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Recognition of the gonad of Pacific oysters via object detection
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Abstract: Oyster is the largest cultured shellfish in the world, and it has high economic value. The plumpness of the Pacific
oyster gonad has important implications for the quality and breeding of subsequent parents. At present, only the conventional
method of breaking their shells allows for the observation and study of the interior tissues of Pacific oysters. It is an important
task to use computer technology for non-destructive sex detection of oysters and to select mature and full oysters for breeding.
In this study, based on the multi-effect feature fusion network R-SINet algorithm, a CF-Net algorithm was designed through a
boundary enhancement algorithm to detect inconspicuous objects that appear to be seamlessly embedded in the surrounding
environment in nuclear magnetic resonance (NMR) images, effectively solving the problem of difficulty in distinguishing
Pacific oyster gonads from background images. In addition, calculations were performed on the segmented gonadal regions to
obtain a grayscale value difference map between male and female oysters. It was found that there were significant differences
in grayscale values between females and males. This task allows for non-destructive detection of the gender of oysters. Firstly,
a small animal magnetic resonance imaging (MRI) system was used to perform MRI on Pacific oysters, and a dataset of oyster
gonads was established. Secondly, a gonadal segmentation model was created, and the Compact Pyramid Refinement Module
and Switchable Excitation Model were applied to the R-SINet algorithm model to achieve multi-effect feature fusion. Then, the
Convformer encoder, Token Reinforcement Module, and Adjacent Transfer Module were used together to form the CF-Net
network algorithm, further improving the segmentation accuracy. The experimental results on the oyster gonad dataset have
demonstrated the effectiveness of this method. Based on the segmentation results, it is possible to calculate the grayscale values
of the gonadal region and obtain the distribution map of the grayscale value difference between male and female oysters. The
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results can provide a technical methodology for the non-destructive discrimination of oyster gender and later reproduction.
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1 Introduction

This study aimed to determine the sex of oysters visually in
order to ensure the selection of specific-gender oysters with ideal
commercial characteristics for breeding purposes. This will enable
to continuously improve the commercial characteristics of the
oyster population in a non-destructive and sustainable manner!'.
Using the Pacific oyster as an example, we select Pacific oysters
with plump gonads for parental breeding. With the rapid
development of small animal imaging technology and convolutional
neural networks, we can now use a small animal imaging system to
obtain Pacific oyster magnetic resonance imaging (MRI) images in
which we can clearly and intuitively observe the gonad part of
oysters without harm to live Pacific oysters. This can solve the
problem of high similarity between organs and tissues and
insignificant color differences in MRI images when segmenting the
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gonads by detecting unapparent objects in MRI images with
relatively complex backgrounds, which is important for improving
the integrity and accuracy of segmenting the gonads of Pacific
oysters.

In the field of agriculture, Xia et al.”! used spatial resolution
spectroscopy to detect the internal information of agricultural
products, making certain contributions to the sustainable
development of agriculture. Small animal MRI is a branch of
magnetic resonance imaging, which has greater magnetic field
strength, stronger gradient intensity, and can achieve higher spatial
and temporal resolution, allowing MRI to reach the level of
molecular imaging. This technique enables in vivo imaging of the
target animal to capture the changes in biological information such
as tissue structure, function, and metabolism under various
conditions, which is becoming an important tool for studying the
internal structure of small animals®. In 2001, the first clinical study
of canine intervertebral disc disease was conducted using MRI
technology in China. Small animal MRI technology has been
developed in China since 2009, leading to the emergence of
powerful and versatile small animal imaging systems. In 2019, Zhang
et al.” applied small animal MRI systems to study Alzheimer’s
disease (AD), providing multimodal imaging techniques to help
diagnose early AD. In 2022, Hang et al.”! used 7.0T small animal
MRI equipment to noninvasively observe brain injury in a rat model
of classic heat stroke. Small animal MRI techniques started earlier
abroad. In 1990, Button et al. used 0.35T small animal MRI to
observe the growth and morphology of tumors in mice. In 2021,
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Gilchrist et al. designed a gating unit for synchronized control of
the small animal heart and respiration using small animal MRI,
while in 2022, Liu et al.”’ conducted a multimodal animal MRI
study for memory generalization in mice. In 2024, Baskaya et al."!
used longitudinal ~ multi-parameter MRI  to  perform
pathophysiological mapping of chronic liver disease in an animal
model. The above-mentioned studies show that specialized small
animal MRI techniques provide technical support for the study of
small animal organ tissues. However, nowadays, while small animal
MRI techniques mainly focus on the detection and study of
terrestrial animals, there are few studies in the field of marine
organisms, especially shellfish organisms.

