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Abstract: The quantification of the relationship between morphological and color indicators in various organs of horticultural
crops  is  of  great  significance  for  crop  digital  visualization  research  using  computer  vision  technology.  To  study  this
relationship, observational data from a six-year experiment were collected, focusing on seven kinds of color component values
of different organs including root, stem, and leaf. Using the collected color data as input, a simulation model was established
based on the Elman neural  network for  six horticultural  crops including zizania,  cucumber,  celery,  spinach,  parsley,  and tea.
Results indicated that the horticultural crop morphology model based on the Elman neural network exhibited high simulation
accuracy with root mean square error (RMSE) ranging from 0.14 to 1.05 cm and normalized root mean square error (NRMSE)
ranging  from  2.02%  to  11.34%  for  the  maximum  root  length  simulation  model.  The  simulation  model  for  stem  length  and
diameter had an RMSE ranging from 1.42 to 4.96 cm and 0.25 to 1.17 mm, respectively, with NRMSE ranging from 18.19% to
25.65% and 15.13% to 27.25%, respectively.  Similarly,  chlorophyll  content,  leaf  length,  leaf  width,  and leaf  area simulation
models  exhibited  RMSE  ranging  from  2.80  to  8.22  SPAD,  0.44  to  18.04  cm,  0.22  to  3.49  cm,  and  0.25  to  36.39  cm2,
respectively,  with  NRMSE  ranging  from  8.63%  to  21.04%,  15.00%  to  22.87%,  15.12%  to  33.58%,  and  6.88%  to  24.90%,
respectively.  These  findings  provide  essential  theoretical  support  for  precision  agriculture  in  areas  of  water  and  fertilizer
management, plant growth diagnosis, and yield prediction.
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 1    Introduction
The importance of plant organ color cannot be underestimated

when  it  comes  to  understanding  different  aspects  of  plant  growth.

Factors such as nutrition, diseases, pests, and organ maturity can all
be reflected through the color of plant organs[1,2]. Thanks to the rapid
development of computer vision technology, the color of crops has
now  become  a  valuable  source  of  physiological  and  ecological
information[3].  However,  accurately  analyzing  organ  morphology
using  color  data  from  horticultural  crops  still  poses  a  significant
challenge.

The variation of plant leaf color is mainly due to the fluctuation
of three pigments, namely chlorophyll, carotenoid, and anthocyanin.
The  green  color  is  attributed  to  chlorophyll,  while  yellow  and  red
colors  correspond  to  carotenoid  and  anthocyanin  pigments,
respectively[4].  Recent research studies have employed colorimeters
to evaluate the association between soil-plant analyzer development
(SPAD) and the color of different crops, including wheat, rice, and
cucumber, through the analysis of LAB color feature parameters[5,6].
Moreover, monitoring color feature parameters can present various
conditions  regarding  plant  growth,  such  as  the  height  of  the  plant,
the  leaf  area  index,  biomass,  disease,  pest,  and  nitrogen  levels[2,7,8].
Although  drone  multispectral,  hyperspectral,  and  LiDAR
technologies  have  been  employed  to  collect  plant  growth  data  and
images,  these  methods  are  costly,  and  the  data  processing
procedures  are  complicated,  which  restricts  their  widespread
adoption[9].  As  an  alternative,  laser  scanners  offer  an  inexpensive
option  to  create  high-resolution  images  and  measure  organ  color
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characteristic traits. These analyses typically use the RGB and LAB
color  spaces[5,10].  Moreover,  incorporating  additional  color  spaces,
such  as  LCH,  YUV,  YCbCr,  HSV,  and  HSL,  in  comprehensive
organ  color  analysis  can  enhance  the  visual  realism  of  image
analysis[11].  However,  existing  studies  have  mainly  concentrated  on
overall  or  scene  scale  leaf  color  analysis,  disregarding  the
quantitative correlation between color spaces on the organ level and
various types of horticultural crop morphology[3,12].

In current research on leaf color, physical material models that
rely  on  Bidirectional  Reflectance  Distribution  Function  (BRDF)
combined  with  Bidirectional  Transmission  Distribution  Function
(BTDF)  or  Bidirectional  Surface  Scattering  Distribution  Function
(BSSDF)  have  been  widely  used[13,14].  However,  these  models  lack
important  input  parameters  that  are  biologically  significant,  which
can have a negative impact on the accuracy and universality of the
simulations.  To  address  this  challenge,  an  integration  of  leaf  color
image  processing  technology  with  regression  analysis  and  neural
networks  has  been  proposed  as  a  potential  solution  for  simulating
crop morphology and phenotypic characteristics. Several regression
methods,  including  support  vector  machine[15]  and  regression
methods[5],  have  been  explored  in  this  area.  Additionally,  neural
network  approaches,  such  as  the  Back  Propagation  (BP)  neural
network[16],  the  fuzzy  neural  network[17],  the  probabilistic  neural
network[18],  and  the  radial  basis  function  neural  network[19],  have
shown  promising  results.  Combining  these  new  methods  can
improve  the  accuracy  and  stability  of  phenotypic  characteristics
models  retrieved  from  images,  while  enhancing  the  objective
settings of neuron counts.  The Elman neural network is known for
its  high  accuracy  in  prediction,  rapid  convergence,  stable  learning
and  memory,  and  good  dynamic  characteristics.  It  has  been
successfully  applied  in  the  research  of  greenhouse  environment
microclimate[16].  Further  exploration  of  its  application  in  image
retrieval  of  plant  growth  based  on  the  Elman  neural  network  is
warranted,  given  the  potential  benefits  of  this  approach.  By
leveraging  the  power  of  neural  networks  in  conjunction  with  new
image processing techniques, it may be possible to more accurately
simulate  crop  morphology  and  better  understand  plant  phenotypic
characteristics.

