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Abstract: The facility-based production method is an important stage in the development of modern agriculture, lifting natural
light and temperature restrictions and helping to improve agricultural production efficiency. To address the problems of
difficulty and low accuracy in detecting pests and diseases in the dense production environment of tomato facilities, an online
diagnosis platform for tomato plant diseases based on deep learning and cluster fusion was proposed by collecting images of
eight major prevalent pests and diseases during the growing period of tomatoes in a facility-based environment. The diagnostic
platform consists of three main parts: pest and disease information detection, clustering and decision-making of detection
results, and platform diagnostic display. Firstly, based on the You Only Look Once (YOLO) algorithm, the key information of
the disease was extracted by adding attention module (CBAM), multi-scale feature fusion was performed using weighted bi-
directional feature pyramid network (BiFPN), and the overall construction was designed to be compressed and lightweight;
Secondly, the k-means clustering algorithm is used to fuse with the deep learning results to output pest identification decision
values to further improve the accuracy of identification applications; Finally, a detection platform was designed and developed
using Python, including the front-end, back-end, and database of the system to realize online diagnosis and interaction of
tomato plant pests and diseases. The experiment shows that the algorithm detects tomato plant diseases and insect pests with
mAP (mean Average Precision) of 92.7%, weights of 12.8 Megabyte (M), inference time of 33.6 ms. Compared with the
current mainstream single-stage detection series algorithms, the improved algorithm model has achieved better performance;
The accuracy rate of the platform diagnosis output pests and diseases information of 91.2% for images and 95.2% for videos. It
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is a great significance to tomato pest control research and the development of smart agriculture.
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1 Introduction

Tomatoes are affected by different pests and diseases at
different stages of growth, which is the main reason for reduced
yield. Accurate identification and diagnosis of pests and diseases in
tomato seedlings during the growing period, as well as early
detection and treatment, will not only provide a healthy growing
environment for tomatoes but will also effectively increase tomato
yields to a large extent!". In particular, the high relative temperature
and humidity, poor lighting conditions, and poor circulation in the
facility base provide excellent environmental conditions for the
rapid spread of pathogens, greatly increasing the chances of
pathogenic infestation and leading to a disaster. The most serious
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diseases of tomato seedlings during the growing period are Bacterial
Spot?”, Early Blight”", Late Blight¥, and Leaf Mold", which have a
greater than 50% chance of developing®”. The disease mainly
affects the leaves, starting with individual seedlings and then
spreading rapidly in all directions with these plants as the center,
infecting neighboring plants. The main pest species are Aphid®,
Helicoverpa Armigera, Spider Mite!"” and White Fly""'", all of them
are highly reproductive, fast-growing and widespread when the
environment is suitable, and in addition to direct damage, can also
spread directly or promote secondary infection of the disease!™.
According to statistics, approximately 15% of global tomato
production is affected by pests and diseases each year, with average
yield reductions in severe regions capable of reaching 40% to
80%!". Careful control of pests and diseases is a key task to
reduce losses and increase crop yields. Once a pest or disease has
invaded a field, it must be detected in time for farmers to treat it and
prevent it from spreading!”. Therefore, it is necessary to select pests
and diseases that cause serious damage to tomatoes as research
objects, to collect and collate relevant information, to achieve
accurate identification and detection, and to provide a theoretical
basis for targeted early warning and prevention.

Traditional detection methods no longer meet the needs of
research and production in terms of identification efficiency,
accuracy, With  the
development of the Internet, the application of information
for the

and application scenarios. continuous

technology has provided new methods and ideas
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identification of crop pests and diseases. The successful application
of deep learning in other fields has attracted the attention of many
agricultural scholars and applied it to the agricultural field"*'”. Deep
learning (DL) methods, especially those based on convolutional
neural networks (CNN), are widely used in object detection and
classification in the agricultural field, demonstrating excellent
performance and classification in applications such as plant pests
detection and plant identification*.