In recent years, with the iterations and advances in computer
vision, unapparent object detection identification techniques have
developed rapidly. In 2020, Fan et al.”’ first proposed a
camouflaged object detection technique, designed the SINet
network architecture aimed at identifying small target objects in
complex backgrounds, and constructed a COD10K dataset for their
task. In 2021, Lyu et al."” proposed a hierarchical localization of
target regions, introducing reverse attention!" to capture more
details of the spatial structure, and designed the LSR algorithm
model. Zhai et al.'” built an edge-shrinkage graph inference module
to guide the learning of feature representations of camouflaged
objects. Fan et al."”! proposed the SINet v2 network architecture
with optimization improvements based on SINet. In 2022, Jia et
al." performed both amplification and repetition operations for
camouflage object segmentation to achieve accurate localization of
camouflage objects by iteration and target object amplification and
proposed the SegMaR algorithm model. Li et al.'" performed work
to identify fish in complex backgrounds. In 2024, Xia et al.' used
improved YOLOvVS to detect surface defects of maize seeds.
However, when these existing detection and segmentation
algorithms for unapparent object detection are used to train MRI
grayscale images, the local feature extractions in all of these
algorithms are coarse and the global feature fusion is ignored. This
results in inadequate local feature extractions and loss of global
information in the segmented grayscale images, which in turn cause
incomplete segmentation targets and unclear boundaries, and the
overall level of the evaluation index of segmentation decreases.

In summary, in response to the shortcomings of small animal
MRI technology in aquatic shellfish applications and the inability of
existing unclear object detection algorithms to accurately segment
grayscale images, this study proposed a multi-effect feature fusion
algorithm R-SINet and a boundary
segmentation algorithm CF-Net, which are presented progressively.
Therefore, the main contributions of this study are five aspects:

network refinement

1) An unprecedented dataset of oyster gonads was established;

2) A new network algorithm R-SINet was proposed, which can
effectively improve the integrity of feature extraction from Pacific
oyster grayscale images;

3) A boundary refinement algorithm CF-Net was proposed,
which can ensure the integrity of the extracted gonad region while
finely segmenting the gonad edge region;

4) A large number of experimental results on the self-built
oyster gonad dataset show that CF-Net is more effective than other
state-of-the-art methods;

5) The grayscale histogram was used to obtain the grayscale
value difference between male and female gonads, laying the
foundation for non-destructive testing of the gender of Pacific
oysters in the future.

2 Materials and methods

The technology roadmap of this study is shown in Figure 1.
Firstly, a dataset of Pacific oyster gonads is established. On this
basis, a gonadal region segmentation model is created, which
includes two algorithms. The SINet algorithm initially segments the
oyster gonadal region completely and then uses the CF-Net
algorithm to refine the segmentation of the gonadal edge region
through boundary refinement operations. In this algorithm, the
focus is on extracting adjacent features and fusing them for
reinforcement. Finally, the image is segmented to obtain a grayscale
histogram of the oyster gonads.

2.1 Compact Pyramid Refinement Module

To solve the large semantic generation gap that appears after
the target object is subsampled, pyramid models are usually used to
improve the accuracy of small target detection. The common
pyramid models"”'¥ at this stage have problems such as large
computation, large memory consumption, and slow inference speed.
To solve such problems, this study added a lightweight feature
pyramid module after effectively fusing neighboring features,
deeply fused high-level and low-level features, and proposed a
Compact Pyramid Refinement Module, which improves efficiency
while ensuring accuracy.

First, we use Res2Net50"" network for image IeR"#
extracting features f; (k € {1,2,3,4,5}), obtaining five features with

-+ %, and then expand the perceptual field by
the texture enhancement module (TEM). We only use f;, f;, and f5 as
the feature images [ = Fic (fA, W(]C) ,ue{l,2,3},

The compact pyramid refinement uses the idea of depth
direction separable convolution®. The specific equation is shown

H
a resolution of f;, = %

below:
fi =Convy,, (f)
f%=Convi,(f), i=2,4,8
£ =ReLU (BN (£ + fi* + £))
fs=Convy, () +f

where, f'denotes the input of the feature image; Conv,,,, denotes the
input for the nxm convolution operation; ReLU denotes the

(1

nonlinear activation function; BN denotes the Batch Normalization;
and d,, denotes the corresponding expansion rate size.

In this way, the lightweight decoder with feature pyramid
refinement proposed in this study can aggregate multi-level features
from top to bottom and achieve efficient feature capture at all
levels. The structure diagram of the Compact Pyramid Refinement
Model is shown in Figure 2.

