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Method for the hyperspectral inversion of the phosphorus content of rice

leaves in cold northern China

. - . *
Fenghua Yu?, Honggang Zhang®, Juchi Bai', Shuang Xiang®, Tongyu Xu'?
(1. School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China;
2. Liaoning Agricultural Information Engineering Technology Research Center, Shenyang 110866, China)

Abstract: Phosphorus plays a vital role in the growth and development of rice in the cold northern regions, affecting the yield
and quality of rice. The phosphorus content of leaves can indicate the nutritional status of rice. Rapid and accurate acquisition
of the phosphorus content in leaves is the basis for ensuring healthy rice growth and maintaining stable and high rice yield.
Hyperspectral technology can reflect the shape of rice leaves and then evaluate the phosphorus content in the leaves, so
hyperspectral technology has the potential to estimate the phosphorus content in plant leaves quickly and accurately. The
hyperspectral data of the rice leaves were pretreated using the SG smoothing method. The spectral characteristics of pretreated
spectral data were extracted using principal component analysis (PCA) and linear discriminant analysis (LDA). Extreme
learning machine (ELM) and Bat algorithm optimized extreme learning machine (BA-ELM) were constructed to retrieve the
phosphorus content in rice leaves. The results show that there are seven feature vectors produced by the two methods, and the
feature vectors selected by the two methods are used as inputs, respectively. The verification sets R* and RMSE of the two
models constructed using the feature reflectivity chosen by the LDA algorithm as input were between 0.603 and 0.604, and
0.025 and 0.032, respectively. Under the condition of the same inversion model, the model constructed by using the reflectivity
of the features selected by the PCA algorithm as input has a better prediction effect, and the verification set R*> of the two
models was between 0.685-0.765, and RMSE was between 0.022-0.038. In addition, when using the features selected by these
two algorithms to model, comparing the prediction results of the two models, it was found that the accuracy of the BA-ELM
was higher than that of ELM. Its determination coefficient R*> and RMSE of the verification set were 0.765 and 0.022,
respectively. Because of this, the ELM optimized by principal component analysis and BA has certain advantages in the
hyperspectral inversion of phosphorus content in rice leaves in cold regions, and can provide some reference for rapid and
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accurate detection of phosphorus content in rice leaves.
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1 Introduction

Phosphorus is an essential element in the morphological
composition of various compounds in crops, which participates in
many metabolic processes in life and is very important for the
growth and development of crops'’. Adequate phosphorus content
will increase the tiller number of rice and improve metabolic
function and stress resistance, thus accelerating rice maturation and
increasing rice yield. On the contrary, when rice is deficient in
phosphorus, the color of the plant becomes dark, the leaves become
narrow and even die, and the number of tillers decreases, which
affects the development of rice®”. Research results have shown that
a reasonable application rate, application mode, and fertilizer type
of phosphate fertilizer could improve the accumulation and
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transport of dry matter after anthesis, and improve the phosphorus
absorption and utilization efficiency of plants®™*. However, in actual
fertilization, people often choose to apply excessive phosphate
fertilizer in pursuit of a high rice yield, leading to the low utilization
rate of phosphate fertilizer in the current season. Excess phosphate
fertilizer is deposited in the soil. With the increase in the
accumulation of phosphate fertilizer, the soil appears to become
eutrophic, which will not only lead to a reduction in rice yield but
also cause pollution of the non-point source'. Therefore, a rapid
and accurate diagnosis of the distribution of the phosphorus content
in rice leaves is essential to achieve efficient green agriculture!”.

The traditional method for detecting the phosphorus content in
rice leaves is chemical analysis. The time and labor cost of chemical
analysis is high. Hyperspectral diagnosis of phosphorus content in
rice leaves not only can broaden the scope of research on plant
phosphorus nutrition diagnosis but also compensate for the
disadvantages of traditional phosphorus nutrition diagnosis, which
has the advantages of rapidity and non-destructiveness®®”.

