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Abstract: This study addresses the challenge posed by the small spore size of tomato gray mold, which hinders its
identification and enumeration by conventional techniques. This work presents a novel approach for quantifying spore counts
of tomato gray mold using diffraction imaging technology and image processing techniques. To construct a device for acquiring
diffraction images of tomato gray mold spores, initially, the hyperspectral data pertaining to the gray mold spores of tomatoes
was obtained. The characteristic wavelength of the light source of the diffraction image acquisition device was obtained by
smoothing, principal component analysis, and comprehensive coefficient weight calculation. Then, the key parameters of the
system were simulated, and the diffraction image acquisition device was built. Finally, tomato gray mold spores were counted
based on angular spectrum reconstruction and image processing. The findings indicated that the combined contribution rate of
the initial and secondary principal components of the original spectral data obtained from tomato gray mold spore samples
amounted to 92.271%. The visible range of 435 nm, 475 nm, and 720 nm can be selected as the light source for tomato gray
mold’s spore diffraction imaging system. CMOS image sensor was installed 45 mm below the micropore with a diameter of
100 um, and the diffraction image obtained by simulation has a clear diffraction fingerprint. The diffraction imaging system can
collect diffraction images of disease spores, and the collected diffraction images have clear diffraction fingerprints. The
experimental error range was 5.13%-8.57%, and the average error was 6.42%. The error was within a 95% consistency.

Vol. 17 No. 6

Therefore, this study can provide a research basis for the classification and recognition of greenhouse disease spores.
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1 Introduction

Tomatoes are one of the most widely consumed vegetables in
the world due to their being a staple vegetable in most meals and
their great nutritional value!?. At present, China has become the
largest producer and consumer of tomatoes in the world, with a

planting area of 1.01 million hm’*". Tomato gray mold is a
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worldwide disease affecting many plants®. Botrytis cinerea, the
fungus responsible for tomato gray mold disease, can invade the
root, stem, and leaf®”. Generally, the yield of tomatoes will drop by
20%-30% after the occurrence of gray mold, and it can be as high as
50% in serious cases™. In addition, pathogenic fungi can infect
tomato fruits

through skin damage during harvesting and

processing, which leads to rapid deterioration, considerable
economic losses, and short shelf life!”. Therefore, it is of great
significance to monitor tomato gray mold in time and take effective
preventive measures to ensure tomato yield and improve farmers’
economic income.

With the development of computer technology and spore
catcher technology, related researchers have employed spore
capture instruments to collect disease spores from the air, then count
and identify the spores using microscopic image processing'*'l
However, conventional microscopic imaging technology encounters
limitations regarding its restricted field of view, making obtaining a
comprehensive image of spores challenging and leading to
significant inaccuracies'>"”. In recent years, holographic imaging
technology has been favored by related researchers because of its
small size and portability. Luo et al.' combined lensless
microscopy with deep learning to measure the target analyte for
quantitative particle agglutination test. Xiao et al.'! used digital
holographic microscopy to study the delayed morphogenesis of


https://doi.org/10.25165/j.ijabe.20241706.8537
mailto:wangyafei918@126.com
mailto:openagriculture@163.com
mailto:209551973@qq.com
mailto:2212316059@stmail.ujs.edu.cn
mailto:2212316059@stmail.ujs.edu.cn
mailto:2212316059@stmail.ujs.edu.cn
mailto:yangning7410@163.com
mailto:zxd700227@126.com
mailto:mgx@ujs.edu.cn
mailto:1000006483@ujs.edu.cn
mailto:1000006483@ujs.edu.cn
mailto:1000006483@ujs.edu.cn
mailto:maohpujs@163.com
https://www.ijabe.org

December, 2024

Wang Y F, etal. Application of a spore detection system based on diffraction imaging to tomato gray mold

Vol. 17No.6 213

living bone cells. Prajapati et al.' reported a micro-lensless
microscope on a chip and used it to image human blood smears and
microbeads up to 1 um in diameter. The disease spores and the
objects studied by these scholars are um level, so we can learn from
the previous research results and apply holographic imaging
technology to detect disease spores. Xin et al.'”? used digital
holographic flow cytometry to rapidly capture images of diverse
cell types present in urine and to reconstruct high-precision
quantitative phase images for each cell type. Natalith et al.'l
processed hologram height variations, shape, and length of KA
cells, as well as the stratum corneum epidermal layer, which are
obtained as phase images. The results aided in discriminating
healthy from malignant cells. The diffraction image method can be
used to screen particles with small particle sizes™. However, the
size, shape, protein, and nucleic acid of tomato gray mold spores are
different from other cells. Their findings cannot be directly applied
to the detection of tomato gray mold spores. The specific absorption
spectrum information and diffraction imaging distance of tomato
gray mold spores need to be studied.