The color of plant organs plays a crucial role in comprehending
plant growth and development. Through the utilization of computer
vision  technology  and  the  incorporation  of  diverse  color  spaces,  a
deeper  understanding  of  organ  morphology  in  horticultural  crops
could be gained. By combining regression analysis, neural network
techniques, and employing the Elman neural network, the precision
and  consistency  of  plant  phenotypic  characteristic  models  derived
from images  could  be  enhanced.  In  summary,  these  advancements
contribute significantly to the knowledge of plant biology and offer
valuable insights for improving crop cultivation practices.

 2    Materials and methods
 2.1    Experimental design

Table 1 shows the experimental varieties of horticultural crops,
experiment sites,  and duration in this study. Each sowing date was
set  with  three  replicates,  using  a  random  block  design.  The
sampling  plan  for  this  experiment  was  to  take  three  representative
experiment  samples  for  each  treatment,  and  complete  the  sample
determination  on  the  same  day.  The  sample  determination  process
involves washing the sample, separating the organs and laying them
flat  on  the  scanner  in  order,  setting  the  scanning  parameters,
scanning  to  generate  images,  and  measuring  the  corresponding
indicators  of  the  organs  in  order,  which  ensures  correspondence

between  each  indicator.  The  sampling  frequency  for  leafy  and
melon crops was 10 d, for zizania was once at harvest,  and for tea
was  30  d.  Cucumber  (Cucumis  sativus  L.),  spinach  (Spinacia
oleracea  Linn.),  parsley  (Libanotis  seseloides  Turcz.),  and  celery
(Apium  graveolens  L.)  were  grown  in  greenhouses,  while  zizania
(Zizania  caduciflora  Turcz.)  and  tea  (Camellia  sinensis  L.)  were
grown in the fields. According to the local conventional cultivation
management  methods,  this  experiment  ensured  the  agricultural
resources  such  as  light,  temperature,  water,  and  nutrients  required
for  the  development  and  growth  of  various  horticultural  crops.
Please  refer  to  the  preliminary  work  of  the  research  team  for
specific  cultivation  management  methods[20-24].  The  varieties  of  tea
trees were yellow tea, white tea, and green tea. This study regularly
scanned  images  of  crop  roots,  stems,  and  leaves  separately
throughout the entire growth period, and measured their colors.
 
 

Table 1    Experimental crop varieties and overview of this study

Crop Variety name Experiment position Experiment
time

Zizania Lijiao (LJ) Lishui, Zhejiang, China 2021-2022

Cucumber Jinsheng 206 (JS) Wuqing, Tianjin, China 2018-2020

Celery Juventus (J) Wuqing, Tianjin, China and
Lishui, Zhejiang, China 2018-2023

Spinach Daye (DY) Lishui, Zhejiang, China 2021-2023

Parsley Siji (SJ) Lishui, Zhejiang, China 2021-2023

Tea

Yellow tea: Zhonghuang
(Y1), Huangjinya (Y2),
Huangjinyu (Y3)
Green tea: Longjing (G1),
Yingshuang (G2)
White tea: Zaonaibai (W1),
Anji (W2)

Lishui, Zhejiang, China 2021-2023

 

Organ color was determined by picture recognition, which used
EPSON Expression 11 000 XL scanner (Epson Co., Ltd., China) to
scan individual  plants,  which used six-line alternating matrix CCD
to  scan  the  original  and  xenon  light  source  tubes  as  the  scanning
light source, with a scanning range of 310×437 mm on a flat plate.
Color image scanning speed could reach 16 ms per line (2400 dpi)
and  generate  720  pixel  high-definition  pictures.  Then,  this  study
used  ImageJ  software  to  determine  the  morphology  of  various
organs[25]. This study randomly selected three parts (top, middle, and
bottom)  of  the  organ,  and  measured  with  a  color  recognizer  to
obtain  RGB,  LAB,  LCH,  YUV,  YCbCr,  HSV,  and  HSL  color
model  parameters[5,10,11,26],  and  the  average  value  was  taken  as  the
color measurement result of each organ.

The leaves selected in the experiment were free of any disease
and  insect  pest,  physiological  disease  spots,  and  mechanical
damage.  SPAD-502plus  chlorophyll  meter  (Konica  Minolta,  Inc.,
Japan) was used to select at least three points from the top, middle,
and bottom of the leaves (avoiding the vein) for chlorophyll content
measurement,  and  the  average  value  was  taken  as  the  chlorophyll
content measurement result of organ leaves. In order to avoid errors,
it  was  necessary  to  properly  block  the  direct  sunlight  and  gently
wipe  the  dust  or  other  impurities  from  the  plant  leaves  during  the
measurement. At the same time, it was necessary to try to avoid the
position  where  the  leaf  veins  are  concentrated  to  ensure  the
accuracy  of  measurement[27].  The  distance  from  the  bottom  of  the
root to the bottom of the stem was the root length, cm. The distance
from  the  bottom  of  stems  to  the  bottom  of  leaves  was  the  stem
length, cm.
 2.2    Model validation statistical variables

X̄Statistical  criteria  mainly  include  average  value  ( ),  standard
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deviation  (SD)  and  linear  regression  coefficient  (α),  intercept  (β),
determination  coefficient  (R2),  root  mean  square  error  (RMSE),
normalized  root  mean  square  error  (NRMSE),  and  compliance
index  (D).  RMSE  and  NRMSE[20-23]  are  used  to  measure  the
deviation between the observed value and the measured value, and
can also well  reflect  the measurement precision.  If  NRMSE is less
than  10%,  it  indicates  the  very  high  accuracy  of  model  simulation
effect. If NRMSE is at 10%-20%, it  indicates the high accuracy of
model  simulation  effect.  If  NRMSE  is  20%-30%,  it  indicates  the
medium accuracy of model simulation effect. If NRMSE is greater
than  30%,  it  indicates  poor  accuracy  of  model  simulation  effect.
D[24]  is  a  normalized metric  index.  The closer  the value is  to 1,  the
higher  the  consistency  of  the  distribution  trend  between  the
simulated  value  and  the  observed  value,  and  the  better  the  model
simulation effect.