2.2 Switchable Excitation Model

The predicted target regions are erased by a reverse attention
mechanism (GRA) as a way to mine the detailed content in the
complementary regions. First, the candidate feature maps are treated
{Pf € RIPWIEC =3 4, 5}, grouped by dimensional channels, and
divided into {m; =C/g;,i=1,2,3}, where g; denotes the grouping
size of processed features. Additionally, the inversion map obtained
under the inversion guidance operation rf, regularly inserted into
the processed grouped features, can be finally represented as
{{prrf}, o, {pf.m,’rll{}vpfj € RH/2K><W/2K><):, }
refinement operation is performed on multiple combined GRA
modules. By grouping inversion attention, more attention is paid to

Finally, an iterative

the local feature information of the target edges, but attention based
on the global scope is still lacking.
In this study, a switchable excitation module was proposed that
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Figure 2 Compact pyramid refinement diagram

automatically decides to select and integrate attention operators to
compute attention graphs. The type of incentive operator was
adjusted according to the network layer and the scenario to achieve
the combination of different incentive operators in different network
layers. The switchable excitation module proposed in this study was
added before the iterative refinement operation so that it trains the
Sigmoid values of each channel to obtain the corresponding weights
for each channel, and finally gives more attention to the channels
with larger weights, while suppressing the channels with smaller
weight values.
2.3 Convformer encoder

To address the issue that the global attention mechanism of the
transformer may be weakened in the context of CNN, we propose a
Convformer encoder. Convformer is an encoder model that
combines CNN style with transformer thinking. It mainly consists
of two parts: CNN-style Convolutional Self-Attention (CSA) and
Convolutional Feedforward Network (CFFN).

inspiration from the convolutional operation in CNN and simulates
the computation of query (Q), key (K), and value (V) in the self-
attention mechanism through local convolution. This not only
maintains the ability to extract local features but also introduces a
global attention mechanism, enabling the model to better handle
global information. The calculation formulas of Q and K are shown
in Equation (2).

[
_ E E q
Qi,j = E2+1,2+gxi+[, j+g

=1 g=-1

! !
K . = E* Xon
ij 2412+g Vit j+g

=1 g=—1

2

where, Q represents the query; K represents the key value; V
represents the attribute value; and E is a learnable projection matrix.
The specific process of the CSA module is shown in Figure 3.
The Convolutional Feedforward Network (CFFN) plays one of
the main roles in Convformer encoders. As a convolutional neural
network, its main goal is to extract local features from images and
integrate spatial information. This design concept aims to ensure
that Convformer can maintain similar performance to traditional
CNN when processing local information. The main structure of
CFFN consists of convolutional layers, Batch Normalization (BN),
and ReLU activation function, which work together to effectively
extract and integrate local features in images. In addition, CFFN
also plays a role in improving the features generated by
Convolutional Self-Attention. The structural flow of CFFN is
shown in Figure 4, consisting of two CBRs linearly connected.
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Figure 3 Convolutional Self-Attention diagram
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Figure 4 Convolutional Feedforward Network diagram

2.4 Token Reinforcement Module

The main function of the Token Reinforcement Module is to
interact and explore features between tokens in adjacent local
regions. Through this approach, it is hoped that the model can pay
more attention to local features and enhance its ability to extract
local features. Specifically, the Token Reinforcement Module
introduces a local feature interaction mechanism to enable adjacent
tokens to better learn and understand each other’s features. In this
way, the model can not only utilize global information but also
more effectively capture and utilize local features, thereby
improving the accuracy of boundary recognition in grayscale image
segmentation tasks. The structure diagram of the Token
Reinforcement Module is shown in Figure 5.

) i T,
L = ' T GFM

Matrix
product

C Connect S Sigmoid

Figure 5 Token Reinforcement Module diagram

2.5 Adjacent Transfer Module

At this stage, the adjacency propagation aggregation module
was proposed. It will fuse the current feature with the adjacent
feature of the previous one and put the fused feature into the
following transmission. It can be seen that the Adjacent Transfer
Module plays a bridging role in the decoder for adjacent feature
fusion and information transfer (both within the same layer and
across layers). The module architecture is shown in Figure 6.

F, is the feature passed to the Adjacent Transfer Module of the
next layer, and the adjacent transfer aggregation module can be
specifically expressed as the following equation:

F,=CBR(C(CBR(C(Fp_1,F),Fi)) 3)

where, F; and F;_, are the adjacent feature pairs of the current
feature layer; F,, is the output aggregate feature of the Adjacent

Transfer Module of the previous layer; C(-) represents the join
operation; and CBR is the set of convolution, Batch Normalization,
and modified linear unit functions.

F, CBR CBR CBR F,
i
I
i { l ¢l Connect
F, F., F,, U Downsampling
CBR
(conv+BN+ReLU)

Figure 6 Adjacent Transfer Module diagram

3 Experiments and analysis of results

3.1 Establishment of the datasets

To balance the differences between winter and summer growth
of Pacific oysters and ensure that oysters of any season can be used
for sex identification, 300 Pacific oysters of similar shape and
individual size were selected in the same culture environment. The
7.0 T high field intensity small animal magnetic resonance imaging
system equipment was used to obtain MRI images, as shown in
Figure 7. Figure 7a represents a small animal MRI instrument using
Bruker BioSpec 70/20 USR, manufactured by Bruker, Germany.
Figure 7b represents individual images of oysters of similar size
selected during the experiment, in which larger individuals cannot
be selected due to the limited aperture of the equipment. Figure 7¢
represents the NMR experiment process of a single Pacific oyster.
The main technical specifications of the equipment were: 7.0 T
magnet, aperture width of 20 cm, 660 mT/m gradient intensity, 7
groups of high-order uniform field coils, gradient power supply of
500 V/300 A, and the highest image pixel resolution of 10 um. As
for the main parameter settings, the longitudinal slice length was set
to 2 mm, the number of slices per Pacific oyster was 20, and the
echo time TE of transverse (75,) relaxation was set to 30 ms.