Current mainstream object detection algorithms can be divided
into two types. One is a two-stage object detection based on the
candidate region method, which requires a proposal (a pre-selected
box that may contain the object to be detected) followed by fine-
grained object detection. Such as RCNN (Regions with CNN
features), Fast RCNN, and Faster RCNN, etc. Deng et al.'”
proposed a multiple pests detection technology based on federated
learning (FL) and improved fast regional convolutional neural
network (R-CNN). The improved R-CNN has an average accuracy
of 90.27% for multiple pests detection in orchards, and the detection
time of each image is only 0.05 s, realizing the accurate
identification of small pests and diseases in complex environments.
Jiao et al.” proposed an anchor-free area proposal network
(AFRPN) and combined it with Fast R-CNN to detect 24 types of
pests in an end-to-end manner. The mAP and recall of the improved
model are 7.5% and 15.3% higher than that of Faster R-CNN, the
running time can reach 0.07 seconds per image, which meets real-
time detection. Zhang et al.”" proposed an improved Faster RCNN
algorithm to detect tomato diseased leaves, using ResNet101 instead
of VGG16 for feature extraction and k-means clustering algorithm
for clustering bounding boxes, the accuracy rate increased by
2.71%, which can effectively detect and recognize tomato diseases.
Xie et al.”” proposed Faster DR-IACNN algorithm on the self-built
grape leaf disease dataset (GLDD). Inception-vl module,
InceptionResNet v2 module and SE module are introduced, mAP is
81.1%, and detection speed reached 15.01 fps. One is a single-stage
object detection based on regression methods, which requires only
one input to the network to predict all bounding boxes, and extracts
feature directly from the network to predict the classification and
location of objects. Such as Single Shot MultiBox Detector (SSD),
You Only Look Once (YOLO), etc. Wang et al.””! proposed a Deep
Block Attention SSD (DBA_SSD) method for plant leaf disease
identification by combining an improved VGG network and a
channel attention mechanism, achieving 92.2% accuracy on the
plant Village dataset. Sun et al.”™ built a new apple leaf disease
detection model based on the Mobile AppleNet SSD algorithm
using the MEAN module and the Inception module, which could
achieve 83.12% mAP and 12.53 fps in a complex background. Liu
and Wang™' constructed a dataset of tomato pests and diseases in a
real natural environment, used image pyramids to optimize the
feature layer of the YOLO V3 algorithm, realized multi-scale
feature detection, and could accurately, quickly detect the location
and type of tomato pests and diseases. Wang et al.”* achieved early
real-time detection of tomato pests and diseases with an F1 value of
94.77% and an AP value of 91.81%, with a false detection rate of
only 2.1%, based on YOLOV3 with fused expanded convolution and
convolution factor decomposition. Liu et al.”” proposed a tomato
pests identification algorithm based on the improved YOLOv4
fusion triple attention mechanism (YOLOv4-TAM) by introducing
the focal loss function and the k-means + clustering algorithm, with
an average identification accuracy of 95.2%. Qi et al.”* added the
Squeeze and Excite (SE) module to the YOLOVS model for the
detection of tomato virus diseases in natural backgrounds, with an
accuracy rate of 91.07%. Chen et al.”™” integrated the involute

bottleneck module and SE module on the basis of the original
YOLOVS network algorithm. The detection accuracy of the
algorithm for powdery mildew and anthracnose is 86.5% and
86.8%, respectively.

As mentioned above, deep learning-based object detection
algorithms can better extract features from images and show good
performance in the identification of agricultural objects, but
relatively little research has been done on the identification of
tomato pests and diseases in the growth period. This study created a
tomato growing period pests and disease dataset consisting of 2388
images by collecting images of tomato pests and diseases in a
facility environment, using the plant public dataset and internet
crawler technology for additions (The dataset has been shared at
https://drive.google.com/file/d/1V1cRPVwtqrJuBJifGyQ
j0z2bONODh_OS/view?usp=sharing). It can provide data to support
research on tomato pests and diseases during the growing period.

To improve the efficiency and accuracy of identifying tomato
pests and diseases, the YOLOv5s-CBC algorithm was proposed,
which achieves high accuracy and lightweight by adding the
attention module, weighted bi-directional feature pyramid network
module, and GhostNet module. Designed and developed an online
diagnosis platform for pests and diseases, using k-means clustering
algorithm to analyze and make decisions on the detection results,
and output the optimal identification results and confidence to the
platform interface to achieve real-time detection of pictures or
videos. The online platform was applied in the tomato facility
production base, and the test results met the need for rapid and
accurate detection of diseases and pests during the growth period of
tomato seedlings. It is of great significance to tomato pest control
research and the development of smart agriculture.