 3    Model description
 3.1    Modeling factor

This  study  established  different  horticultural  crop  morphology
simulation models based on BP and Elman neural network methods,
which take into account RGB, LAB, LCH, YUV, YCbCr, HSV, and
HSL color  model  parameters  of  organ  root,  stem,  and  leaf,  with  a
total  of  21  modeling  factors.  This  study  established  a  simulation
model of leaf area of different horticultural crops based on stepwise
regression method, which takes into account leaf length, leaf width,
(leaf length)2, (leaf width)2, and (leaf length×leaf width), with a total
of five modeling factors.
 3.2    Elman neural network

Elman neural network is a two-layer BP network structure with
feedback,  which  is  composed  of  input  layer,  hidden  layer  (middle
layer), receiving layer, and output layer[16]. The function of the input
layer unit is to transmit signals. The function of the output layer unit
is  linear  weighting.  The  hidden  layer  unit  will  perform  nonlinear
transformation  on  the  input  signal  through  an  activation  function.
This  feedback  mode  enables  Elman  neural  network  to  detect  and
identify  time-varying  patterns.  As  a  one-step  delay  operator,  the
receiving  layer  returns  the  output  value  of  the  intermediate  layer
unit at the last moment to the input. This special two-layer network
can  approximate  any  function  with  any  precision,  and  the  only
requirement is that the hidden layer must have enough neurons. The
nonlinear  state  space  expression  describes  the  Elman  neural
network[16].

In  order  to  avoid  neuron  saturation,  the  input  data  was
normalized  at  the  input  layer,  each  value  was  converted  to  [0,1]
interval,  and  the  predicted  results  were  normalized  at  the  output

√
n+m+a

layer[28].  In  this  study,  the  number  of  hidden  layer  neurons  of  BP
neural network and Elman neural network was set as   (a
was  a  constant  between  1  and  10)[28,29].  In  order  to  improve  the
training  efficiency  and  network  generalization  performance,  the
normalized method was used to preprocess the sample data.

In  this  study,  the  simulation  effect  of  Elman  neural  network
based on image inversion plant  morphology simulation model  was
compared  with  that  of  the  classical  BP  neural  network  method.  In
order  to  reflect  the  comparability  of  algorithms,  the  algorithm
parameters  (training  function,  number  of  hidden  layer  neurons,
maximum  training  times,  initial  learning  rate,  and  target  error)  of
the  two  neural  networks  were  consistent  for  the  simulation  of  the
same plant appearance.

 4    Model validation and result analysis
 4.1    Validation of root morphology simulation model

The  maximum  root  length  model  was  validated  by  using  the
mutually  independent  data  of  the  root  color.  The  solid  line
represents a 1:1 line, and the dotted line represents the error control
range.  It  could  be  seen  that  the  simulated  value  and  the  measured
value  were  close  to  the  1:1  line,  and  close  to  the  error  range.  The
results  showed  that  the  simulated  values  were  in  good  agreement
with the measured values. Figure 1 indicates that the RMSE of the
observation  value  (Xobs±SD=10.14±4.40  cm)  and  simulation  value
(Xsim±SD=10.08±4.50  cm)  of  the  maximum root  length  simulation
model  was 0.88 cm, NRMSE was 8.67%, R2 was 0.96,  and D was
0.99.
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Figure 1    Validation of maximum root length simulation model
based on Elman neural network with color indicators

 

Table  2  denotes  that  the  RMSE  of  the  maximum  root  length
simulation  model  of  different  crops  was  0.79-2.19  cm,  and  the
NRMSE  was  11.93%-13.42%.  It  could  be  seen  from  the  NRMSE
that  the  optimal  horticultural  crop  maximum  of  root  length

 

Table 2    Statistics for the comparisons between the simulated and measured maximum root length of different horticultural crops
using BP and Elman neural network

Indicators X̄obs±SD/cm X̄sim±SD/cm N α β R2 CV RMSE/cm NRMSE/% D

BP neural
network

Celery 16.27±4.34 16.89±2.88 82 –0.37 0.99 0.43 0.03 3.32 20.39 0.76
Spinach 6.76±1.61 7.01±0.28 51 –8.82 2.22 0.15 0.03 1.53 22.68 0.34
Parsley 6.61±1.51 6.66±0.91 45 1.54 0.76 0.21 0.03 1.34 20.31 0.63
Tea 9.06±1.41 9.11±0.18 157 –3.29 1.36 0.03 0.01 1.39 15.36 0.19

Elman neural
network

Celery 16.27±4.34 16.29±4.57 82 1.23 0.92 0.95 0.03 1.05 6.44 0.99
Spinach 6.76±1.61 6.74±1.63 51 0.13 0.98 0.99 0.03 0.14 2.02 1.00
Parsley 6.61±1.51 6.54±1.56 45 0.34 0.96 0.98 0.03 0.23 3.54 0.99
Tea 9.06±1.41 8.93±1.44 157 2.55 0.73 0.55 0.01 1.03 11.34 0.86