b. Indiviual images of oysters

c. NMR experiments on
a single pacific oyster

Figure 7 Photographs taken with NMR equipment

A total of 6000 slice images were obtained from 300 oysters,
and only the parts of the MRI images containing the gonads were
retained. 3500 Pacific oyster MRI images were obtained after
screening, and the gonadal boundaries of the original images were
labeled with labelme software to build the oyster gonad datasets.
The annotated images were randomly divided into training and test
sets in the ratio of 6:1, of which 3000 were used for training the
segmentation model and 500 were used for the tested model. An
example map of oyster gonad dataset annotation is shown in
Figure 8. Labelme software was used to label the gonad boundary
of the original image, the gonad area was completely depicted, and
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then the .json file was uniformly converted into binary ground truth
image format. The top row in the image represents the original
NMR image, and the bottom corresponds to the binary ground truth
image of the gonadal region.

> v O

Figure 8 Example of Pacific oyster gonad dataset annotation

3.2 [Experimental environment and evaluation index
The hardware and software parameters used in this study are
configured as listed in Table 1.

Table 1 Software and hardware parameter configuration

Software and hardware environment Configuration
Bruker BioSpec 70/20 USR
Intel(R) Core(TM) 19-9820X
NVIDIA Corporation GP100GL
CUDA 10.2, cuDNN 7.4

Pycharm, Anaconda

Small animal MRI system

Processor

Graphics processor

Graphics processor computing platform
Compile the program

Frame Pytorch

Programming languages Python 3.8

The input image size of the experiments in this study is
352x352, the epoch size is 50 during training, and the batch size is
8. The specific hyperparameter settings of the algorithm model in
this study are listed in Table 2. The training is performed using
Adam optimizer®™, and the whole training process takes about
70 min.

Table 2 R-SINet & CF-Net algorithm hyperparameter settings

Parameters Numerical value
Input size 352x352
Learning rate 0.0001
Batch size 8
Epoch 30
Number of iterations 3
Optimizer Adam

The model’s evaluation metrics include S-measure (Sa)??,
enhanced-matching evaluation metrics £F-measure (E®)™!, weighted
F-measure (wF)*, and mean absolute error (MAE)*! . Sa is an
evaluation of the perceived structural similarity of the object, and a
larger value indicates a better match of structural similarity. E@
evaluation index is based on the human visual perception
mechanism and is used to evaluate pixel-level similarity and image-
level similarity, which is suitable for evaluating the overall and
local accuracy of unapparent object detection, and a larger value
indicates higher detection accuracy. wfF is shown through
experiments to be more reliable than the traditional F-measure
method™, and its role is to carry out a comprehensive measure of
both accuracy and recall; the larger its value, the better the
segmentation effect. MAE is used to evaluate the accuracy
difference between the prediction map and the true image pixel
level, which can effectively evaluate the occurrence and number of
errors; the smaller its value, the smaller the error.

3.3 Ablation experiments

To verify whether the two models proposed in R-SINet
algorithm, the Compact Pyramid Refinement Module (CPR) and the
Switchable Excitation Model (SEM), are effective in this
segmentation task, corresponding ablation experiments were
conducted for both of them. The ablation experiments were tested in
the oyster gonad datasets using the same hyperparameters, and the
test results are listed in Table 3. From the data in the table, it can be
seen that the benchmark module, SINet v2, improves all four
evaluation indices after adding the Compact Pyramid Refinement
Model, among which Sa has a large improvement of 1.8%, reaching
a similarity rate of 88.3%, indicating that the model has a greater
effect on the feature extraction of the spatial structure in the
algorithm. When only the Switchable Excitation Model is added,
E® and wF evaluation indices improve relatively more, by 1.3%
and 1.5%, respectively, indicating that this model can obtain global
and local information more accurately. The experimental results
prove that the addition of the two models has a positive effect on the
results of the algorithm, which performs well in all four evaluation
indices, and shows the best results after incorporating the two
models into the overall framework at the same time, verifying the
effectiveness of the two models.

Table 3 Impact of the two models proposed in this study on
the R-SINet algorithm

Group  SINet v2 CPR SEM So 1 ED1 oF 1 MAE|
No.1 y 0.865 0910 0.863  0.038
No.2 y v 0.883 0911 0.865  0.033
No.3 y \ 0.866 0.923  0.878  0.039
No.4 \ \ \ 0.888  0.928 0.879  0.032

Note: CPR: Compact Pyramid Refinement Module; SEM: Switchable Excitation
Model; Sa represents the S-measure; E£@ represents the enhanced-matching
evaluation metrics E-measure; oF represents the weighted F-measure; MAE:
Mean absolute error.