2 Construction of pest and disease datasets

2.1 Data acquisition

Eight tomato pests were selected for this study: Aphid (AP),
Bacterial Spot (BS), Early Blight (EB), Helicoverpa Armigera
(HA), Late Blight (LB), Leaf Mold (LM), Spider Mite (SM), and
White Fly (WF). The data was collected from the facility production
base in the Luolong District, Luoyang City, Henan province, China,
112°28'27.09"E, 34°38'17.19"N, the scene is shown in Figure 1.
There is sufficient light in the facility, and a DSC-H300 camera
(Sony Corporation, Japan) was used to capture the images. A total
of 1978 images were obtained, with a pixel size of 640x480 pixels.
In order to ensure the diversity of data, 231 images were collected
through the plant public dataset™ and 179 images were collected
using web crawler technology®", with pixels of 256x256 pixels.

b. Interior

a. Exterior

Figure 1 Facility production base

These images contain different light intensities and object sizes.
After screening and sorting, a total of 2388 effective multi-scenario
and multi-scale images of pests and diseases were obtained. Figure 2
are examples of some pest and disease images in the dataset.

2.2 Data expansion and enhancement

To avoid overfitting problems due to the small number of
datasets, the pests in the dataset were expanded using CycleGAN
(Cycle-Consistent Generative Adversarial Networks)™, using
contrast enhancement, rotation and flipping to expand the pests.
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CycleGAN is trained iteratively against each other to achieve the
effect of expanding the dataset. The coordinates and categories of
the dataset were manually annotated using the lightweight image
annotation tool Labellmg (CSAIL, USA) to obtain the
corresponding label files for the dataset images, and the annotated
dataset was divided into a training set and a test set. The distribution
of the training and test sets and the labels for each category are
listed in Table 1.

b. BS

e. WF f.LB g LM h. SM

Figure 2 Example pests and disease dataset

Random selection
e,
4 images

The training data is enhanced by the use of a data loader during
the data input process. The data loader uses a variety of data
enhancement methods, including color transformation, random
rotation and panning, Mosaic®, Mixup®, and a random
combination of these methods stitched together to enrich the object

and background. The enhancement process is shown in Figure 3.

Table 1 Distribution of the number of pests and
disease images

Category Train/enhance Test/enhance Sum Label
AP 259/777 45/135 1216 0
BS 249/747 45/135 1176 1
EB 253/759 45/135 1192 2
HA 256/768 45/135 1204 3
LB 250/750 45/135 1180 4
LM 250/750 45/135 1180 5
SM 251/753 45/135 1184 6
WF 260/780 45/135 1220 7
Sum 8112 1440 9552 -

Color conversion,

rotation translation,
etc.

Figure 3 Data enhancement process

3 Detection platform design

In order to achieve a facility-based pests detection application,
an algorithm based on the YOLOVS was proposed for the detection
of eight pests and diseases during the growing period of tomatoes.
By clustering the identified information using the k-mean clustering
algorithm, the frequency of pests and disease occurrence and the
confidence level are statistically analyzed to achieve rapid data
clustering and fusion and online pests and disease diagnosis and

= .

TERENARE
L LI ]
CRRENEOE
i video "-,\Feature extraction process
Image acquisition
and input

N-frame
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decision-making. Design and develop a pests and disease detection
webpage to introduce information on various types of pests and
disease and prevention methods, and output of the algorithm
identification results on the platform after analysis by clustering.

Figure 4 shows the architecture of the online pests and disease
diagnosis process. After the algorithm is trained and saved, it is
connected to the online diagnosis platform, where users upload
images or videos of tomato pests and diseases, and the platform will
identify and output prediction results.