The development of hyperspectral remote sensing technology
provides a new means of rapid and non-destructive monitoring of
crop components'”. UAV hyperspectral images were used to
estimate different nitrogen traits of leaf nitrogen content (LNC),
plant nitrogen content (PNC), leaf nitrogen accumulation (LNA),
and plant nitrogen accumulation (PNA). Additionally, the influence
of the growth stage was evaluated. The results showed that the
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correlation between four nitrogen traits and three biochemical traits -
leaf chlorophyll content, canopy chlorophyll content, and
aboveground biomass - was affected by the growth stage. Tian et
al.'""" estimated LNC in rice under variable vegetation cover by
constructing a spectral index. The results showed that this was the
best index for estimating LNC in rice under various cultivation
conditions. The canopy nitrogen status of rice was estimated by
binary Particle Swarm Optimization-support vector regression
(BPSO-SVR) using hyperspectral reflectance in the cold regions.
The results showed that the BPSO-SVR method had an excellent
RMSE (0.913-0.949) and a small RMSE (0.055-0.127) in fitting the
canopy nitrogen concentration of rice in three stages of growth. Liu
et al.™! analyzed hyperspectral reflectance data based on wavelet
analysis to monitor the stress level of rice polluted with heavy
metals. The results showed that the red edge position (REP) was the
most sensitive index to monitor the level of rich metal pollution in
rice crops.

It can be seen that a great deal of research has been carried out
on the detection of nitrogen content in wheat, rice, corn, and
other crops by hyperspectral technology. However, there are
relatively few studies on the detection of phosphorus content.
Mahajan et al.'’ and others used hyperspectral remote sensing
technology to monitor the contents of nitrogen, phosphorus, sulfur,
and potassium in wheat and evaluated the predictability of plant N-
P-S-K for eight traditional vegetation indices (VIs) and three
proposed vegetation indices (1 P and 2 S). The results showed that
the P content predicted by VI (Pygg.1460) had high precision
(correlation coefficient R*=0.42). Mutanga et al!'”? used
hyperspectral image data to estimate and map the distribution of
phosphorus concentration in African prairie grass. The results
showed that the best-trained neural network predicted the
phosphorus distribution with a determination coefficient of 0.63 and
a root mean square error (RMSE) of 0.07, and the absorption
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characteristics located in the short-wave infrared (Rjg15:190)
contained more information about the phosphorus distribution.

In summary, hyperspectral technology can perform rapid and
accurate detection of phosphorus content in rice leaves. It is of great
significance to quickly ascertain the growth status of rice, but
scholars at home and abroad have relatively little research on the
inversion of the phosphorus content in rice by hyperspectral
technology, and the basis for reference is still minimal. Therefore,
to further solve the problem of excessive application of phosphorus
fertilizer, and to improve the precision and applicability of the
inversion of the phosphorus content in rice leaves, this study took
rice as the research object, analyzed the hyperspectral changes in
rice leaves under phosphorus stress, and established a hyperspectral
inversion model of the phosphorus content in rice leaves in cold
northern China, and could be used as a reference for precise
fertilization and field management of rice.

2 Experimental part

2.1 Experimental design

The experiment was conducted from June to September 2021 in
the experimental rice base of Shenyang Agricultural University
(122°43'33 ''E and 40°58 '44''N), Haicheng City, Anshan City,
Liaoning Province. The rice variety was Beijing 1705. The
experimental rice field was divided into 11 plots as shown in
Figure 1, with five nitrogen fertilizer gradients. The nitrogen
fertilizer application rates were as follows: Ny=0, N;=50 kg/hm’, N,=
100 kg/hm?, N;=150 kg/hm’, N,=200 kg/hm’. Due to the effect of
the interaction between nitrogen and phosphorus absorption in rice
leaves!®, the phosphorus content (LPC) of rice varied with the
amount of nitrogen fertilizer applied, so there was no phosphorus
fertilizer gradient in the experiment. The amount of phosphorus
fertilizer involved in each plot was 1080 kg/hm? and the other
management measures were the same.

v ‘Note: N rate (kg'N-ha'): NO (0); N1 (50); N2 (100); N3 (150); N4 (200)

Note: Figure created in SuperMap 11i (supermap.com), made with RiverMap (www.rivermap.cn).

