Core i7-12700 11" Gen Intel® Core i7-1165G7
RAM 16 GB 8 GB
GPU Nvidia 3070ti NVIDIA GeForce RTX 2060
Operating system Windows 11 Ubuntul8.04
D; Zﬂ:xggg Pytorch Pytorch

3.3 Ablation Experiment and Discussion

Comprehensive generalization validation and ablation studies
were conducted to evaluate the robustness and efficacy of our
proposed method.

Initially, compared the efficacy of using the detection method
alone versus the instance segmentation method alone for tomato
fruit ripeness detection. The results indicated that relying solely on
the detection method failed to accurately detect and count fruits in
scenarios involving occlusion or closely connected fruits. This
limitation arises due to the detection method’s emphasis on learning
features within the entire bounding box region, whereas the single-
stage instance segmentation method incorporates both instance

YolactEdge

g"’""\'!\‘?ntﬁal” ?.70

»

Our approach

iimmature: €. 0.93

immature: 0.89

\  Immatur,

boundary features and bounding box positioning.

Additionally, we conducted a controlled experiment to evaluate
the impact of utilizing PolyLoss versus cross-entropy loss when the
dataset remains consistent. We also investigated the necessity of
employing random enhancement to address class imbalance in the
samples, ensuring the models remained consistent (Table 4). The
outcomes demonstrated that our improved method outperformed the
original YolactEdge model, exhibiting enhanced detection accuracy
and reduced classification loss.

Table 4 Ablation experiments of RP-YolactEdge

Classification loss

Backbone Box mAP Mask mAP Class Loss

function
R-101-FPN* PolyLoss 76.85 90.17 0.54
MobileNetV2-FPN* PolyLoss 73.11 80.08 0.66
R-101-FPN PolyLoss 74.36 83.72 0.61
MobileNetV2-FPN PolyLoss 71.40 78.79 0.74
R-101-FPN* Cross-entropy 75.84 88.23 0.58
MobileNetV2-FPN* Cross-entropy 72.51 78.44 0.68
R-101-FPN Cross-entropy 71.8 81.9 0.84
MobileNetV2-FPN Cross-entropy 67.54 76.08 0.93

Note: * indicates the use of random enhancement for dataset augmentation.

A comparative analysis of different instance segmentation
models was also conducted with the approach in terms of detection
performance. Through the comparison, it was observed that this
method outperforms the original YolactEdge and YOLACT models
in both segmentation and detection tasks (as shown in the first,
second, and third columns of Figure 8). While the Mask R-CNN
model exhibits slightly better segmentation performance than our
method, its classification accuracy is relatively lower for occluded
instances (as shown in the first and fourth columns of Figure 8).

Mask R-CNN

Yolact

"

\

s
Vel §

imm ature: Cojg. 091

MobileNetV2-FPN

I
/

R-50-FPN

Note: Column from left to right: the first represents our method, the second shows the results of the YolactEdge without optimization, the third displays the results of the

Yolact, and the fourth presents the results of Mask R-CNN.

Figure 8 Comparison of the proposedmethod in this study and other approaches in practical working scenarios

4 Conclusions

This study focuses on the real-time detection of tomato fruit
ripeness in controlled environments using a plant phenotype robot
and an improved instance segmentation model. A remotely operated

phenotype robot was utilized as the detection device and deployed
the RP-YolactEdge instance segmentation model on the device. In
the experimental process, the lightweight MobileNetV2 was
employed as the backbone network and incorporated the
FeatFlowNet structure to process video stream data from adjacent
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keyframes and non-keyframes. This approach not only ensured high
detection accuracy but also significantly improved data prediction
efficiency. Random data enhancement techniques were applied to
expand the dataset, enriching the samples with diverse real-world
scenarios. Furthermore, the PolyLoss classification loss function
was employed to enhance classification accuracy, addressing the
significant variation in sample quantities across different classes.

The experimental results demonstrate that the proposed model
exhibits high performance in terms of real-time capability and
accuracy. It verifies the effectiveness of utilizing a phenotyping
robot for real-time tomato fruit ripeness detection in controlled
environments. In future work, it is planned to employ a gimbal with
greater degrees of freedom to mount a camera, combined with
models that offer improved classification and prediction
performance. This will enable the solution to achieve a wider field
of view and accomplish dynamic detection of plant fruit from multi-
scales.
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