iFinal identification results
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Output results to the platform

interface

s’ | Updates

[ S
020 40 60 80 100 120
Data point index

Number of clusters

Elbow method

Statistics and analysis of results

Figure 4 Online diagnostic process architecture

3.1 Identification algorithm model
The pest and disease diagnostic platform needs to meet the real-

time needs of users. Accurate and real-time detection is a

prerequisite for easy use of the webpage, and YOLOVS was chosen
as the detection model, taking into account factors such as real-time
pest and disease detection, identification accuracy, and future
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deployment. YOLOvV5 is a more mature single-stage object
detection model in the You Only Look Once (YOLO)® family,
capable of locating and classifying objects by directly regressing the
relative positions of candidate frames. There are three main
components: the backbone network (Backbone), the neck network
(Neck), and the detection network (Head). The backbone network
consists of convolution module (Conv), C3 module, and a modified
spatial pyramid module (SPPF) for extracting features from the
input image and passing them to the Neck. Neck uses the structure
of FPN (Feature Pyramid Network) and PAN (Path Aggregation
Network), where FPN uses a high resolution of low-level features
and semantic information of high-level features in top-down
delivery of semantic information, and PAN is bottom-up delivery of
localization information, making it easier to propagate low-level
information to the top level and enhancing the ability of network
feature fusion. Head is responsible for classifying the features
extracted after compression and fusion, generating detection frames,
and classifying them into the appropriate coordinates, categories,
and confidence levels.

A tomato pest detection algorithm is proposed based on the
YOLOVS5s algorithm. In Bankbone, the CBAM attention mechanism
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has been introduced to help the network locate the location of pests
and diseases more accurately, thus reducing the interference of
object background information. In Neck, the use of the BiFPN
structure instead of the original PANet structure improves the
detection of small object pests by increasing the weights to adjust
the contribution at each scale of the algorithm. The C3Ghost
module is used instead of the C3 module to reduce the number of
parameters, achieve a lighter model, and balance identification
accuracy with detection speed. Figure 5 shows the structure of the
improved algorithm.

Improvement 1: The attention mechanism can focus on
important information with high weights and ignore irrelevant
information with low weights, and can continuously adjust the
weights so that important information is selected in different
situations™. There are problems of multiple objects, small size and
complex backgrounds in the homemade pest and disease dataset. A
CBAM module®” was added to the original feature extraction
network part, which consists of a channel attention module and a
spatial attention module. It enables the network to better extract
feature information of pests and diseases and improve the
characterization capability.
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Figure 5 Structure of pests detection algorithm

Improvement 2: The neck of the original YOLOvS5s simply
adds up different scale pest features in the feature fusion process,
the method does not make full use of feature information between
different scales, and the importance of feature information varies at
different scales, which can lead to lower detection accuracy of the
network. To solve this problem, the BiFPN network structure®™, a
combination of Feature Pyramid Network (FPN) and Path
Aggregation Network (PAN) structures, was introduced for
enhancing the depth of information mining and further improving
the feature extraction capability of the algorithm.

Improvement 3: During the extraction of pest and disease
features, the standard convolution extracts feature maps that are
very similar on many feature channels, with some duplication.
Therefore, the desired feature maps can be obtained without the
need for a full convolution operation. To reduce the number of

operations, the Ghost module®” is used, and the C3Ghost module is
used to replace the C3 module in the network in a two-step
operation: first, the ordinary convolution calculation is used to
obtain a feature map with a smaller number of channels; then, more
feature maps are obtained using linear operations, and the output
results are stitched with the constant mapping in the channel
direction to obtain the output feature map.
3.2 Cluster analysis model

As an unsupervised clustering algorithm in data mining, k-
means is simple and effective®”. This algorithm is a distance-based
clustering algorithm, which uses the distance between samples as
the sample similarity measure, and its basic process is as follows:

1) Randomly select k£ value from the known model data as the
initial cluster center, and the j” mean value is recorded as u;;

2) Classify the categories by calculating the distance d from
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each cluster object to the cluster center;

d= “Z(xi_uj)z (l)

where, j=1,2...,k,i=1,2...,n,d is the distance from the i point
to the /” mean, and x; is the i data value;
3) Calculate each cluster center again;

N

T — 2)

where, n; denotes the number of objects in the £” cluster, u;, denotes
the number of cluster centers;

4) Repeat steps 2) and 3) until the clustering centers no longer
change or the maximum number of iterations is reached, then stop.