Figure 1

The entire rice growth period was sampled since June 2021.
The sampling interval was seven days, and the sampling process
was as follows: Prepare self-sealing bags before sampling and mark
them according to plots. Randomly select three rice holes as sample

Plot distribution of the experimental field

points in each property of the experimental field for destructive
sampling. Put the selected samples in self-sealing bags and bring
them back to the laboratory, remove the roots, keep the leaves,
deactivate the enzymes at 105°C for 2 h, dry them at 90°C at low
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temperature, and weigh and crush them after drying. Put the crushed
samples in labeled envelopes and store them in a drying vessel. N, = @))

2.2 Extraction of spectral information from rice leaves

The spectral data of the rice leaves in this study were obtained
using an HR2000+ spectrometer, and the spectral reflectance was
collected using Ocean View software. The spectrometer was
manufactured by Ocean Optics Company of America. The spectral
range of HR2000+ is 400-1000 nm, and its resolution is 0.4610 nm.
Before the spectrum of the sample was collected, the instrument
was corrected using its whiteboard. To reduce the error, whiteboard
correction was carried out strictly every 10 min. When collecting
leaf spectral data, the probe must be tightly attached to the blade to
avoid interference caused by sunlight and other factors'.
2.2.1 Determination of phosphorus concentration in rice leaves

The method for detecting phosphorus concentration in rice
leaves is vanadium molybdenum yellow colorimetry. Before
determination, impurities were removed from the ground sample,
the 0.3-0.4 g sample was weighed, and then placed in a conical
flask. The mixture of water, sulfuric acid, and perchloric acid-nitric
acid was added for digestion and then placed in a volumetric flask
as the solution to be calculated. Part of the solution to be measured
was put in a 50 mL volumetric flask, dinitrophenol indicator and
sodium hydroxide solution were added, and the solution was mixed
until its color turned yellow. After modulation, ammonium
vanadium molybdate chromogenic agent and water were added for a
constant volume. After some time, the spectrophotometry of the
solution was measured with a cuvette, and the phosphorus content
was calculated according to the absorbance value™.
2.2.2  Spectral data preprocessing

Because of baseline drift, sample inhomogeneity, scattering,
and artificial operation, the spectral signal contains a small amount
of noise in the process of hyperspectral data acquisition. To obtain
more accurate and effective spectral information, the advantages
and disadvantages of various spectral pretreatment methods were
compared. In this study, an outlier removal method based on linear
interpolation and SG smoothing was proposed. Because SG
smoothing does not change the shape or width of the signal when
filtering noise, the correlation between spectral reflectivity and
phosphorus content was enhanced. Therefore, the two methods were
combined to reduce the noise from spectral data.
2.2.3 Extraction of spectral characteristics of rice leaves

After preprocessing, the spectral data are still a high-
dimensional dataset. There is a lot of redundancy and a strong
correlation between the spectral bands, so the subsequent processing
is complex. Therefore, the selection of features from the rice leaf
spectral data is the key to improving the accuracy of the model.
Principal component analysis (PCA) and linear discriminant
analysis (LDA) were used in this study.
2.2.4 Principal component analysis

PCA is to recombine several characteristic indices that can
reflect the phosphorus application level of rice. A group of
unrelated and non-overlapping comprehensive indices was formed
to replace the original influence indices. Some extensive indices
which could reflect the original index information were extracted
according to the actual demand, to accurately predict and classify
the rice phosphorus level. The norm value is the length of the vector
norm of the index in the multidimensional space composed of
principal components. The longer the distance, the greater the total
load of the index on all main components, and the stronger its
ability to interpret complete information. The norm value is
calculated by:

where, N, is the comprehensive load of the /" variable in the first &
principal components with eigenvalue >1; Uy, is the load of the i*
variable in the £* principal component; and 4, is the eigenvalue of
the k" principal component?'.
2.2.5 Linear discriminant analysis