Therefore, this study aimed to develop an imaging apparatus
utilizing diffraction imaging technology to capture diffraction
images of tomato gray mold spores within a greenhouse
environment. A method based on diffraction reconstruction was
proposed to count the spores of gray mold. Finally, the spore count
of tomato gray mold was realized.

2 System structure

The two-dimensional structure diagram of the spore diffraction
image acquisition device for tomato gray mold is shown in Figure 1.
The diffraction image acquisition device mainly includes a light
source, micro-hole, slide, and CMOS image sensor. The micro-hole
was located directly below the light source, which was used to
generate interference light. Tomato gray mold spores were collected
on the slide. The diffraction image of spores was collected with a
CMOS image sensor, which was connected to the computer via a
data cable. The computer was equipped with the diffraction
fingerprint image acquisition software Arena View-Arena View2.

1

1. Light source 2. Micro-hole 3. Interference light 4. Slide 5. CMOS image sensor
Figure 1  Structure diagram of diffraction imaging device

3 Band selection

3.1 Sample preparation

The cultivation experiment of tomato plant samples was carried
out in Venlo Greenhouse, Jiangsu University. The tested tomato
variety was “Zhefen 202” (Zhejiang Yinong Seed Industry Co.,
Ltd., China). It is not advisable to apply pesticide sprays during the
process of planting samples. In vitro cultivation of tomato gray

mold spores is feasible. To acquire a pristine sample of spores from
tomato gray mold, it is necessary to ensure the absence of any
contamination. When gray mold occurred in tomato plants during
the experiment, leaves with diseased spots were first cut from
infected plants. After dipping in sterile water, the spot was placed
face down on a non-diseased tomato plant. This was repeated until
gray mold was the only spot on the tomato plant. Then, the tomato
leaves with gray mold were placed in a petri dish with a Potato
Dextrose Agar (PDA) medium for culture preservation and
propagation.
3.2 Spectral data acquisition

The spectrum data of tomato gray mold spores was acquired
using a hyperspectral imaging system. The system includes a
hyperspectral image camera (ImSpector, VI0E, Spectra Imaging
Ltd., Finland), a light source system (2900, Illumination
Technologies Inc., USA), displacement console (Zolix TS200AB,
Zolix Hanguang, China), camera obscura (DC1300, Wuling Optics,
China), data acquisition and preprocessing software (SpectraCube,
Auto Vision Inc., USA), and computers. Before use, the instrument
was preheated for 30 min, and then the black-and-white version was
corrected. During the actual collection process, the petri dish
samples with spore colonies of tomato gray mold were placed on
the displacement console. The camera exposure time was set to 50
ms. The moving speed of the displacement table was 1.25 mm/s.
The image resolution of the hyperspectral camera was 819 pixelsx
1024 pixels. The spectral resolution was 2.8 nm. The spectral range
was 400-1000 nm. The original spectral data of tomato gray mold
spores collected are shown in Figure 2.
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Figure 2 Original spectral data of spores

3.3 Feature band selection

The raw spectrum data obtained from the hyperspectral
imaging equipment for tomato gray mold spores was expected to
include certain levels of noise. Hence, it is imperative to perform
preprocessing on the spectral data obtained from samples. To
climinate the influence of noise on the original spectral analysis, S-
G (Savitzky-Golay) five-point smoothing was used in this study to
process the original spectral data of tomato gray mold spores™. The
smoothed spectral data is shown in Figure 3.

Many bands exist in the original spectral data of tomato gray
mold spore samples. Also, there is a lot of information redundancy
between bands. Therefore, reducing the dimensionality of the
original spectral data is necessary. Selecting an appropriate data
dimensionality reduction algorithm can improve the modeling
efficiency and accuracy of spectral data®’. In this study, principal
component analysis (PCA) was used to select the characteristic
wavelength of the original spectral data of tomato gray mold spore
samples, to reduce the dimension of the original spectral data. After
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smoothing the spectral data of tomato gray mold spore samples,
they were analyzed by SPSS 22 software, and 17 principal
components were obtained. The cumulative contribution rates of the
first principal component and the second principal component are
listed in Table 1.