To perform unsupervised k-means clustering on the given data
in this study, it is first necessary to determine the optimal number of
clusters, using the Elbow Method, by plotting the intra-cluster sum
of squares (WCSS) against the number of clusters and selecting the
number of clusters where WCSS decreases at a slower rate and an
inflection point occurs.
3.3 Interface design module

The platform adopts B/S (Browser/Server) system structure and
is divided into three parts: front-end, back-end and database. The
development mainly uses Python language and the front end uses
html combined with js, bootstrap and css to display the page and
interact with the back end. The back end uses the SSM
(Spring+SpringMVC+MyBatis) framework, the SSM framework is
Spring MVC, Spring and Mybatis framework integration, using
Spring MVC is responsible for request forwarding and view
management, Spring to achieve business object management,
Mybatis as the data object persistence engine. MVC is composed of
Model (JavaBean), View (Html), and Controller (Servlet). Model is
a module used to carry data and perform calculations on requests
submitted by users. View provides a interface for the user and
interacts directly with the user. The Controller is used to forward
the user request to the corresponding Model for processing and
provide the corresponding response to the user with the calculation
result of the processing Model. Use the server session to cache the
currently logged-in user, upload the file by copying the file to the
tomcat path, and then use the URL to access it, and the database
uses mysql to store the database.

4 Results and analysis

4.1 Experimental environment

To ensure the reliability of the experimental data, all algorithms
used in this study were tested under the same experimental
conditions. The hardware and software details are listed in Table 2.

Table 2 Hardware and software environment

Item Type
CUDA 11.7
CPU Intel(R) Core(TM) i5-10100F CPU@2.9GHz
GPU NVIDIA GeForce GT 1030
Operating system Windows 10
Deep learning frame Pytorch
Python 39

The model was trained using stochastic gradient descent (SGD)
for optimization, with the learning scheduler set to Poly, the

momentum parameter set to 0.937, the weight decay set to 0.0005,
the learning rate set to 0.001, the epochs set to 270, and the batch
size set to 16. The aspect ratio of the image subject was set to 1:1,
and for consistency, part of the image was cropped from the original
image was cropped out of the original image for consistency.
4.2 Algorithm performance analysis

In order to objectively assess the model performance, precision
(Pr), recall (Re), mean average precision (Intersection over Union =
0.5), operational parameters, and algorithm weights are used as
evaluation metrics for comparison experiments.

— TP 0
Pr= TP+ Fp ¥ 100% 3)
— TP 0,
Re = TPTFN < 100% 4)
1
AP = L PrdRe (5)
1 C
mAP = - > APi (6)

i=1

where, TP is the number of true positive samples; FP is the number
of false positive samples; FN is the number of false negative
samples; C is the type of pest and disease, and C = 8 in this study.
mAP represents the average value of average precision (AP) under
cach detection type, that is, the area of the curve formed by the
precision and recall of each pest category. mAP@0.5 means the
average AP of all types when IoU (Intersection over Union) is set
to 0.5.

4.2.1 Ablation experiments

Ablation research observes the impact on performance by
removing or adding some features of the algorithm™'\. To verify the
effectiveness of the introduced module in improving the
performance of the algorithm, four algorithms were built to perform
ablation experiments on the dataset of this study, all in the same
training environment.

Among them, YOLOvS5s-CB indicates the introduction of the
CBAM module into the Backbone tail. YOLOVSs-BF indicates the
introduction of the Bi-directional Feature Pyramid Network
(BiFPN) structure into the Neck. YOLOvV5s-CG indicates the
replacement of the C3 module in the Neck with the C3Ghost
module. YOLOvVSs-CBC is the algorithm proposed in this study. It
can be seen from Table 3 that compared with YOLOVSs, the
precision rate decreased by 0.1% after the fusion of the CBAM
module, while the recall rate and mAP increased by 1.1% and 0.8%
respectively, indicating that after adding the attention mechanism,
the model is more focused on the object of pests and diseases area,
the detection ability of the model is increased, but the algorithm
weight is increased by 0.4M. After integrating the BiFPN module,
the recall rate decreased by 1.6%, and the precision rate and mAP
increased by 1.2% and 1.2%, indicating that the feature fusion
ability of the network is improved after adding BiFPN, and the
feature consistency of pests and diseases at different scales is
ensured. After integrating the C3Ghost module, the recall rate is
reduced by 0.8%, the precision rate and mAP are increased by 0.3%
and 1.5%, and the weight is reduced by 1.9M. It shows that the
weight and operation parameters of the algorithm are reduced after
adding C3Ghost, but the detection accuracy of the algorithm is not
affected. Combining the above three not only improves the
performance of the algorithm, but also reduces the weight of the
algorithm to a certain extent, balancing the increase in the weight of
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the network after the attention mechanism is added, and the final
trained algorithm can ensure high accuracy while maintaining a fast
detection speed.