LDA is used to maximize the ratio between different classes
and conflicts of the same type. To achieve the maximum separation
between feature sets in each category, for K-class LDA, the sample
space is divided into K classes, each class is composed of a specific
number of data samples corresponding to the same phosphorus type,
and the K-class linear discriminant function is as in Equation (2):

Ci(X) =VIX;+Vio = ViXpVpXp+ ...+ VipXjp +Vp (2)
where, j=1, 2, 3, ..., k=1; X=[x;, x5, x5, ..., xp] is the D-
dimensional vector of the jth sample;v} =[v;,Vji,...,v;p] is the

coefficient matrix of class j; v is the threshold of class j sample
classification.

In the training stage, the weighting coefficient matrix is
obtained from the training samples in the iterative process. For each
training sample JX; belonging to class 7, the coefficient matrix is
obtained by training so that C,(X) is larger than all other classes. To
classify unknown samples, the weighting coefficients calculated in
the training stage will be used to calculate the JX; discriminant
function of test samples. A test sample can be divided into a class of
linear discriminant functions if the class of linear discriminant
functions of the test sample is more significant than any other class
of linear discriminant functions. If Equation (3) is satisfied, the test
sample belongs to class O,

Co(X) 2 Cy(X), Yo#£gq (3)

2.3 Modeling method
2.3.1 Extreme learning machine

ELM is a kind of model proposed by Huang et al.”*, with the
advantages of simple operation, fast training speed, and less human
intervention. The model randomly selected the weight of the input
layer and the offset of the hidden layer during initialization. The
importance of the output layer was calculated analytically by
minimizing the loss function composed of the training error term
and the regular time of the weight norm of the output layer
according to the Moore-Penrose (MP) generalized inverse matrix
theory. It does not need to be adjusted in the training modeling
process, so it is not necessary to manually change the number of
neurons in the hidden layer to find the optimal prediction value.
From the aspect of learning efficiency, the ELM learning process is
not only simple but also efficient, but the process of randomly
generating initial values quickly leads to a decrease in stability and
generalization of the created model™!.
2.3.2 Extreme learning machine optimized by bat algorithm

The Bat algorithm (BA) is a heuristic search algorithm based
on swarm intelligence proposed by Yang®’ in 2010. It is an
effective method to search for the optimal global solution. The
algorithm is an optimization technique based on iteration, which
initializes a set of random keys, then searches for the optimal
solution through iteration, and generates a new local solution by
random flight around the optimal solution, thus strengthening the
local search. To improve the inversion accuracy of the ELM
method, the bat algorithm is used to optimize the input layer
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parameters and the hidden layer of the ELM network. Using the
global optimization ability of the bat algorithm, the optimal input
layer weight and invisible layer threshold of ELM were obtained,
thus avoiding the defect of the diagnostic190 accuracy of ELM not
being high enough due to poor parameter selection. The flow chart
of the BA algorithm optimizing the parameters of the ELM model is
shown in Figure 2.

Begin

‘ Parameter initialization

N
!

Fitness function

Calculate the fitness value
for each individual in the
population

Whether
the termination
conditions

The speed and position are update
adjusting the punch frequency to

Output optimal input
weights and hidden

generate a new solution layer bias
N Weather to | End ]

\. /

accept the new,
solution

Update the pulse volume
and pulse frequency

Figure 2 Chart of ELM optimization based on BA

Suppose that there are N arbitrary samples (X, f), where,
o X)) ER, t=(ty, tp, ..., t;)"ER", n is the
dimension of the input layer, m is the dimension of the output layer,
g(x) is the activation function, and the number of nodes in the
hidden layer is L. The main process of optimizing ELM model

/Yi:(xila Xy Xj35 .-

parameters by the BA algorithm is as follows:

