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Abstract: In order to avoid the uneven phenomenon of sugarcane planting, such as seed missing and reseeding, the computer
vision technology was applied to the intelligent identification of sugarcane varieties with single-bud segment,  and the design
idea of rapid detection of sugarcane planting distribution was proposed in this study. With sugarcane species with single-bud
segment  as  the  research  object,  the  sugarcane  species  distribution  image  was  acquired,  and  LabelImg  was  used  for  image
annotation and format conversion to build the YOLOv5s target detection model. On the basis of depth-separable convolution,
SE  module  is  spliced  to  obtain  the  weights  of  extracted  features  and  extract  key  features  of  input  feature  map.  By  adding
regularization to constrain the BN layer coefficient, sparse regularization is carried out on the BN layer to reduce the network
input size and improve the model training speed. On this basis, 600 rounds of iterative training were carried out to complete the
target recognition of sugarcane species characteristics in single-bud segment. The results showed that the recognition accuracy,
mAP value, and Recall value of YOLOv5s single-bud segment target detection model are 98.95%, 98.89%, and 98.69%, and
the loss value converges in advance between 0-0.02. The results showed that YOLOv5s could effectively detect and identify
sugarcane seeds with single-bud segment during field planting, which lays a foundation for promoting precise and intelligent
sugarcane planting.
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1    Introduction
Sugarcane  originates  from  the  tropics  and  subtropics  and  is  a

major cash crop in the southern hot zone of China and the main raw
material for sugar production[1]. The total area of sugarcane planted
in  China  is  the  third  highest  in  the  world,  after  Brazil  and  India[2].
According  to  the  survey  statistics  of  the  national  sugarcane
production  information  monitoring  department,  the  area  of
sugarcane  planted  in  China  in  the  2020/21  crushing  season  was

1 476 180 hm2, mainly distributed in the four main production areas,
Guangdong,  Guangxi,  Hainan,  and  Yunnan.  Traditional  sugarcane
planting  methods  are  characterized  by  serious  variety  degradation,
low  planting  efficiency,  decreasing  sugar  content,  and  large
consumption of seed stems for planting[3], while the healthy seedling
technology of  sugarcane  has  the  advantages  of  variety  purification
and  rejuvenation,  improving  sugar  content  and  yield,  and  saving
planted cane seeds[4,5]. However, the healthy seedling technology of
sugarcane requires  more  reliance on machinery to  be  implemented
more economically and effectively, and there is no mature dedicated
machinery and equipment at home or abroad[6,7]. Combined with the
technology of virus-free sugarcane seedling, cultivation technology,
and the planting mode of  wide row and thin planting,  the research
on the intelligent recognition planter of sugarcane stalk with single-
bud segment was carried out[8,9].

Deep  learning-based  target  detection  is  to  detect  specific
classes  of  semantic  objects  with  different  poses  in  digital  images
and  videos.  The  current  successful  target  detection  methods  are
based  on  deep  learning  model  extensions[10-15].  In  the  process  of
target detection, RPN uses FPN to convolve the feature map of the
detected target, and then adds it. After 1×1 convolution (horizontal
connections), it is added to the feature map of the lower layer of the
convolutional  network  to  form  one  of  the  M  feature  layers.
Following this operation, each of the M feature layers is constructed
layer  by  layer  from  top  to  bottom,  and  each  undergoes  3×3
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convolution to generate multiple scale region proposals. These multi-
scale  feature  maps  and  regional  proposals  are  fed  into  the  ROI
(Region  of  Interest)  pooling  layer  to  obtain  the  proposal  feature
maps.  By  inputting  the  proposed  feature  mapping  into  the  fully
connected  layer  for  prediction,  the  target  detection  model  is
obtained[16]. Then, through mechanical vision, the pose of the object
is  provided  to  establish  a  model  library,  using  tactile  sensors  to
identify the target object[17].