X̄obs X̄sim represents the average of observed values,   represents the average of the simulated values, SD represents the standard deviation, and N represents the number of
samples. α, β, and R2 respectively represent the regression coefficient, regression constant, and coefficient of determination. CV represents the coefficient of variation,
RMSE represents the root mean square error, NRMSE represents the normalized root mean square error, and D represents the compliance index. The following table is the
same.
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simulation  model  was  parsley.  The  RMSE  of  the  maximum  root
length  simulation  model  based  on  BP  neural  network  method  was
1.34-3.32 cm, the NRMSE was 15.36%-22.68%, the RMSE of  the
maximum  root  length  simulation  model  based  on  Elman  neural
network  method  was  0.14-1.05  cm,  and  the  NRMSE  was  2.02%-
11.34%.  It  could  be  seen  from  the  NRMSE  that  the  optimal
modeling  method  of  the  maximum  root  length  simulation  model
was  Elman  neural  network  method.  To  sum  up,  the  optimal
maximum  root  length  simulation  model  was  spinach  simulation
model based on Elman neural network.
 4.2    Validation of stem morphology simulation model

The  stem  length  and  diameter  model  were  validated  by  the

mutually  independent  data  of  the  stem color.  It  could  be  seen  that
the  simulated  value  and  the  measured  value  were  close  to  the  1:1
line,  and  close  to  the  error  range.  The  results  expressed  that  the
simulated values were in good agreement with the measured values.
Figure  2a  states  that  the  RMSE  of  the  observation  value
(Xobs±SD=20.30±10.74  cm)  and  simulation  value  (Xsim±SD=
20.44±10.38 cm) of the stem length simulation model was 4.21 cm,
NRMSE was 20.73%, R2 was 0.85, and D was 0.96. Figure 2b states
that the RMSE of the observed value (Xobs±SD=4.02±2.48 mm) and
the simulated value (Xsim±SD=4.16±2.48 mm) of the stem diameter
simulation model was 0.91 mm, NRMSE was 22.65%, R2 was 0.87,
and D was 0.97.
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Figure 2    Validation of stem length and diameter simulation model based on Elman neural network with color indicators
 

Table  3  shows  that  the  RMSE  of  different  crop  stem  length
simulation models was 1.74-5.67 cm, and the NRMSE was 19.67%-
31.36%. The NRMSE expressed that the optimal horticultural crop
stem  length  simulation  model  was  tea.  The  RMSE  of  stem  length
simulation  model  based  on  BP  neural  network  method  was  2.05-
6.38 cm, and the NRMSE was 21.15%-37.06%. The RMSE of stem
length  simulation  model  based  on  Elman  neural  network  method
was  1.42-4.96  cm,  and  the  NRMSE was  18.19%-25.65%.  It  could
be  seen  from the  NRMSE that  the  optimal  modeling  method  stem
length  simulation  model  was  Elman  neural  network  method.  The
RMSE of different crop stem diameter simulation models was 0.34-

1.30  mm,  and  the  NRMSE  was  18.83%-30.91%.  The  NRMSE
indicated  that  the  optimal  horticultural  crop  stem  diameter
simulation  model  was  tea.  The  RMSE  of  the  stem  diameter
simulation  model  based  on  BP  neural  network  method  was  0.43-
1.43 mm, the NRMSE was 22.53%-36.63%, the RMSE of the stem
diameter simulation model based on Elman neural network method
was 0.25-1.17 mm, and the NRMSE was 15.13%-27.25%. It could
be  seen  from the  NRMSE that  the  optimal  modeling  method  stem
diameter  simulation  model  was  Elman  neural  network  method.  In
general,  the  optimal  stem  length  and  stem  diameter  simulation
model was tea simulation model based on Elman neural network.

 
 

Table 3    Statistics for the comparisons between the simulated and measured stem length and diameter of different horticultural
crops using BP and Elman neural network

Indicators (Stem length) X̄obs±SD/cm X̄sim±SD/cm N α β R2 CV RMSE/cm NRMSE/% D

BP neural
network

Celery 24.99±9.48 25.43±6.66 615 –1.89 1.06 0.55 0.02 6.38 25.52 0.83

Spinach 5.53±2.19 5.71±0.88 140 0.53 0.88 0.13 0.03 2.05 37.06 0.49

Parsley 10.85±5.98 11.16±5.44 173 –0.03 0.97 0.79 0.04 2.77 25.54 0.94

Tea 24.20±5.47 23.27±1.94 209 –1.21 1.09 0.15 0.02 5.12 21.15 0.49

Elman neural
network

Celery 24.99±9.48 25.39±8.43 615 0.61 0.96 0.73 0.02 4.96 19.84 0.92

Spinach 5.53±2.19 5.30±2.15 140 1.26 0.80 0.62 0.03 1.42 25.65 0.88

Parsley 10.85±5.98 11.11±6.32 173 0.86 0.90 0.90 0.04 1.98 18.25 0.97

Tea 24.20±5.47 23.71±5.59 209 8.30 0.67 0.47 0.02 4.40 18.19 0.82

Indicators (Stem diameter) X̄obs±SD/mm X̄sim±SD/mm N α β R2 CV RMSE/mm NRMSE/% D

BP neural
network

Celery 5.50±2.32 5.87±1.62 615 –1.36 1.17 0.66 0.02 1.43 25.94 0.86

Spinach 1.87±0.55 2.26±0.39 140 0.47 0.62 0.19 0.02 0.65 34.57 0.58

Parsley 1.17±0.40 1.40±0.13 173 –0.64 1.30 0.17 0.03 0.43 36.63 0.51

Tea 3.47±0.89 3.47±0.36 209 –0.61 1.18 0.22 0.02 0.78 22.53 0.56

Elman neural
network

Celery 5.50±2.32 5.75±2.14 615 0.04 0.95 0.76 0.02 1.17 21.23 0.93

Spinach 1.87±0.55 1.86±0.69 140 0.86 0.54 0.46 0.02 0.51 27.25 0.81

Parsley 1.17±0.40 1.18±0.42 173 0.27 0.77 0.66 0.03 0.25 21.70 0.90

Tea 3.47±0.89 3.52±0.84 209 0.43 0.86 0.67 0.02 0.52 15.13 0.90
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 4.3    Validation of leaf morphology simulation model
The  leaf  chlorophyll  content,  length,  and  width  model  were