Step 1: Initialization parameters: the maximum number of
iterations N _iter=50, the initial population number N _pop=20, the
maximum pulse volume 4 0=1.6 and the maximum pulse rate
r,=0.0001, the search pulse frequency range [fi, fmax]=10, 2], the
attenuation coefficient a=0.9, the enhancement coefficient y=0.99;

Step 2: Randomly initializing the bat position Y;, which is
composed of the input layer weight Y¥; and the hidden layer bias b, of
the ELM network; calculating the node output matrix H of the
hidden layer; and determining the corresponding output weight f;

Step 3: The design of the fitness function. The root mean
square error of the classification results is used as the fitness
function of the BA algorithm, and its expression is Equation (4). In
the evolution process, the individual with the smallest fitness is
selected as the current optimal solution;

Zzﬁjg(wj - X; +bj)—t‘_2

=1 j=1
gy “4)

fitness =

Step 4: Adjust the search pulse frequency of bats, update the
speed and position, and obtain the next generation population;

Step 5: Judge whether the termination condition is satisfied; if
so, the output ELM parameters correspond to the optimal global
position of the bat (input weight #; and hidden layer bias b,
otherwise return to Step 2 and repeat Steps 2-5).

3 Results

3.1 Data preprocessing and phosphorus statistics

The sampling data were pretreated by the SG smoothing
spectral processing method. The results are shown in Figure 3. The
standard deviation method was adopted three times to eliminate
outliers in the samples, 253 valid samples were obtained, the SPXY
algorithm was used to divide the training set and the verification set
for valid samples, and 184 training sets groups and 69 verification
sets groups were obtained. The statistical results of the phosphorus
concentration are listed in Table 1. From Figure 4, the average value
of the sample data is 0.3305 mg/g, the maximum value is 0.403 mg/g,
the minimum value is 0.216 mg/g, and the standard deviation is
0.0371 mg/g. Therefore, it can be seen that of the phosphorus
content data of 253 groups of rice leaves in this study, 200 conform
to a normal distribution, which can support the following research.

50
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Figure 3 SG smooth spectral curve

Table 1 Dataset statistics of phosphorus content in rice leaves

Sample Average/ Maximum  Minimum Standard

Dataset size/piece mg-g' value/mg-g' value/mg-g' deviation/mg-g"
Training set 184 0.3318 0.403 0.216 0.0401
Verification set 69 0.3271 0.372 0.249 0.0274

Probabilistic density function of phosphorus content
in leaves of rice 253 group

Average value: 0.3305/%
35t Maximum: 0.403/%
Minimum: 0.216/%
30 F Standard deviation: 0.0371
Sample size: 253
2 25t
=
S 201
o
2
= 151
10
5 -

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Phosphorus concentration/%

Figure 4 Probability density function of phosphorus content in

leaves of rice group 253
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3.2 Feature extraction
3.2.1 Correlation analysis of rice leaf spectral reflectance with P
In this study, the correlation between hyperspectral reflectance
and P of rice was analyzed, and the results of the analysis are shown
in Figure 5. The correlation between hyperspectral reflectance and S
was positive at 400-770 nm and negative at 770-1000 nm. It was
higher at 530-630 nm and 700-720 nm, with a maximum of 0.1392.
The correlation curves were similar to those of nitrogen, which may
be due to the similarity of the principles of the effects of N and P on
the hyperspectral reflectance of rice leaves. Considering the poor
correlation of S to the original hyperspectral bands, in this study,
PCA was used to extract features from the hyperspectral data before
inverse modeling.