Therefore,  this  study  is  inspired  by  the  research  on  target
detection and recognition. According to the physical characteristics
of sugarcane seed such as color, length, and size, combined with the
conditions  of  field  operation,  the  iteratively  updated  YOLO
algorithm  was  adopted  with  sugarcane  planter  as  the  carrier.
Research  on  accurate  identification  of  sugarcane  seed  with  single-
bud  segment  based  on  YOLOv5s  was  carried  out  to  avoid  the
phenomenon of missing seed, multiple species, and too large a plant
distance  in  the  sugarcane  planting  process,  and  to  accelerate  the
accurate  and  intelligent  process  of  sugarcane  seed  with  single-bud
segment. 

2    Algorithm principle
 

2.1    Structural principle of YOLOv5s
The YOLOv5s target detection algorithm inputs the single-bud

sugarcane  seed  images  into  the  convolutional  neural  network  after
data enhancement,  and feature maps of different sizes are obtained
by  feature  extraction.  Then  the  feature  maps  are  divided  into
rectangular  grids,  to  obtain  the  prediction  frame  position  and
category after  forward propagation.  The loss  function is  applied to
reduce the loss between the prediction frame and the real frame, the
redundant  windows  are  screened  out  by  non-maximal  value
suppression, and the target detection results can be obtained[18-20].

YOLOv5s target  detection mainly consists  of  four  parts:  input
port,  Backbone  network,  Neck,  and  prediction[21,22],  as  shown  in
Figure 1. The input port is mainly to complete the enhancement of
the  input  single-bud  sugarcane  seed  image  data.  The  backbone
network  structure  mainly  consists  of  Focus,  BottleneckCSP,  and
SPP,  responsible  for  the  feature  extraction  of  the  image,  in  which
Focus slices the image, stitches it  after the channel dimension, and
the obtained feature map is subjected to convolution operation.

SPP  performs  the  maximum  pooling  operation  on  the  input
features  and  performs  channel  stitching  to  get  the  features  fused
with  multiple  scales.  The  Neck  structure  adopts  FPN+PAN
network, which can achieve the fusion of features of different sizes
and shapes, etc. to a certain extent, then sends them to the detection
model  for  target  prediction,  and  completes  the  prediction  of  the
input target images.
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Figure 1    YOLOv5 structure
 

The  basic  block  of  the  algorithm used  in Figure  1  consists  of
the  following  units:  (1)  ConV  layer,  which  mainly  extracts  the
feature  information  of  the  input  image;  (2)  BN batch  layer,  which
mainly  normalizes  the  input  and  suppresses  the  overfitting
phenomenon  and  gradient  dispersion  problem;  (3)  LeakyRelu
activation  function,  which  introduces  nonlinear  factors  so  that  the
model can perform nonlinear tasks; (4) Concat layer, which mainly
stitches  the  feature  maps  to  achieve  feature  information  fusion;
(5)  Slice,  which  is  mainly  used  to  slice  the  input  image  to  ensure
that  the  Focus  module  achieves  two-fold  downsampling;  and  (6)
Maxpool  layer,  which  mainly  extracts  the  most  important  image
features  and  improves  the  training  speed  to  prevent  the  overfitting
phenomenon. 

2.2    Loss function
Based  on  the  analysis  of  the  target  detection  principle  and

algorithm  structure,  the  sum  of  loss  functions  is  obtained  by
performing target  classification,  target  prediction frame regression,
and  target  confidence  regression  operations  on  the  target  detectors
before  predicting  the  outcome  model  for  single-bud  sugarcane
seeds[23].

Firstly, the prediction categories of the target classification loss
function and the probability of the predicted outcome categories are
calculated by differentiating the cane species in the input images of
the single- bud sugarcane seeds that are input to the target detection
model.  According  to  the  characteristics  of  IoU,  GIoU,  DIoU,  and
CIoU, combined with the target  detection characteristics  of  single-
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bud sugarcane seeds, the aspects such as ratio and overlapping area
of the prediction frame and the distance between the center points of
the  labeled  frames  are  considered.  The  weight  coefficient  and  the
distance of the aspect ratio are added to the penalty term of DIoU to
make the CIoU metric principle more consistent with the regression
mechanism of the target prediction frame. So CIoU is chosen as the
loss function for the regression task of the prediction frame position
of  single-bud  sugarcane  seeds.  In  the  case  that  the  overlap  area
between  the  prediction  frame  and  the  real  frame  is  increasing,  the
distance  measurement  is  added  to  the  location  confidence  in  IoU
loss resolution target detection. The coincidence degree between the
prediction  box  and  the  real  box  is  thus  effectively  reflected.
Therefore, the GIoU loss function is selected for the regression task
of predicting target confidence for single-bud sugarcane seeds. 