2500
2000 -
1500 ¢
1000 ¢

500

0
300 400 500 600 700 800 900 1000 1100
Wavelength/nm

Figure 3  Spectral data of spore samples after
smoothing processing

Table 1 PCA principal component accumulation
contribution rate

Principal component PC1 PC2
89.072 92.271

Cumulative contribution rate/%

Local peaks and valleys of the spectrum were identified to
highlight the significantly affected wavelengths of the tomato gray
mold spore sample by principal component analysis protocol. This
is because the wavelengths located at the local maximums (peaks)
or minimums (valleys) of the loading curve have the greatest
contribution to the PC loadings. Two PCs were selected with a
cumulative contribution of 92.271% of the variance. The linear
combination coefficient, variance, and composite score model
coefficient of the first principal component and the second principal
component were solved, respectively. Finally, the combined
coefficient weights of the first and second principal components
were obtained, as shown in Figure 4.
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Figure 4 Comprehensive coefficient weights of
principal components

As shown in Figure 4, the combined coefficient weights of the
first and second principal components of the spectral data of tomato
gray mold spore samples have three peaks in the band range 390-
1050 nm, corresponding to the bands 435 nm, 722 nm, and 980 nm,
respectively. The original spectral data of tomato gray mold spore
samples in the visible light range and the combination coefficient

weights of the first and the second principal components were
considered. In this study, the light sources of 435 nm, 475 nm, and
720 nm were selected as the light sources for the diffraction
imaging system of tomato gray mold spores.

4 Key parameter design

4.1 Light source design

Based on the previous analysis, this study selected LED lamp
beads with wavelengths of 435 nm, 475 nm, and 720 nm as light
sources. However, as a diffraction imaging system, the light source
also needs a power supply circuit and a circuit to adjust the
brightness of the light source. Therefore, this study uses Altium
Designer software to draw the circuit diagram of the light source
and import it into the PCB diagram. Then, the PCB circuit board is
made, and finally, it is welded into a light source. The light source
part was used to emit light at wavelengths of 435 nm, 475 nm, and
720 nm with stable light intensity. The angle between the light
source and the center of the receiving part of the three bands was
120°. The light source circuit of the diffraction imaging system and
the physical diagram of the light source are shown in Figure 5.

Patch sliding
theostat

Patch switch

veel

a. Schematic diagram

c. Light source

d. Light source arrangement

Figure 5 Diffraction imaging light source design

4.2 CMOS image sensor selection

The diffraction imaging system of this study was designed to
capture data on tomato gray mold spores in greenhouses.
Considering the actual situation, the disease spores collected in the
greenhouse are generally more than ten to dozens every day.
Suppose the disease spores were collected for a month. The
compound field microfluidic chip developed by the research group
of this study was used to enrich the spores, and the enrichment area
was 1000 um in radius®?. In addition, the summer greenhouse
temperature can reach 50°C in a short time. To meet the above
conditions, the CMOS image sensor of the DYSMT805 model was
selected to collect the spore’s diffraction image. The spectral
response range of the CMOS image sensor is 310-1070 nm. The
sensitive size is 4592 ymx3449.6 um. The pixel size is 1.4 umx
1.4 um. The operating temperature is 0°C-50°C, and storage
temperature is —30°C-70°C. It can meet the requirements of
practical applications. The actual picture of the selected CMOS
image sensor is shown in Figure 6.
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Figure 6 CMOS image sensor of DYSMT805 model

4.3 Parameter simulation

Conventional low-light imaging technology involves the
transmission or reflection of visible light through the sample.
Subsequently, the light passes through one or more lenses, resulting
in the acquisition of a magnified image of a minuscule sample.
Diffraction is a phenomenon in which light waves deviate from
their original straight path and travel in a non-linear manner when
they strike barriers or apertures during the propagation process. The
user is advised to visually see the contrasting light and dark regions
that manifest on the display. The distribution of light intensity can
convey image information of things™™. This study integrated the
diffraction imaging theory of an LED light source as previously
discussed by the research group”. A Matlab simulation program
was developed. The wavelength of the light source was set to
435 nm, 475 nm, and 720 nm during simulation. The distance
between the imaging screen and the micro-hole, as well as the size
of the micro-hole, were adjusted until the desired diffraction image
could be obtained. Based on the simulation results of the diffraction
imaging system, it was determined that the CMOS image sensor
was located 45 mm below the micro-hole, and the diameter of the
micro-hole was 100 um. The diffraction image obtained by
simulation of the diffraction imaging system is shown in Figure 7.
The diffraction image has clear diffraction fringes. The simulation
parameters of the diffraction imaging system were appropriately set.