Table 3 Comparison of ablation experiment results
mAP‘@ Weights/

Algorithm CBAM' BiFPN® C3Ghost Pr'/% Re*/% " s N7 Parameter
YOLOvSs  x x x 903 875 89.6 143 7031701
YOLC%V5S- N x x 902 886 904 147 7228407
YOI;;;V*' x N x 915 859 908 143 7031701
YOLC%V5S' x % Vo906 867 911 124 6069413
YO(%}%*' N N Vv 90.6 889 927 128 6266128

Note: 1. Convolutional Block Attention Module; 2. Bi-directional Feature
Pyramid Network; 3. C3+ Ghost module; 4. Precision; 5. Recall; 6. mean
Average Precision (Intersection over Union=0.5); The bold part denotes that the
algorithm achieves the best results under this metric compared to other
algorithms.

Figure 6 shows the change curve of mAP with epoch. The mAP
curve fluctuates greatly at the beginning of training from 0 to 100
times, indicating that the convergence speed of the model training is
fast in the early stage, which meets the requirements of model
training. After 100 times, it is stable and the change is small,
indicating that the model is well-trained and there is no overfitting.
After 240 times, the curve basically tends to be stable, indicating
that the training of the pest detection model is basically completed
at this time. The best results of the improved model mAP were
obtained when the curves of the five models became stable.

4.2.2  Comparison of different detection models

In order to verify the performance of the improved algorithm,
the proposed algorithm was tested against single-stage object
detection algorithms such as YOLOv3 tiny, YOLOv4-tiny,
YOLOv5n and YOLOV7. The specific results are listed in Table 4.
Compared to other algorithms, the improved algorithm has 0.1%-
2.0% higher accuracy, 1.0%-6.1% higher recall, 1.9%-3.8% higher
mAP, and the lowest Parameters and Weights. mAP is 3.1% higher
compared to YOLOVSs, and Parameters and algorithm Weights are
10.9% and 1.5M lower, respectively. The improved algorithm has a
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significant advantage over other models in terms of detection
accuracy and speed while reducing the algorithm parameters.
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Figure 6 mAP-epoch

Table 4 Comprehensive performance of the network under
different models

Algorithm Pr'/% Re’% 161121;% Parammeters IEESIT: Weights/M
YOLOv3-tiny 89.4 839 875 8 682 862 38.6 17.4
YOLOv4-tiny 89.6 84.8  89.2 9129 509 66 18.6

YOLOV5s 903 875 89.6 7031701 43.4 14.3

YOLOv5n 90.5 879 908 20881221 83.5 42.1

YOLOvV7 88.6 828 889 37236527 135.1 72.8

YOLOv5s-CBC 90.6 88.9  92.7 6266128 33.6 12.8

Note: 1. Precision; 2. Recall; 3. mean Average Precision (Intersection over Union =
0.5); The bold part denotes that the algorithm achieves the best results under this
metric compared to other algorithms.

Figure 7 is a comparison curve of precision and recall. It can be
seen from the figure that both show a rapid growth trend within
100 epochs. After 240 epochs of training, the network has stabilized
on each evaluation index. The YOLOvSs algorithm is stable at
90.3% and 87.5%, and the YOLOv5s-CBC is stable at 90.6% and
88.9%.
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Figure 7 Comparison of precision and recall with epoch

4.2.3  Visual comparison of results

To wverify the practical effectiveness of this improved
algorithm, an application test was carried out in a tomato facility
production base and the results are shown in Figure 8. Some of the
white flies in the first column are missed by the original algorithm
and are successfully identified by the improved algorithm. In the

second column, the original algorithm incorrectly identifies late
blight as helicoverpa and lacks identification of late blight, while
the improved algorithm identifies the disease but incorrectly
identifies late blight as early blight. In the third column, the
improved algorithm accurately identifies the right half of the early
blight that the original algorithm failed to identify. In the fourth
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column, the original algorithm misses spider mite and misidentifies
the background, but the improved algorithm identifies it accurately.
The original algorithm in the fifth column misdetects the
background as a helicoverpa, whereas the improved algorithm does

b. YO

not make the error. The results show that the improved algorithm is
able to identify pests and diseases missed by the original algorithm,
as well as increase the detection of small objects and complex
background objects.

spidermite 0.65
HRwr .

spidermite 0.

i~

LOvS5s-CBC

Note: Red arrows denote missed pests and diseases;

Figure 8 Visu

4.3 Analysis of clustering results

Five groups of videos of 10s duration were selected for
detection, 1 s is 12 frames, a total of 120 images can be detected,
the detection results are listed in Table 5.