2.3    Dataset preparation
For  the  sugarcane  seed  image  of  the  single-bud  segment

obtained,  moderate  intensive  annotation  method  was  used  to  label
the sugarcane seed image of single-bud segment, and LabelImg was
used to complete the image annotation. The .xml file is generated by
annotating  the  external  outline  of  sugarcane  seed  with  single-bud
segment,  as  shown  in  Figure  2.  The  database  is  provided  for  the
target  detection  algorithm;  the  labeled  single-bud  segment
sugarcane  seed  labeling  box  cannot  be  too  large  or  too  small,
otherwise  the  deep  learning  model  may  not  perform  well  in
identifying  sugarcane  varieties.  The  dataset  with  single-bud
sugarcane  seed  labels  is  input  to  the  deep  learning  model,  and  the
mapping  relationship  between  the  dataset  input  and  the  labels  is
obtained  and  applied  to  the  test  dataset  for  classification  or
regression purposes.
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Figure 2    Labeling process of single-bud sugarcane seed
  

3    Network model construction
In  this  study,  the  single-bud  sugarcane  bud  is  selected  as  a

single  target  and  its  coordinate  information  is  mainly  detected.
Therefore,  the  shallow  YOLOv5s  network  detection  model  is
selected,  which  has  fewer  feature  extraction  operations,  relatively
few  model  parameters,  and  less  computational  amount  of  image
semantic  information  extraction,  which  is  conducive  to  improving
the  sugarcane  species  detection  speed  in  single-bud  segment  and
meeting  the  planting  requirements  of  real-time  detection  in  the
process  of  sugarcane  planting.  In  order  to  reduce  the  computation
and speed up the training, the original images of the input network
model  are  compressed  to  640×640  pixels  and  trained  with  pre-
training  weights  fine-tuned  on  the  dataset.  The  structure  of  the
network  feature  extraction  module  is  shown  in Figure  3,  in  which
Conv1  network  base  module  outputs  the  input  feature  map  after
convolutional  normalization.  The  Bottleneck  module  superimposes
the  initial  input  feature  map  after  two  operations  on  Conv1,  and
outputs  it  by  combining  with  different  depth  feature  information.
The  CSP module  improves  the  feature  extraction  capability;  CSP1

and CSP3 modules  are  used as  the  backbone of  feature  extraction,
which  stack  the  input  feature  map  with  the  output  of  the  original
feature  map  after  Conv1,  Bottleneck,  and  convolution  operations,
and then output after normalization, activation function, and Conv1
operations. CSP2 module is used for prediction, which differs from
CSP1 and CSP3 in that the Bottleneck module is replaced by Conv1
module.
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Figure 3    Structure of feature extraction module of detection
target image

  

3.1    Network model optimization
Standard  convolution  is  to  use  convolution  kernels  on  all

channels  of  input  for  feature  extraction  to  enhance  the  network
model training effect.  In order to reduce the model parameters and
reduce the number of operations, the depth-separable convolution is
used.  As shown in Figure 4,  in the channel direction of each input
channel,  different  sizes  of  convolution  kernels  are  used  for  depth
convolution  operation.  At  the  same  time,  1×1  convolution  kernel
point-by-point convolution operation is conducted, and the number
of  channels  is  adjusted  to  improve  the  relevance  of  channel  and
spatial  dimension  information,  so  that  the  network  is  more
flexible[24].
  