validated by using the mutually independent data of the leaf color. It
could be seen that the simulated value and the measured value were
close  to  the  1:1  line,  and  close  to  the  error  range.  Figure  3a
expresses  that  the  RMSE  of  the  observed  value  (Xobs±SD=
41.22±12.32  SPAD)  and  the  simulated  value  (Xsim±SD=
40.98±11.22  SPAD)  of  the  chlorophyll  content  simulation  model
was  6.04  SPAD,  NRMSE  was  14.66%,  R2  was  0.76,  and D  was
0.93.  Figure  3b  expresses  that  the  RMSE  of  the  observed  value
(Xobs±SD=6.23±12.63  cm)  and  the  simulated  value  (Xsim±SD=
6.32±12.67  cm)  of  leaf  length  simulation  model  was  1.73  cm,
NRMSE  was  27.81%,  R2  was  0.98,  and  D  was  1.00.  Figure  3c
expresses  that  the  RMSE  of  the  observed  value  (Xobs±SD=4.52±
3.30 cm) and the  simulated value  (Xsim±SD=4.59±3.14 cm) of  leaf

width simulation model was 1.15 cm, NRMSE was 25.45%, R2 was
0.88, and D was 0.97.

Table  4  denotes  that  the  RMSE  of  chlorophyll  content
simulation models for different crops was 2.80-8.22 SPAD, and the
NRMSE  was  8.63%-21.04%.  The  NRMSE  explained  that  the
optimal horticultural crop chlorophyll content simulation model was
celery.  The  RMSE  of  chlorophyll  content  simulation  model  based
on  BP  neural  network  method  was  3.14-8.66  SPAD,  the  NRMSE
was  9.27%-22.51%,  the  RMSE  of  chlorophyll  content  simulation
model  based  on  Elman  neural  network  method  was  2.45-7.77
SPAD,  and  the  NRMSE  was  7.98%-19.56%.  The  NRMSE
illustrated  that  the  optimal  modeling  method  chlorophyll  content
simulation model was Elman neural network method. In a word, the
optimal chlorophyll content simulation model was celery simulation
model based on Elman neural network.

 
 

S
im

u
la

ti
o
n
/S

P
A

D

80

60

40

20

0
0 20 40 60 80

Observation/SPAD

S
im

u
la

ti
o
n
/c

m

25

20

15

5

10

0
2520155 100

Observation/cm

a. Leaf chlorophyll content simulation model b. Leaf length simulation model c. Leaf width simulation model

300

200

100

0
0

100 200 300

S
im

u
la

ti
o
n
/c

m

25

20

15

5

10

0
2520155 100

Observation/cm

Tea
Celery
Spinach
Parsley
Cucumber
Zizania

Figure 3    Validation of leaf chlorophyll content, length, and width simulation model based on Elman neural network with color indicators
 
 

Table 4    Statistics for the comparisons between the simulated and measured leaf chlorophyll content of different horticultural crops
using BP and Elman neural network

Indicators X̄obs±SD/SPAD X̄sim±SD/SPAD N α β R2 CV RMSE/SPAD NRMSE/% D

BP neural
network

Zizania 33.36±11.65 33.14±9.20 123 1.08 –2.57 0.73 0.03 6.04 18.10 0.91

Celery 34.19±5.07 33.89±4.14 2193 1.71 0.96 0.61 0.00 3.17 9.27 0.87

Spinach 37.16±6.65 37.06±4.4 300 –1.81 1.05 0.48 0.01 4.77 12.83 0.79

Parsley 25.32±5.43 25.35±4.38 392 –0.34 1.01 0.66 0.01 3.14 12.42 0.89

Tea 47.85±12.11 46.73±7.45 3594 –6.18 1.16 0.51 0.00 8.66 18.09 0.78

White tea 57.36±8.97 57.52±5.24 696 –7.86 1.13 0.44 0.01 6.75 11.77 0.75

Yellow tea 46.51±14.16 47.23±10.5 986 –6.46 1.12 0.69 0.01 7.99 17.18 0.89

Green tea 64.45±7.17 63.57±3.14 602 –5.49 1.10 0.23 0.00 6.35 9.85 0.59

Green tea - Harvesting 35.48±9.33 35.59±3.91 1310 –9.35 1.26 0.28 0.01 7.99 22.51 0.59

Elman neural
network

Zizania 33.36±11.65 33.35±11.85 123 0.95 1.74 0.93 0.03 3.10 9.30 0.98

Celery 34.19±5.07 34.02±4.91 2193 4.32 0.88 0.72 0.00 2.73 7.98 0.92

Spinach 37.16±6.65 36.94±6.92 300 7.10 0.81 0.72 0.01 3.76 10.13 0.92

Parsley 25.32±5.43 25.18±5.30 392 2.18 0.92 0.80 0.01 2.45 9.68 0.95

Tea 47.85±12.11 47.54±10.09 3594 3.90 0.92 0.59 0.00 7.77 16.24 0.87

White tea 57.36±8.97 56.84±8.12 696 8.50 0.86 0.61 0.01 5.76 10.05 0.88

Yellow tea 46.51±14.16 46.43±12.18 986 0.22 1.00 0.74 0.01 7.28 15.64 0.92

Green tea 64.45±7.17 64.14±5.54 602 14.16 0.78 0.37 0.00 5.84 9.06 0.76

Green tea - Harvesting 35.48±9.33 35.11±7.01 1310 3.99 0.90 0.45 0.01 6.94 19.56 0.80
 