In order to verify the effectiveness of the three boundary
enhancement methods proposed by the CF-Net algorithm,
Convformer encoder (CE), Token Enhancement Module (TEM),
and Adjacent Transfer Module (ATM) in this segmentation task,
corresponding ablation experiments were conducted on them. The
same hyperparameters were used to test the ablation experiment in
the oyster gonad dataset, and the test results are listed in Table 4. As
can be seen from the data in the table, the three methods have been
successively added to the benchmark module (BM), all of which
have been improved. The similarity rate of E® increased by 4.2%-
90.4%, indicating that the model has a great effect on the feature
extraction of spatial structure in the algorithm. When only the
marker-enhanced model is added, the Sa evaluation index increases
by 8.3%, indicating that this model can obtain global and local
information more accurately. When the Adjacent Transfer Module
is added, the wF performance is effectively improved. Therefore,
the experimental results show that the addition of the three modules
has a positive effect on the results of the algorithm, which performs
well in the four evaluation indicators, and shows the best effect after
integrating them into the overall framework at the same time,
increasing by 10.5%, 6.8%, 3.6%, and 2.4%, respectively, verifying
the effectiveness of the optimized algorithm in this study.

3.4 Comparative experiments and analysis of results

To verify the performance level of the proposed R-SINet and
CF-Net, they were tested with the SINet®, LSR'", SINet v2", and
SegMaR"™ in the oyster gonad datasets and the same running
environment, respectively. These four comparison algorithms were
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selected from the current excellent papers on the segmentation of
unapparent objects, and the comparison was authentic and effective.
The quantitative evaluation results of the experimental comparison
are listed in Table 5.

Table 4 Impact of the two models proposed in this study on
the CF-Net algorithm
TEM ATM  Sat E®t oF?

Group BM CE MAE]

No.1 Y 0.803 0.862 0.883  0.047
No.2 Y y 0.834 0904 0.889  0.040
No.3 \ \ 0.886 0.890 0.890  0.035
No.4 \ \ 0.885 0.891 0.898  0.038
No.5 v x/ \ \ 0.908 0.930 0919  0.023

Note: BM: benchmark module ; CE: Convformer encoder; TEM: Token Enhancement
Module; ATM: Adjacent Transfer Module; Sa represents the S-measure; E®
represents the enhanced-matching evaluation metrics E-measure; wF represents
the weighted F-measure; MAE: Mean absolute error.

Table 5 Evaluation results of different algorithms in the four
evaluation indices

Algorithm Sa 1 E® 1 wF' 1 MAE |
SINet" 0.662 0.887 0.476 0.068
LSR" 0.658 0.917 0.475 0.058

SINet_v2 0.865 0.910 0.863 0.038

SegMaR!" 0.653 0.918 0.474 0.059

R-SINet (the method of this study) 0.888 0.928 0.879 0.032
CF-Net (the method of this study) 0.908 0.930 0.919 0.023

SINet algorithm, which first introduced the concept of
camouflaged object detection, has a network structure that includes
the acquisition of sensory field search target objects and the
extension of the Partial Decoder Component (PDC) with a dense
connection to aggregate the remaining three layers of features to
obtain the final target object. The network framework is simple and
cannot achieve precise segmentation of the Pacific oyster gonads.

The LSR algorithm” adds the inverse attention module to the
SINet algorithm to obtain more spatial attention features, and its
method slightly outperforms the SINet algorithm in two evaluation
metrics, E® and MAE, by 3.0% and 0.1%, respectively. However,
its performance is inadequate compared with the algorithm
proposed in this study.

The SINet v2 algorithm™, which is the benchmark model of
the algorithm in this study, contributes by improving the sensory
field module and PDC module based on SINet while adding the
GRA module in the identification of the target object stage to
segment the gonadal part more finely. According to the quantitative
results, its Sa, wF, and MAE evaluation indices have been
significantly improved. However, its performance is still inferior to
the algorithm proposed in this study when all evaluation indices are
combined.

SegMaR algorithm"*, based on recognition segmentation, adds
the step of zooming in on the local area of the image and operates
iterative refinement. £@ detection accuracy is improved, reaching
an accuracy of 91.8%, but it performs poorly in the remaining three
indices. The main problem is that the zooming process focuses on
local details and tends to ignore the overall differences in spatial
perceptual structure.