Relu Relu

BN

1×1 ConvBN

Relu

BN

Conv Depthwise conv

Figure 4    Standard convolution and depth-separable
 

After  convolving a  feature  map with  an  input  size  of W×H×C
and an S×S×C convolution kernel, the output feature map has a size
of W1×H1×N, resulting in standard convolution and depth-separable
convolution calculations, which are:

W ×H×C×S ×S ×C (1)

S×S×C×W ×H+C×N ×W1×H1 (2)

S ×S ×C×W ×H+C×N ×W1 ×H1

W ×H×C×S ×S ×C
=

1
N
+

1
S 2

(3)

where, W  is  the  width of  the input  feature  map; H  is  the  height  of
the input feature map; W1 is the width of the output feature map; H1

is  the  height  of  the  output  feature  map; C  is  the  number  of  input
network channels; N is the number of output network channels.

On the premise that the feature map does not change, the width
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and height W and H of the input feature map and W1 and H1 of the
output feature map are ensured to be equal, as S is 3, and N is 256,
512,  or  1024,  etc.  After  the  comparison  of  the  two  convolution
parameters,  we  can  obtain  the  depth-separable  convolution
operations  account  for    of  the  standard  convolution
operations.

On  the  basis  of  deep-separable  convolution,  several  feature
extraction  modules  such  as  SE  module  and  ReLU6  activation
function  are  spliced,  which  can  complete  the  operations  of  deep-
separable convolution and key feature extraction of the input feature
maps.  Among  them,  SE  module  is  a  commonly  used  attention
mechanism  module  in  deep  learning[25],  which  can  strengthen  the
identification ability of sugarcane species in single-bud segment. It
mainly  obtains  the  weight  of  each  feature  channel  through
compression,  pooling,  excitation,  and  function  activation  of  input
feature map, filters key features, simulates the relationship between
feature channels, and obtains the correlation between channels.

χ χ χ X ∈ RH×W×CRH1×W1×C1

ν1 ν2 νι
y y yι Y ∈ RH1×W1×C1

ι νι ν1
ι ν

2
ι νc

ι

The input is X = [ 1,  2, …,  C ] and  , the
convolution kernel is defined as: V = [ , , …,  ], and the output
after  convolution is  obtained as Y =  [ 1,  2, …,  ],  ;
where  the  th  convolution  kernel  is:  =  [ , ,  …,  ]  and  the
following relation is obtained:

yι = νι ×X =
c∑

i=1

νiι ⊗χi (4)

where,  H  and  H1  are  the  convolutional  input  and  output  feature

⊗ νiι
yι

channel lengths, respectively; W and W1 are the convolutional input
and  output  feature  channel  widths,  respectively; C  and C1  are  the
numbers  of  convolutional  input  and  output  feature  channels,
respectively;    is  the  convolution  operation;    is  the  first  two-
dimensional  convolution  kernel.  The  feature  channels  given  by 
are  summed with  the  convolution  kernel  learning space  relation  to
obtain the convolution output.

The  average  value  of  each  feature  map is  calculated  by Fsq  to
transform  a  single  2-D  feature  channel  into  a  real  number,  and
finally  a  1-D  vector  is  obtained  to  achieve  the  reduction  in  the
number  of  computational  parameters  and  the  avoidance  of
overfitting.  The  weights  of  each  channel  are  obtained  by Fex,  and
the original output is weighted to extract key features and suppress
invalid features. The SE module is made to implement the weights
of  extracted  features  to  change  the  degree  of  attention  to  different
feature regions, as shown in Figure 5.

Figure 6a shows the prediction of single-bud sugarcane seeds in
the single row planting area by YOLOv5s; the correct prediction of
each  single-bud  sugarcane  seed  is  obtained  in  the  prediction  area,
and  the  confidence  level  of  the  model  is  between  69%  and  76%.
Figure 6b shows the prediction of single-bud sugarcane seeds in the
single row planting area by SE-YOLOv5s. The correct prediction of
each single-bud sugarcane seed was obtained in the prediction area.
The confidence level of the model is between 77% and 84%, which
is  about  8%  higher  than  the  confidence  level  of  YOLOv5s.  This
further  demonstrates  the  effectiveness  of  the  SE-YOLOv5s  model
in detecting single-bud sugarcane seeds within the planting area.
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Figure 5    SE module
 
 

a. Sugarcane seeds predicted by YOLOv5s b. Sugarcane seeds predicted by SE-YOLOv5s