Table 5 Detection result

Number/

Category AP BS EB HA LB LM SM WF Total
1 98 0 0 3 2 3 12 120
2 0 7 92 0 5 1 4 118
3 10 2 4 2 0 6 95 119
4 3 9 9 0 13 81 0 115
5 2 0 0 109 4 0 3 2 120

alization comparison

dimensional array for use in calculations. The optimal number of
clusters are first determined using the Elbow Method based on the
data obtained from the algorithm identification, plotting the intra-
cluster sum of squares (WCSS) versus the number of clusters. The
WCSS is the sum of the squares of the distances between each point
and the center of mass of its assigned cluster, and as the number of
clusters increases, the WCSS usually decreases, followed by a
‘twist’. The WCSS-Number of clusters obtained by the Elbow
Method is shown in Figure 9a, with the five data sets clustering best
at k=2. Figure 9b shows the data rendering after using k-means
clustering. The results obtained by clustering the five groups of data
are AP (0.94), EB (0.80), WF (0.86), LM (0.83), and HA (0.95),

Before clustering, the data needs to be preprocessed, and the
value under each label is regarded as a dimension of the vector.
Eight kinds of diseases and insect pests correspond to labels 1-8
respectively, and multiple one-dimensional arrays are connected
together, and they are converted to a single-column two-

respectively corresponding to the highest red scatter points in the
figure, indicating that k-means clustering can accurately output the
results predicted by the algorithm. The results of multiple
experiments prove that k-means clustering can successfully output
the most frequently occurring and high-confidence pest species,
which is in line with the expected effect.
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Figure 9 Clustering implementation
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4.4 Platform realization

Based on the data detected by the algorithm and the results
of the cluster analysis, a detection webpage was designed and
developed, with some additional features added to make this
webpage even better. Figure 10 shows the detection web interface.
Figure 10a is the login interface, where the user enters an account
and password before entering. Figure 10b is the main query
interface, where the user can search for various types of tomato
pests and diseases by directly entering the name of the pest or
by clicking on the three images below. Figure 10c is the rough
query interface, where you can search for pests and diseases based

ol - % G} s

-
g
@  pesDetecton itom

d. Detailed information interface

c. Rough query interface

on their characteristics or by clicking on the images directly.
Figure 10d is the details interface, which includes the form of the
pest, the plant affected, the characteristics of the pest and the
prevention and treatment methods. Figure 10e is the detection
interface, where images or videos of the pests to be detected are
uploaded by clicking on the camera button. Figure 10f is a display
of the detection results, showing the optimal identification results
and confidence levels calculated by the k-means clustering
algorithm, and the corresponding control method and related agent.
Finally, the tomato pest and disease detection platform was
integrated.

f. Display of detection results interface

Figure 10  Pest and disease detection platform

5 Discussion

To verify the feasibility of the platform, 125 photographs were
taken at the tomato facility production site using a Sony DSC-H300
camera, as well as 10 s of video of different angles of each image at
640%x480 pixels, uploaded and tested, and the platform showed
accuracy as listed in Table 6.

Table 6 Platform experiment results

Detection type YOLOvS5s YOLOv5s-CBC
Image/Video 109/112 114/119
Accuracy rate /% 87.2/89.6 91.2/95.2

It was found that when performing image detection, the original
algorithm correctly detected 109 images with an accuracy rate of
87.2% and the improved algorithm correctly detected 114 images
with an accuracy rate of 91.2%, an improvement of 4 percentage
points. When performing video detection, the original algorithm
correctly detected 112 images with an accuracy of 89.6% after using
the k-means clustering algorithm to analyze the results output, and
the improved algorithm correctly identified 119 images with an
accuracy of 95.2%, an improvement of 5.6 percentage points. It is
proved that the improved algorithm YOLOvV5s-CBC combined with
the k-means clustering algorithm in this study can achieve good
results and improve the detection ability of pests and diseases.