From the evaluation results, it can be seen that the
segmentation performance of the methods proposed in this study
was higher than that of the other four algorithms. Compared with
the above four algorithms, the R-SINet algorithm model proposed
in this study can simultaneously take into account the search and

localization of the target object and the recognition segmentation
task. By obtaining larger sensory fields, adding compact feature
pyramids for efficient feature fusion, and introducing Switchable
Excitation Models after grouping embedded inverted feature maps
to make the network pay more attention to channels with larger
weights, the segmented image edge features are refined to achieve
the effect of accurate segmentation. By combining CNN and
transformer methods to optimize the segmentation of oyster gonad
boundaries, the CF-Net network architecture was also proposed. In
the feature extraction stage, a Convformer encoder is designed to
promote attention convergence, and a transformer is used to extract
global information features. Convolutional Self-Attention and
Convolutional Feedforward Networks are introduced to achieve
better segmentation performance. Then, a marker enhancement
module was proposed, which acts on adjacent local regions to
enhance the ability to extract local features. In the decoder stage, an
Adjacent Transfer Module is used to form a feature shrinkage
decoder, which fuses target feature information to complete the
refinement task of oyster gonad boundaries. Finally, the model
achieved the best test results in all four evaluation metrics, and the
visualized images also showed that the segmentation images
obtained by the method had clearer and more accurate boundaries,
proving the good practical performance of the method.

3.5 Visualization results

Some of the visualized segmentation results are shown in
Figure 9a, which shows the Pacific oyster MRI map. Figure 9b
shows the ground-truth map of the Pacific oyster gonad
segmentation. Figures 9c and 9d show the test result images of
oyster gonad segmentation obtained using the methods of this study,
in which it can be seen that the boundaries are clearer and the
segmentation results are closer to the ground-truth map. Figure 9e
shows the test result images of oyster gonad segmentation using the
SegMaR algorithm, in which some areas are inaccurate compared to
the ground-truth map. Figure 9f shows the test result images of
oyster gonad segmentation using the SINet v2 algorithm, where the
boundaries in the resulting images are blurred. Figure 9g shows the
test result images of oyster gonad segmentation using the LSR
algorithm, in which it can be seen that the boundaries are not
precise enough. Figure 9h shows the test results of oyster gonad
segmentation using the SINet algorithm, where the visual
segmentation results are somewhat vague.

Figure 9 shows that the contour structure of the segmented
gonads of Pacific oysters obtained by the two methods of this study
is closer to the true value map, and the gonad edges are clearer than
the other four algorithms, which confirms the effectiveness of these
methods.

3.6 Gray value calculation

Based on the method proposed in this study for optimizing the
boundary segmentation of the Pacific oyster’s gonads, the
segmented gonad is mapped onto the original image to obtain a
grayscale image of the region. Then, the average gray value in the
irregular enclosed area in the image is calculated. Through the
above operations, the average gray value of the gonadal region of a
single image can be obtained. This study randomly selected 2000
images after model testing to calculate the average gray value of the
gonadal region and finally used statistical graphs to represent the
distribution of their gray values, as shown in Figure 10.

By analyzing these numerical differences, we can find the
difference rule of the gray value range of the gonads of male and
female individuals. This can not only help this study better
understand the degree of gonadal development in oysters, but also
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provide technical support for subsequent non-destructive
discrimination of oyster sex, provide the best pairing scheme for
their reproduction and breeding, improve breeding efficiency and

success rate, and provide technical assistance for subsequent non-
destructive discrimination of oyster sex in parent breeding and other
applications.
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Figure 9 Visual comparison of gonad segmentation results
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Figure 10  Gray histogram curve of male and female oysters

4 Conclusions

This study is grounded in the magnetic resonance imaging of
Pacific oysters and employs the approach of unobvious target
detection to identify and segment the gonad images of Pacific
oysters. Additionally, the R-SINet network architecture was
proposed to achieve a complete segmentation of the oyster gonad
area, and the CF-Net boundary optimization algorithm was utilized
to enhance the precision of oyster gonad segmentation. Firstly, an
oyster gonad dataset consisting of 3500 images was established.
Secondly, two models were created. For the first model, a Compact
Pyramid Refinement Module was designed to fuse adjacent
semantic features, and a Switchable Excitation Model capable of
adaptive recalibration was proposed. This model automatically
adjusts the size of the excitation operator based on the significance
of different excitation operators, effectively enhancing the
interaction among attention channels, and ultimately achieving
multi-effective feature fusion for non-significant object recognition
and detection of oyster gonads. For the second model, in the feature
extraction stage, a Convformer encoder was designed to facilitate
attention convergence, and Convolutional Self-Attention and
Convolutional Feedforward Networks were introduced to obtain
better segmentation performance. The designed label enhancement
module operates in adjacent local regions, enhancing the extraction
ability of local features. Moreover, in the decoder stage, a feature
contraction decoder composed of Adjacent Transfer Modules was
utilized to fuse target feature information and complete the

refinement task of oyster gonad boundaries. The models proposed
in this study achieved the optimal test results in all four evaluation
indicators,
approach. Furthermore, through the grayscale histogram, it was
visually discovered that there is a significant difference in the
grayscale values of the female and male oyster gonads, providing
new techniques and means for the non-destructive selection of
oyster gender in subsequent studies.