Figure 6    Comparison of single-bud sugarcane seed model assays
 
 

3.2    Pruning comparison analysis
γ

γ
γ

There  are  two  trainable  parameters  in  the  BN  layer,    and  β.
When the training parameters   and β are input  to the BN layer,  a
normalized distribution is obtained; when   and β are converging to
0,  the  input  is  equivalent  to  multiplying  by  0.  After  threshold
separation, the output is 0, and the input of the convolutional layer
connected to it is 0. The principle is as follows:

X X1Input: Values of   over a mini-batch: B={ ...};
γ　　　　　　　Parameters to be learned:   and β

Yi Xi　　　　　　　Output: { =BNγ,β ( )}

To  reduce  the  input  size  of  the  network,  the  BN  layer
coefficients  are  constrained  by  adding  a  regular,  and  after  sparse
regularization  of  the  BN  layer,  all  BN  layer  weights  in  the  model
are sorted statistically, and the sorted weight threshold (thres) is obta-
ined. The mask of each layer is made (if weight > thres, the value is
1;  if  weight  <  thres,  the  value  is  0),  the  unimportant  channels  are
identified,  the  sparse  smaller  layers  are  cropped,  and  the  specified
reserved  BN  layer  is  obtained,  namely,  repeating  the  iteration,  to
build  a  new  model  structure  according  to  the  number  of  channels
reserved on each layer, so as to obtain the mask non-zero index of
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BN  layer  weight.  Then  the  reset  network  assignment  is  cond-
ucted to adjust it slightly to achieve improvement in training speed.

Due  to  the  great  parameter  redundancy  in  YOLOv5s,  the
comparison  of  model  experimental  effects  after  pruning  cutting  is
clear, as listed in Table 1.

The  model  input  size  has  been  changed  from 29  M to  1.3  M,
and the speed accelerates from 12 ms to 4 ms. The average accuracy
and recall rate are closer.
 
 

Table 1    Comparison of model indicators
Metric Model size/M Speed/ms mAP Recall

YOLOv5s 443 12 0.9563 0.9763
Pruned 15.3 4 0.9889 0.9869

  

4    Test
 

4.1    Test environment
The GPU is RTX3070TI, the CPU has 8 cores and 16 threads,

the maximum frequency is 4.6 GHz, the memory is 16 GB, the hard
disk is 512 G, and the system is Windows 10. The network model is
implemented  in  Python  3.8  programming  language,  Pycharm
software  is  the  platform,  and  the  PyTorch  framework  is  adopted.
Single-bud  sugarcane  seed  dataset  is  converted  from  PASCAL
VOC  to  YOLO,  which  is  trained,  verified,  and  tested  through
Pycharm. 

4.2    Test results
In order to accelerate the training and convergence of the single-

bud sugarcane seeds based on YOLOv5s, the hyper-parameters that
are needed for the construction and training of the detection model
are  set,  such  as  operating  environment,  pre-training  weight,  and
dependent  library.  The  model  is  calculated  by  GPU,  as  the  initial
model  training  is  performed  by  using  a  smaller  learning  rate,  and
the  learning  rate  strategy  is  adjusted  by  combining  the  gradient
descent  algorithm  in  cosine  annealing  to  optimize  the  objective
function[26-29]. The test image is 640×640, and the training Batch size

is 16. The input data are processed by data enhancement techniques
to generate more training samples to improve the accuracy.

After  600  rounds  of  model  training,  the  operation  process
curves  of  precision  rate  and  recall  rate  are  obtained,  as  shown  in
Figure  7.  The  accuracy  rate  of  the  training  set  is  98.95%  and  the
recall  rate  is  98.69%,  and  their  convergence  values  are  both  high
and  closer  to  1.  This  indicates  that  the  target  detection  model  for
single-bud  sugarcane  seeds  is  not  subject  to  overfitting  or
underfitting,  and  the  target  prediction  results  of  the  model  are
accurate  and  reliable.  The  target  loss  of  the  training  set  converges
faster;  its  loss  values  converge  between  0  and  0.02  in  advance,
indicating that the target detection model parameters are reasonable
and the target detection is accurate. 