Table  5  shows  that  the  RMSE  of  different  crop  leaf  length
simulation  models  was  0.44-18.04  cm,  and  the  NRMSE  was
15.00%-22.87%.  The  NRMSE  expressed  that  the  optimal
horticultural  crop  leaf  length  simulation  model  was  zizania.  The
RMSE  of  the  leaf  length  simulation  model  based  on  BP  neural
network  method  was  0.46-21.65  cm,  the  NRMSE  was  15.92%-
23.99%,  the  RMSE  of  the  leaf  length  simulation  model  based  on

Elman neural network method was 0.41-14.42 cm, and the NRMSE
was  11.99%-21.74%.  It  could  be  seen  from  the  NRMSE  that  the
optimal modeling method leaf length simulation model was Elman
neural  network  method.  The  RMSE  of  different  crop  leaf  width
simulation models was 0.22-3.49 cm, and the NRMSE was 15.12%-
33.58%.  The  NRMSE indicated  that  the  optimal  horticultural  crop
leaf  width  simulation model  was  green tea.  The RMSE of  the  leaf

　October, 2025 Cheng C, et al.　Retrieval of horticultural crop morphology from color based on Elman neural network Vol. 18 No. 5 　 263　



width  simulation  model  based  on  the  BP  neural  network  method
was  0.23-3.61  cm,  and  the  NRMSE  was  15.78%-36.52%.  The
RMSE  of  the  leaf  width  simulation  model  based  on  the  Elman
neural  network  method  was  0.21-3.36  cm,  and  the  NRMSE  was
13.32%-30.64%. It could be seen from the NRMSE that the optimal

modeling  method  leaf  width  simulation  model  was  Elman  neural
network  method.  On  the  whole,  the  optimal  stem  leaf  length
simulation  model  was  zizania  simulation  model  based  on  Elman
neural  network,  and  the  optimal  stem leaf  width  simulation  model
was green tea simulation model based on Elman neural network.

 
 

Table 5    Statistics for the comparisons between the simulated and measured leaf length and width of different horticultural crops
using BP and Elman neural network

Indicators (Leaf length) X̄obs±SD/cm X̄sim±SD/cm N α β R2 CV RMSE/cm NRMSE/% D

BP neural
network

Zizania 120.23±48.72 121.48±42.66 117 1.02 –4.01 0.80 0.04 21.65 18.01 0.94

Cucumber 10.78±3.44 10.57±1.82 803 1.29 –2.81 0.46 0.01 2.59 23.99 0.74

Celery 5.32±1.07 5.42±0.53 6487 1.12 –0.76 0.31 0.00 0.90 16.86 0.65

Spinach 4.90±1.59 5.14±1.08 251 1.08 –0.63 0.54 0.02 1.11 22.66 0.81

Parsley 2.45±0.68 2.52±0.44 449 1.02 –0.10 0.44 0.01 0.51 20.81 0.77

Tea 3.72±0.68 3.87±0.05 3604 0.95 0.05 0.00 0.00 0.69 18.65 0.27

White tea 4.4±0.82 4.46±0.23 708 1.63 –2.84 0.20 0.01 0.75 17.01 0.45

Yellow tea 4.61±0.80 4.64±0.11 1039 1.93 –4.34 0.07 0.01 0.78 16.94 0.23

Green tea 3.84±0.70 3.92±0.15 604 1.56 –2.27 0.12 0.01 0.67 17.46 0.36

Green tea - Harvesting 2.86±0.61 2.91±0.39 1671 1.04 –0.18 0.45 0.01 0.46 15.92 0.77

Elman neural
network

Zizania 120.23±48.72 120.83±49.66 117 0.94 6.79 0.92 0.04 14.42 11.99 0.98

Cucumber 10.78±3.44 10.75±2.40 803 1.05 –0.53 0.54 0.01 2.34 21.74 0.82

Celery 5.32±1.07 5.41±0.73 6487 0.91 0.40 0.38 0.00 0.85 15.98 0.75

Spinach 4.90±1.59 4.83±1.53 251 0.87 0.70 0.70 0.02 0.89 18.16 0.91

Parsley 2.45±0.68 2.49±0.67 449 0.80 0.46 0.63 0.01 0.44 17.74 0.89

Tea 3.72±0.68 3.84±0.42 3604 0.71 0.98 0.19 0.00 0.63 16.96 0.64

White tea 4.40±0.82 4.48±0.65 708 0.78 0.93 0.38 0.01 0.67 15.22 0.77

Yellow tea 4.61±0.80 4.64±0.50 1039 0.81 0.87 0.25 0.01 0.70 15.25 0.67

Green tea 3.84±0.70 3.89±0.57 604 0.77 0.83 0.39 0.01 0.56 14.71 0.78

Green tea - Harvesting 2.86±0.61 2.90±0.49 1671 0.91 0.21 0.55 0.01 0.41 14.36 0.85