This provides empirical evidence to support the continued

demonstrating the effectiveness of the proposed

development of gonad recognition to achieve high-quality trait
inheritance in a range of shellfish and contributes to the continued
development of deep learning-based recognition of complex
backgrounds in marine organisms. In the current work, the large and
tedious dataset labeling took a lot of time and effort. In future
research, semi-supervised or self-supervised image segmentation
should be tried in order to remove the problem of a large image
labeling workload in the early stage.

Acknowledgements

The authors acknowledge that this work was financially
supported by the Shandong Province Key R&D Program Project
(Grant  2022TZXDO005),
Technology SMEs Innovation Capacity Enhancement Project
(Grant 2021TSGC1003), and Yantai City Key R&D Program
Project (Grant 2022XCZX079).

Shandong Province Science and

[References]

[1]  Purdon A, Mole M A, Selier J, Kruger J, Mafumo H, Olivier P I. Using the
Rao’s Q diversity index as an indicator of protected area effectiveness in
conserving biodiversity. Ecological Informatics, 2022; 72: 101920.

[2] XiaY, Liu W X, Meng J] W, HuJ H, Liu W B, Kang J, et al. Principles,
developments, and applications of spatially resolved spectroscopy in
agriculture: A review. Frontiers in Plant Science, 2024; 14: 1324881.

[3] Yang L. Introduction to the management of hospital Bruker BioSpec94/30
USR type small animal MRI research equipment. China Equipment
Engineering, 2022; 4: 51-52. (in Chinese)

[4] Zhang Z N, Zheng Y, Wang X M. Application of 7.0T small animal MRI
to study the progress of Alzheimer’s disease. Chinese Journal of Medical
Imaging Technology, 2019; 35(6): 930-933. (in Chinese)

[5] Hang KB, SuW W, Huang J, Bao G J, Liu W H, Li S P. 7.0T small animal


https://doi.org/10.1016/j.ecoinf.2022.101920
https://doi.org/10.3389/fpls.2023.1324881
https://www.ijabe.org

December, 2024

Chen Y F, et al.

Recognition of the gonad of Pacific oysters via object detection

Vol. 17No. 6 237

[6]

[7

[8]

[9]

[10]

[11]

[12]

[13]

[14]

MR instrumentation to observe brain injury in a rat model of classic
pyrexia. Chinese Journal of Medical Imaging Technology, 2022; 38(4):
481-485. (in Chinese)

Gilchrist S, Kinchesh P, Kersemans V, Beech J, Allen D, Brady M, et al. A
simple, open and extensible gating control unit for cardiac and respiratory
synchronisation control in small animal MRI and demonstration of its
robust performance in steady-state maintained CINE-MRI. Magnetic
Resonance Imaging, 2021; 81: 1-9.

Liu WL, LiJH, Li L, Zhang Y H, Yang M G, Liang S C, et al. Enhanced
medial prefrontal cortex and hippocampal activity improves memory
generalization in APP/PS1 mice: A multimodal animal MRI study.
Frontiers in Cellular Neuroscience, 2022; 16: 848967.

Baskaya F, Lemainque T, Klinkhammer B, Koletnik S, von Stillfried S,
Talbot S R, et al. Pathophysiologic mapping of chronic liver diseases with
longitudinal multiparametric MRI in animal models.
Radiology, 2024; 59(10): 699-710.

Fan D P, Ji G P, Sun G L, Cheng M M, Shen J B, Shao L. Camouflaged
object detection. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle: IEEE, 2020; pp.2774-2784. doi:
10.1109/CVPR42600.2020.00285.

Lv Y Q, Zhang J, Dai Y C, Li A X, Liu B W, Barnes N, et al.
Simultaneously localize, segment and rank the camouflaged objects. In:
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Nashville: IEEE, 2021; pp.11591-11601. doi: 10.1109/
CVPR46437.2021.01142.

Chen S H, Tan X L, Wang B, Hu X L. Reverse attention for salient object
detection. In: Computer Vision — ECCV 2018, 2018; 11213: 236-252.

Zhai Q, Li X, Yang F, Jiao Z C, Luo P, Cheng H, et al. MGL: Mutual
graph learning for camouflaged object detection. IEEE Transactions on
Image Processing, 2023; 32: 1897-1910.

Fan D P, Ji G P, Cheng M M, Shao L. Concealed object detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021; 44(10):
6024-6042. https://arxiv.org/pdf/2102.10274.

Jia Q, Yao SL, Liu Y, Fan X, Liu R S, Luo Z X. Segment, magnify and
reiterate: Detecting camouflaged objects the hard way. In: 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New
Orleans: IEEE, 2022; pp.4703-4712. doi: 10.1109/CVPR52688.2022.00467.