Figure 11 shows the comparison of the experiment results, after
changing the separate image detection to video detection, both can
improve the identification accuracy, indicating that video detection
can effectively avoid the false detection and leakage problems
caused by the interference of light, background, and shooting angle.

According to the characteristics of various types of pests and
diseases, the YOLOv5s-CBC algorithm is proposed. Using the

CBAM module to suppress irrelevant features, the BiFPN module
multi-scale Ghost module
streamlines the network. The improved method enhances the
detection capability of the algorithm and reduces the algorithm

integrates information, and the

parameters and weights, which reduces the hardware device
requirements and detection time of the identification procedure.
Compared with other deep learning object detection algorithms, the
improved algorithm can identify the type and location of pests on
the image in a timely and effective manner, with small weights and
inference time while maintaining accuracy, to satisfy the task
requirements for the work of identifying diseases during the
growing period of tomato in real life. This method can replace
traditional manual identification, and through the designed online
pest detection web page, the k~-means clustering algorithm is used to
analyze the identification results. Users can query pest information
online and upload images or videos to detect unknown pests and
diseases, which greatly improves identification efficiency.
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Figure 11 Comparative analysis of results
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Regarding misjudgments and missed detections in the
process, after comprehensive analysis, the
misjudgments and missed detections in the identification process
are related to the scattered image collection, overly complex
background environment, and limited computer performance.
Compared to other studies that used data from the same study area,
the data from this experiment were selected from 3 sections, with
differences in the data, but the results are more adaptable. Due to
the limitations of clustering algorithms, only a single pest or disease

identification

can be output during video detection. The next step of work can be
to study the following two aspects: firstly, in terms of tomato pest
and disease datasets, although the homemade dataset used in this
study includes pests and backgrounds of different complexity, it still
lacks images of different species and scenes. Future datasets with
more extensive and diverse multi-species backgrounds should be
used, and the functionality of this diagnostic platform should be
continuously enriched. Secondly, the recognition algorithms are
constantly validated and improved, incorporating the latest
benchmark networks and modules of the day to develop a more
robust algorithm, making improvements to the clustering
algorithms, such as adding weights to the detection results,
clustering and outputting multiple pest and disease detections at the
same time, and improving the output accuracy.

6 Conclusions

By collecting images of eight major prevalent pests and
diseases during the tomato growth period in the facility
environment, a data set was created to solve the application problem
of object detection in the detection of tomato pests and diseases. To
realize online diagnosis and interaction of plant diseases during the
growing period of tomatoes, and to successfully carry out the
application of an online diagnosis platform for tomato pests and
diseases in tomato facility production bases. The following
conclusions are drawn from the experiments described in this study:

1) Based on the fusion of the improved YOLOVS5 algorithm and
the k-means clustering algorithm, the online pest and disease
diagnosis platform is able to detect the disease information and
cluster and make decisions on the results, which are finally
displayed on the interactive interface. At the same time, a database
of eight pest and disease characteristics during the growing period
of tomatoes was established (The dataset has been shared at
https://drive.google.com/file/d/1V1cRPVwtqrJuBJifGyQj0z2bONO
Dh_OS/view?usp=sharing), which can provide data support for the
detection of pests and diseases during the growing period of tomato.

2) The ablation experiments demonstrate that the CBAM
module improves multi-scale feature extraction, the BiFPN module
improves the detection of small-scale objects, and the Ghost module
effectively reduces the algorithm weights and parameters. The
mAP, precision, and recall of the improved algorithm are 92.7%,
90.6%, and 88.9%, respectively. Compared with the current
mainstream single-stage detection series algorithms, the mAP is
improved by 1.9%-5.2%, and the weights are reduced by 1.5 M-
60 M.

3) The improved algorithm is fused with the k-means clustering
algorithm to achieve real-time monitoring of pests and diseases, and
the accuracy of the image and video diagnostic outputs of the online
diagnostic platform is 91.2% and 95.2%, which is 4% and 5.6%
higher than that of the original algorithm, respectively. It can be
used to provide a reference for the prediction and control of pests
and diseases.
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