Figure 7 Simulation result for diffraction imaging system

5 Experimental results and analysis

5.1 Testing of diffraction imaging system for diseased spores
The device structure of the diffraction imaging system was
designed using Solid Works software. The shell was printed using
3D printing technology. To mitigate the influence of external light,
the 3D printing material was selected to possess a black coloration.
The light source was powered by a charging bank, with the charging
bank and the light source being connected through USB to TTL.

The connection between the CMOS image sensor and the computer
was established via a data cable. The software utilized for acquiring
diffraction images of sick spores was Toup View. Figure 8 depicts
the diffraction imaging system that has been constructed. The
constructed diffraction imaging system successfully captures
diffraction images of disease spores. Moreover, the diffraction
images of the disease spores collected have clear diffraction
fingerprints.

1. Data transmission line 2. Diffraction imaging device 3. USB to TTL
4. Powerbank 5. Computer

Figure 8 Photographs of the diffraction imaging system

5.2 Counting method of disease spores

This study used the angle spectrum reconstruction method to
reconstruct the diffraction images of diseased spores. In order to
obtain effective diffraction fingerprint image information, it is
necessary to preprocess the spore diffraction image'>*. The specific
steps were as follows: 1) The diffraction image was corrected by a
two-dimensional gamma function; 2) The median filter was used to
remove the noise signal from the diffraction image; 3) Diffraction
images of diseased spores were reconstructed by angle spectrum
reconstruction algorithm; 4) The diffraction images of diseased
spores reconstructed by diagonal spectrum were processed, and the
useless information was filtered by threshold segmentation; 5) The
morphology operation was carried out, and the cavity filling and
boundary smoothing was carried out; and 6) The morphological
characteristics of disease spores were extracted, identified, and
counted. The two characteristics of area and perimeter were selected
in this study. The equations are as follows:

A=N 1

P= V2N, +N, 2

where, A represents the region of the processed disease spore image;
N represents the number of pixels in the processed disease spore
image; P represents the circumference of the processed disease
spore image; N, represents the diagonal pixel number of the
processed disease spore image; N, represents the number of
horizontal or vertical pixels in the processed disease spore image.
The diffraction image processing and counting results of
tomato gray mold spores obtained by the above method are shown
in Figure 9.
5.3 Disease spore count results and analysis
The experimental results were analyzed statistically. The error
of disease spore counting is defined as follows:

[n—ny|

% 100% 3)

error =
ny
where, n represents the diffraction reconstruction counting results of
diseased spores; 1, represents the manual counting results of disease
spores under a microscope.
The results are shown in Figure 10. The experimental error
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b. Diffraction reconstruction
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Figure 9 Tomato gray mold spore diffraction image processing
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Figure 10 Comparison of counting results and error statistics
between manual microscope count and diffraction
image reconstruction

range was 5.13%-8.57% across the 10 group experiments. The
average error of the experiments was 6.42%. There is no doubt that
manual counting is more efficient than automatic counting based on
processing diffraction images, but the overall accuracy of the latter
is very acceptable. The error resulting during automatic counting
may be due to the weak diffraction ring of some tomato gray mold
spores, which are difficult to identify when using diffraction
fingerprint images. Moreover, the spores vary in shape and size
depending on the growth stages during which they were collected,
leading to different patterns of diffraction fingerprints. The
germination of tomato gray mold spores occurs exclusively when
they infiltrate the tomato leaves and fruits, according to appropriate
temperature and humidity conditions. To further demonstrate the
practicality of quantifying tomato gray mold spores by diffraction

fingerprint image processing, the Bland-Altman technique™' was
employed to evaluate the two counting approaches. All data points
were inside the 95% confidence interval, indicating a high level of
consistency. The findings of the study indicated that the
enumeration of tomato gray mold spores using diffraction image
processing yielded results consistent with those obtained by manual
microscopic examination. The spores were counted by diffraction
image processing.

6 Conclusions

The size, shape, protein, and nucleic acid of the tomato gray
mold spores are different from other cells. The specific absorption
spectrum information and diffraction imaging distance of tomato
gray mold spores are likewise different from other cells. The
existing lensless holographic imaging systems for cell detection
cannot be directly applied to the detection of tomato gray mold
spores. This study presents an approach for quantifying spore
counts of tomato gray mold using diffraction imaging technology
and image processing techniques. A device for acquiring diffraction
images of tomato gray mold spores was constructed. Tomato gray
mold spores were counted based on angular spectrum reconstruction
and image processing. The average error of counting tomato gray
mold spores based on diffraction reconstruction was 6.42%. This
study can be used to aid in the detection of disease spores and
provide technical means for early warning of greenhouse air-borne
diseases.
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