0.15

Correlation coefficient
=}
f=}
W

_0'0§100 500 600 700 800 900 1000

Spectral band/nm
Figure 5 Correlation between P and hyperspectral reflectance
in rice

3.2.2 Feature selection by principal component analysis

In this study, PCA dimension reduction was used to transform
multiple indicators into a few indicators, eliminating the correlation
among many indicators and making them irrelevant. PCA can
project data to several orthogonal directions with the most
significant variance to retain the most sample information. The
greater the conflict of samples, the better the diversity of samples.
Figure 6 is the scatter plot of each vector after PCA dimensionality
reduction. The circle of each color represents a group of vectors
with high similarity. If the points of several samples are gathered
together, the similarity between these samples is very high; on the
contrary, if several sample points are very scattered, the similarity
between these samples is relatively low. In this study, the PCA
algorithm was used to project the data into an orthogonal subspace
with microscopic dimensions, which eliminates redundant
information between adjacent highly correlated frequency bands.
Pearson correlation analysis was carried out on the data after PCA

Result of PCA

-4 —4

Figure 6 PCA dimensionality reduction result plot

dimension reduction, and the analysis results are shown in Figure 7.
It can be seen that the correlation coefficient between each principal
component is less than 0.1098, which is used as a characteristic of
the inversion of the phosphorus content.

Pearson correlation coefficient heatmap
Correlation coefficient

; 1.0
1 004511 ~0.03224 0.02243 001763 ~0.09024 0.07539
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gl 0.07539 0.01505

1 2 3 4 5 6 7

Figure 7 Pearson correlation analysis results plot

3.2.3 Feature selection by linear discriminant analysis

LDA aims to search for multiple discriminant vectors to
maximize the ratio of interclass distance to intraclass distance. In
this study, the LDA method in the toolbox is used to reduce the
dimension of spectral data. Figure 8 shows the resulting diagram
after LDA dimension reduction, in which various circles of different
colors represent vectors that maximize the distance between classes.
Finally, seven sets of feature vectors are selected for phosphorus
inversion modeling®*".

Result of LDA

Figure 8 LDA dimensionality reduction scatter plot

3.3 Inversion modeling and analysis of phosphorus content in
rice leaves
3.3.1 Inversion modeling of extreme learning machine

In this study, the training samples obtained by PCA and LDA
after reducing the data dimension were used as input to the ELM
model. Measured values of phosphorus concentration in rice leaves
were used as training results, and the ELM network was trained.
After continuous attempts, the parameters of ELM were set as
follows: the output function was Purelin, the training function was
the trail, the activation function was Sigmoid, and the number of
hidden layer nodes was 25. The final results of the inversion are
shown in Figure 9.

As can be seen from Figure 9, compared with the two-
dimensionality reduction methods, the model established by using
the feature vector obtained by the PCA algorithm as the input of the
ELM model is more effective, with R* reaching 0.703 and 0.685 and
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RMSE reaching 0.022 and 0.038 mg/g, respectively. However, the
ELM model established by linear discriminant analysis is not
effective, since the R* of the model reaches 0.609 and 0.603, and the
RMSE is 0.025 and 0.025 mg/g, respectively.

PCA-ELM
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R*=0.703, RMSE=0.022mg'g™ y/alidation set
0.40 + Validation set o
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Figure 9 Inversion results of rice leaf phosphorus concentration
estimation model based on ELM

3.3.2 Extreme machine learning inversion modeling for
optimizing bat algorithm

The input parameters of the prediction model established by
BA-ELM are as follows: the number of nodes in the input layer is
set to 5, the number of nodes in the hidden layer is set to 80, the
activation function is sigmoidal, and the bias between the input
layer and the hidden layer is optimized by the BA algorithm, to
optimize the BA-ELM network. Inversion results are shown in
Figure 10.

It can be seen from Figure 10 that the inversion effect of the
ELM model optimized by the bat algorithm on rice phosphorus
concentration is significantly better than that of the traditional ELM
algorithm. The BA-ELM model established by using feature vectors
obtained by principal component analysis has the highest accuracy,
and the training set and verification set R* of the model reach 0.805
and 765, respectively, and RMSE are 0.019 and 0.022 mg/g,
respectively. The inversion accuracy of the BA-ELM model
established by linear discriminant analysis is low. The training set
and the verification set of the model reach 0.729 and 0.604,
respectively, and the RMSE is 0.022 and 0.032 mg/g, respectively.
3.4 Thematic maps of rice P content based on inversion results
of different algorithms

The measured hyperspectral data of 7.30 after PCA feature
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Figure 10 Inversion results of rice leaf phosphorus concentration
estimation model based on BA-ELM

extraction were selected, in the inversion results of different
algorithms, and the thematic maps of the inversion results of rice P
content were plotted. As shown in Figure 11, overall, the inversion
results of the two algorithms were closer to the actual fertilizer
application, and the accuracy of the BA-ELM model was due to the
ELM model. However, there was an overestimation of S content in
some plots, which might be due to the fact that there were more data
in the high N fertilizer plots, and under the influence of N and P
synergism, there were more data with high S content, which led to
high model fitting results.