Indicators (Leaf width) X̄obs±SD/cm X̄sim±SD/cm N α β R2 CV RMSE/cm NRMSE/% D

BP neural
network

Zizania 1.86±0.43 1.86±0.24 117 1.20 –0.36 0.42 0.02 0.33 17.71 0.73

Cucumber 13.02±4.6 13.14±2.38 803 1.22 –2.99 0.40 0.01 3.61 27.69 0.70

Celery 5.41±1.24 5.52±0.68 6487 1.08 –0.55 0.36 0.00 1.00 18.50 0.70

Spinach 2.07±1.20 2.32±0.85 251 1.14 –0.57 0.65 0.04 0.76 36.52 0.85

Parsley 2.64±0.81 2.70±0.51 449 1.10 –0.31 0.48 0.01 0.59 22.18 0.78

Tea 1.50±0.28 1.55±0.05 3604 0.93 0.06 0.03 0.00 0.28 18.58 0.30

White tea 1.76±0.31 1.81±0.07 708 1.85 –1.58 0.19 0.01 0.29 16.50 0.41

Yellow tea 1.86±0.32 1.87±0.05 1039 1.27 –0.52 0.04 0.01 0.31 16.67 0.25

Green tea 1.59±0.25 1.64±0.05 604 1.30 –0.55 0.07 0.01 0.25 15.78 0.33

Green tea - Harvesting 1.11±0.32 1.12±0.21 1671 1.03 –0.06 0.48 0.01 0.23 20.55 0.79

Elman neural
network

Zizania 1.86±0.43 1.88±0.49 117 0.76 0.44 0.74 0.02 0.25 13.32 0.92

Cucumber 13.02±4.60 13.10±3.45 803 0.91 1.04 0.47 0.01 3.36 25.77 0.81

Celery 5.41±1.24 5.49±0.83 6487 0.95 0.20 0.41 0.00 0.96 17.72 0.76

Spinach 2.07±1.20 2.16±1.24 251 0.84 0.27 0.75 0.04 0.64 30.64 0.93

Parsley 2.64±0.81 2.72±0.82 449 0.81 0.44 0.68 0.01 0.49 18.64 0.90

Tea 1.50±0.28 1.55±0.17 3604 0.68 0.46 0.16 0.00 0.27 17.65 0.60

White tea 1.76±0.31 1.79±0.24 708 0.77 0.39 0.36 0.01 0.26 14.65 0.76

Yellow tea 1.86±0.32 1.88±0.21 1039 0.79 0.37 0.27 0.01 0.27 14.78 0.69

Green tea 1.59±0.25 1.61±0.20 604 0.65 0.55 0.26 0.01 0.23 14.46 0.71

Green tea - Harvesting 1.11±0.32 1.12±0.27 1671 0.88 0.13 0.55 0.01 0.21 19.37 0.85
 

This study solved the model parameters between leaf area and
morphology (leaf length and width) by stepwise regression method
according to the principle of least square method (Table 6). The leaf
area  simulation  model  was  validated  by  using  the  mutually
independent  leaf  morphology  data.  It  could  be  seen  that  the
simulation  value  and  the  measured  value  are  close  to  the  1:1  line,

and  close  to  the  error  range,  that  is,  the  simulation  value  and  the
measured value were relatively consistent. Figure 4 implies that the
RMSE  of  leaf  area  simulation  models  for  different  horticulture
crops  was  0.25-36.39  cm2,  NRMSE  was  6.88%-24.90%,  R2  was
0.83-0.99,  and D was  0.95-1.00.  The  optimal  leaf  area  simulation
model was tea simulation model based on stepwise regression.
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Table 6    Stepwise Regression parameters between leaf area and leaf morphology of different horticultural crops
Crop name N Leaf length Leaf width (Leaf length)2 (Leaf width)2 Leaf length×Leaf width Intercept R2

Zizania 100 - 20.3143 0.0028 - 0.4492 –5.1664 0.9101
Cucumber 690 4.8279 - 0.2946 0.6548 –0.382 –16.9482 0.9840
Celery 5779 0.41 –1.4402 0.1341 0.2242 0.4049 1.4709 0.9250
Spinach 341 0.9584 –3.1510 –0.0897 0.3218 0.6593 1.4418 0.9743
Parsley 320 0.4197 - –0.096 –0.0568 0.8613 –0.6576 0.9951
White tea 653 0.0927 0.5021 –0.0168 –0.199 0.6134 –0.4713 0.9994
Yellow tea 874 –1.0553 –0.9807 0.0541 0.0422 0.9037 2.4367 0.9855
Green tea 546 0.06 0.6753 –0.0286 –0.3332 0.6725 –0.5042 0.9968

Green tea - Harvesting 1032 - –0.5426 –0.0052 0.1201 0.7565 0.2143 0.9985
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 5    Discussion

√
n+m+a

This study established Elman neural network simulation model
of horticultural crops physiological and ecological indicators based
on the six-years sowing date variety experiment observed data and
used  independent  experiment  data  to  validate  the  model.  This
research overcomes the problems of model universality, such as the
high price of equipment like UAV multi spectral, hyperspectral, and
lidar  sensors,  and  the  complex  data  processing  process[9].
Meanwhile,  Elman  neural  network  makes  up  for  the  limitation  of
BP  neural  network,  which  is  only  applicable  to  obtain  the  local
optimal  solution and cannot  obtain  the  global  optimal  solution[16,30].
The results can provide scientific basis for crop digital visualization,
and  theoretical  support  for  precision  agriculture.  The  research
features  were  as  follows:  1)  considered  RGB,  LAB,  LCH,  YUV,
YCbCr,  HSV,  HSL,  and  other  color  spaces  to  comprehensively
analyze the colors  of  different  organs (roots,  stems,  leaves),  which
enhanced the visual effect realism of image analysis and improved
the  model  accuracy;  2)  set  the  number  of  hidden  layer  neurons  as

[28,29],  which  avoided  the  decline  of  model  accuracy
caused by subjective experience setting, and used the normalization
method to preprocess the sample data which improved the training
efficiency and network generalization performance.