4.3    Target detection evaluation
YOLOv5s adopts IoU and a matching strategy based on aspect

ratio, which is to calculate the respective corresponding aspect and
height ratios of each ground truth box and nine anchors, taking the
most extreme ratio. When the ratio of ground truth box and anchor
is  less  than  the  set  ratio  threshold,  the  anchor  is  responsible  for
predicting the ground truth box,  which is  called a  positive sample,
and  all  other  prediction  frames  are  negative  samples.  The  mean
accuracy  (mAP),  the  precision  P,  and  the  recall  R  are  used  as
evaluation  indices  to  assess  the  detection  effectiveness  of  the
training  model.  The  confidence  is  calculated  by  the  Softmax
function  as  an  evaluation  of  the  detection  accuracy  of  single-bud
sugarcane seeds, with P denoting the ratio of the number of single-
bud sugarcane seeds among the identified targets and R denoting the
ratio of recognized seeds among all single-bud sugarcane seeds. The
P-R curves are obtained by the test, as shown in Figure 8; the P and
R  index  values  are  98.95% and  98.69%,  close  to  1,  and  the  index
value of  mAP is  98.89%, which indicates  that  the model  has good
performance in detecting single-bud sugarcane seeds.
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Figure 8    P-R curves
  

4.4    Visualization  of  target  detection  results  of  single-bud
sugarcane seeds

To  show  the  target  detection  results  of  YOLOv5s,  for  the
original  target  images  under  different  conditions  such  as  field
lighting, shaking, and irregular seeds, the YOLOv5s target detection
model  predicts  the  accurate  target  detection  frame  of  single-bud
sugarcane seeds and visualizes the single-bud sugarcane seed target
detection results[30,31]. By calculating the weighting of the Grad CAM
feature  map  with  the  corresponding  category  weights,  the  region
most  relevant  to  a  specific  category  of  single-bud  sugarcane  seeds
can  be  displayed  without  changing  the  structure  of  the  model  and
mapped to the original image, so that the heat map and the original
image can  be  superimposed,  as  shown in Figure  9.  The  darker  the
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Figure 7    YOLOv5s model accuracy rate, recall rate, and
loss value curve

　August, 2025 Liu X P, et al.　Feature recognition algorithm in intelligent planting of single bud segment sugarcane Vol. 18 No. 4 　 279　



color part  of this visual output image, the larger the value, and the
stronger the feature extraction ability of the model. In particular, the
red part, which represents the active region, pays more attention to
the  shape  and  position  of  the  single-bud  species  in  this  region.
Highlighting  its  contour  line  can  better  reflect  the  location  of  the
cane seeds in the original image, so that the feature extraction effect
of the model can be better expressed. It reflects the good robustness
and accuracy of the model,  while the accurate prediction results of
the  model  can  provide  a  theoretical  reference  for  target  detection
and intelligent recognition in actual field operations. 

5    Conclusions
(1)  Based  on  YOLOv5s  target  detection  algorithm,  a  target

detection  model  of  single-bud  sugarcane  seeds  is  established.
Through  dataset  annotation,  parameter  adjustment,  training,
verification,  testing,  and  other  measures,  the  accuracy  of  training
and verification of single-bud sugarcane seeds in the model is close
to  each  other  and  converges,  respectively,  avoiding  overfitting  or
underfitting  of  the  model,  so  as  to  complete  the  intelligent
recognition of single-bud sugarcane seeds.

(2)  Through  parameter  selection  and  debugging  of  the  model,
during  YOLOv5s  target  detection  of  single-  bud  sugarcane  seeds,
the  target  detection  accuracy  rate  of  single-bud  sugarcane  seeds  is
98.95%, the mAP value is 98.89%, and the Recall value is 98.69%,
which indicates that  the target detection model parameter selection
is  reasonable.  The  model  training  results  are  reliable,  without
overfitting,  and  it  has  good  generalization  ability  and  robustness.
The  requirements  for  real-time  and  accurate  recognition
performance  during  the  field  planting  process  of  single-bud
sugarcane seeds can be met. It has laid the foundation for promoting
precise and intelligent planting of sugarcane. 
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