4 Discussion

The results of the rice phosphorus inversion models established
by ELM and BA-ELM were compared and analyzed, and the
evaluation indices of the two models are listed in Table 2.

It can be seen in Table 2 that, in this study, compared to the
LDA algorithm, the PCA algorithm is more advantageous in
constructing the inversion model of the phosphorus content in rice
leaves. By comparing the results of the ELM model and the BA-
ELM model, it is found that the prediction effect of BA-ELM is
higher, regardless of whether the reflectivity of features used as the
input is selected by the PCA algorithm or the LDA algorithm, and
the training set R* of the model is improved by 0.102. The
verification set R* is improved by 0.08. The reason may be that
ELM is a generalized machine learning method of a single hidden
layer feedforward neural network, in which the connection weights
between the input layer and the hidden layer and the threshold of
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Figure 11 Thematic maps of rice P content based on the inversion

results of different algorithms

Table 2 Evaluation indices of ELM and BA-ELM
inversion models

. . R RMSE

Feature extraction Inversion — - - — - -

method model  Training Verification Training Verification
set set set set

PCA ELM 0.703 0.685 0.022 0.038

LDA ELM 0.609 0.603 0.025 0.025

PCA BA-ELM  0.805 0.765 0.019 0.022

LDA BA-ELM  0.729 0.604 0.022 0.032

the hidden layer are randomly generated, and there is no need to
adjust in the training process. Although it can avoid the tedious
iterative adjustment of neural network parameters, it easily falls into
optimal local solutions®”. Bat algorithm can not only maximize
the global and regional search ability of BA and the advantages of
fast learning of ELM but also overcome the inherent instability of
ELM, which makes the algorithm converge faster and diagnose
more accurately.

It is undeniable that this study still has deficiencies in
experimental design and data collection. Due to the limitation of the
experimental equipment, the collected hyperspectral data and P data
were both leaf-scale rather than canopy-scale data, which caused
some obstacles to the application of the model in real production
environments. At the same time, due to the lack of a radiative
transfer model that includes P, the study adopted a data-driven
approach for modeling, and although the model achieved high
inversion accuracy, the model’s ability to generalize still needs to be
validated in further studies. Future research is planned to conduct a
study on rice P inversion based on UAV hyperspectral data at the
canopy scale so that the model can be more widely used in
agricultural production.

5 Conclusions

In this study, the spectral data of the rice leaves were measured
by marine optical HR2000+, and the phosphorus concentration of
the rice leaves was measured by vanadium molybdenum yellow
colorimetry. The inverse results of the PCA and LDA, ELM, and
BA-ELM models were compared and analyzed, and the following
conclusions were obtained:

1) Two methods, PCA and LDA, were used to extract
hyperspectral features from rice leaves, and seven vectors of
characteristics were extracted.

2) Under the same model prediction condition, when the
features selected by the PCA algorithm were used as input, the
training set R of the model was 0.076 higher than that of the LDA
algorithm. The verification set R* was 0.160 higher than that of the
LDA algorithm, which proves the superiority of the PCA algorithm
in extracting spectral features of rice leaves and establishing an
inversion model.

3) Compared to ELM, the BA-ELM model has a better
inversion effect; R* of the training set was 0.8053, which is
improved by 0.102, and R’ of the verification set was 0.7647, which
is improved by 0.0802. Therefore, the optimization of the ELM
network by the bat algorithm can improve the inversion effect to a
certain extent.
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