Investigative

[15]

[1e]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(23]

[26]

Li L P, Shi F P, Wang C X. Fish image recognition method based on multi-
layer feature fusion convolutional network. Ecological Informatics, 2022;
72:101873.

XiaY, Che T C, Meng J W, Hu J H, Qiao G L, Liu W B, et al. Detection of
surface defects for maize seeds based on YOLOVS. Journal of Stored
Products Research, 2024; 105: 102242.

FuK R, Fan D P, Ji G P, Zhao Q J, Shen J B, Zhu C. Siamese network for
RGB-D salient object detection and beyond. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021; 44(9): 5541-5559.

Li CY, Cong R M, Piao Y R, Xu Q Q, Loy C C. RGB-D salient object
detection with cross-modality modulation and selection. In: Computer
Vision - ECCV, 2020; 12353: 225-241.

Gao S H, Cheng M M, Zhao K, Zhang X Y, Yang M H, Torr P. Res2Net:
A new multi-scale backbone architecture. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019; 43(2): 652-662.

Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T,
et al. MobileNets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint, 2017; arXiv: 1704.04861.

Kingma D P, Ba J L. Adam: A method for stochastic optimization. In:
ICLR 2015. 2015.

Fan D P, Cheng M M, Liu Y, Li T, Borji A. Structure-measure: A new way
to evaluate foreground maps. In: 2017 IEEE International Conference on
Computer Vision (ICCV), 2021; pp.4558-4567. doi: 10.1109/ICCV.2017.
487.

Fan D P, Gong C, Cao Y, Ren B, Cheng M M, Borji A, et al. Enhanced
alignment measure for binary foreground map evaluation. In: IICAI, 2018:
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, 2018; pp.698—704. doi: 10.24963/ijcai.2018/97.

Margolin R, Zelinik-Manor L, Tal A. How to evaluate foreground maps.
In: 2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus: IEEE, 2014; pp.248-255. doi: 10.1109/CVPR.2014.39.

Perazzi F, Krdhenbiihl P, Pritch Y, Hornung A. Saliency filters: Contrast
based filtering for salient region detection. 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2012: 733-740. doi:
10.1109/CVPR.2012.6247743.

Hand D, Christen P. A note on using the F-measure for evaluating record
linkage algorithms. Statistics and Computing, 2018; 28: 539-547.


https://doi.org/10.1016/j.mri.2021.04.012
https://doi.org/10.1016/j.mri.2021.04.012
https://doi.org/10.3389/fncel.2022.848967
https://doi.org/10.1097/RLI.0000000000001075
https://doi.org/10.1097/RLI.0000000000001075
https://doi.org/10.1109/CVPR42600.2020.00285
https://doi.org/10.1109/CVPR46437.2021.01142
https://doi.org/10.1109/CVPR46437.2021.01142
https://doi.org/10.1007/978-3-030-01240-3_15
https://doi.org/10.1007/978-3-030-01240-3_15
https://doi.org/10.1007/978-3-030-01240-3_15
https://doi.org/10.1007/978-3-030-01240-3_15
https://doi.org/10.1007/978-3-030-01240-3_15
https://doi.org/10.1109/TIP.2022.3223216
https://doi.org/10.1109/TIP.2022.3223216
https://doi.org/10.1109/CVPR52688.2022.00467
https://doi.org/10.1016/j.ecoinf.2022.101873
https://doi.org/10.1016/j.jspr.2023.102242
https://doi.org/10.1016/j.jspr.2023.102242
https://doi.org/10.1109/TPAMI.2021.3073689
https://doi.org/10.1109/TPAMI.2021.3073689
https://doi.org/10.1007/978-3-030-58598-3_14
https://doi.org/10.1007/978-3-030-58598-3_14
https://doi.org/10.1007/978-3-030-58598-3_14
https://doi.org/10.1007/978-3-030-58598-3_14
https://doi.org/10.1007/978-3-030-58598-3_14
https://doi.org/10.1007/978-3-030-58598-3_14
https://doi.org/10.1109/TPAMI.2019.2938758
https://doi.org/10.1109/TPAMI.2019.2938758
https://doi.org/10.1109/ICCV.2017.487
https://doi.org/10.1109/ICCV.2017.487
https://doi.org/10.24963/ijcai.2018/97
https://doi.org/10.1109/CVPR.2014.39
https://doi.org/10.1109/CVPR.2012.6247743
https://doi.org/10.1007/s11222-017-9746-6

	1 Introduction
	2 Materials and methods
	2.1 Compact Pyramid Refinement Module
	2.2 Switchable Excitation Model
	2.3 Convformer encoder
	2.4 Token Reinforcement Module
	2.5 Adjacent Transfer Module

	3 Experiments and analysis of results
	3.1 Establishment of the datasets
	3.2 Experimental environment and evaluation index
	3.3 Ablation experiments
	3.4 Comparative experiments and analysis of results
	3.5 Visualization results
	3.6 Gray value calculation

	4 Conclusions
	Acknowledgements
	References