A  large  number  of  studies  have  shown  that  the  color  feature
parameters  of  plant  organ  images  can  accurately  reflect  the  plant
growth  status[7,8,31].  These  studies  are  in  good  agreement  with  the
results  of  this  study.  However,  this  study  supplemented  the
quantitative relationship between the spatial distribution of color on
the scale of single leaf and other organs and the growth of different
types  of  horticultural  crops.  This  study  established  different
horticultural  crop morphology simulation models based on BP and
Elman  neural  network  methods  by  using  color  feature  parameters
inversion of plant organ images (Tables 2-5). The simulation effect
was as follows: maximum root length (average RMSE was 0.61 cm,
average  NRMSE  was  5.84%,  excellent  simulation  effect)  >

chlorophyll  content  (average  RMSE  was  5.07  SPAD,  average
NRMSE was 11.96%, good simulation effect) > leaf length (average
RMSE was 2.19 cm, average NRMSE was 16.21%, good simulation
effect) > leaf width (average RMSE was 0.69 cm, average NRMSE
was  18.70%,  good  simulation  effect)>stem length  (average  RMSE
was  3.19  cm,  average  NRMSE  was  20.48%,  general  simulation
effect)  >  stem  diameter  (average  RMSE  was  0.61  mm,  average
NRMSE  was  21.33%,  general  simulation  effect).  This  study
established  simulation  model  of  leaf  area  of  different  horticultural
crops  based  on  stepwise  regression  method using  leaf  morphology
feature.  The  simulation  effect  was  as  follows:  shrubs  (average
RMSE  was  0.25  cm2,  average  NRMSE  was  6.88%,  excellent
simulation  effect)>gramineous  (average  RMSE  was  36.39  cm2,
average NRMSE was 19.26%, good simulation effect) > melons and
fruits  (average  RMSE  was  21.62  cm2,  average  NRMSE  was
14.14%, good simulation effect) > leafy vegetables (average RMSE
was  4.36  cm2,  average  NRMSE  was  24.90%,  general  simulation
effect).  To  sum  up,  the  simulation  model  of  physiological  and
ecological  indicators  of  horticultural  crop  organs  based  on  Elman
neural  network algorithm had good simulation effect,  in  which the
leaf length and leaf width are retrieved from leaf color, and the leaf
area is retrieved through stepwise regression parameters.

The simulation model developed in this study has successfully
utilized organ color  component  data  to  extract  organ physiological
and  ecological  indicators.  This  innovative  approach  demonstrates
the  simplicity  of  input  data  and  the  high  accuracy  of  simulation
results. However, it is crucial to acknowledge that this study did not
account  for  morphological  changes,  such  as  leaf  folds  and  curls,
which  may  occur  simultaneously  with  color  changes  during  the
aging  process.  At  the  same  time,  it  is  necessary  to  increase  the
sampling frequency to explore the differences in crop color status at
different  growth  stages.  The  expression  of  color  in  plant  organs
involves  a  highly  complex  process  affected  by  various  external
climatic  conditions,  including  light,  temperature,  and  humidity,  as
well  as  internal  factors  such as  plant  nutrition,  diseases,  and pests.
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This  study  integrated  as  many  different  crop  types  as  possible
through  the  current  horticultural  crop  data,  in  order  to  explore  the
universal  research  ideas  for  retrieval  morphology  from  color.
Therefore,  it  is  essential  to  establish  a  dynamic  database  of  crop
characteristics at different growth stages and varieties. Elman neural
networks  all  use  gradient  descent-based  BP  algorithm  for  weight
and  threshold  optimization.  This  method  is  simple  and  easy  to
implement, but the randomness of initial weights and thresholds can
increase the output error of the network, reduce the recognition and
classification  accuracy  of  the  network,  and  also  decrease  the
stability  of  the  network.  The  network  is  prone  to  falling  into  local
extremum and other  disadvantages.  Therefore,  in  order  to  enhance
the  global  search  capability  of  the  algorithm,  genetic  algorithms
with variable population size can be used in the future to optimize
the initial weights and thresholds of the network. Meanwhile, in the
future,  it  is  possible  to  integrate  comprehensive  databases[32,33]  and
compare  various  machine  learning  algorithms[5,17-19] with  the  aim of
improving  the  accuracy  and  universality  of  the  model.  The  model
will provide a reliable foundation for agricultural research and high-
yield cultivation.

 6    Conclusions
1)  The  root  morphology  simulation  model  based  on  Elman

neural  network  has  a  high  simulation  effect.  The  RMSE  of
maximum root length simulation model was 0.14-1.05 cm, and the
NRMSE was 2.02%-11.34%.

2)  The  stem  morphology  (length  and  diameter)  simulation
model based on Elman neural network has a high simulation effect.
The RMSE respectively  was 1.42-4.96 cm and 0.25-1.17 mm, and
the NRMSE respectively was 18.19%-25.65% and 15.13%-27.25%.

3)  The  leaf  morphology  (chlorophyll  content,  length,  and
width)  simulation  model  based  on  Elman  neural  network  and  leaf
area simulation model based on stepwise regression method have a
high  simulation  effect.  The  RMSE  respectively  was  2.80-8.22
SPAD,  0.44-18.04  cm,  0.22-3.49  cm,  and  0.25-36.39  cm2,  and  the
NRMSE respectively was 8.63%-21.04%, 15.00%-22.87%, 15.12%-
33.58%, and 6.88%-24.90%.

 Data availability
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