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Cotton leaf disease detection method based on improved SSD
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Abstract: In response to the problems of numerous model parameters and low detection accuracy in SSD-based cotton leaf
disease detection methods, a cotton leaf disease detection method based on improved SSD was proposed by combining the
characteristics of cotton leaf diseases. First, the lightweight network MobileNetV2 was introduced to improve the backbone
feature extraction network, which provides more abundant semantic information and details while significantly reducing the
amount of model parameters and computing complexity, and accelerates the detection speed to achieve real-time detection.
Then, the SE attention mechanism, ECA attention mechanism, and CBAM attention mechanism were fused to filter out disease
target features and effectively suppress the feature information of jamming targets, generating feature maps with strong
semantics and precise location information. The test results on the self-built cotton leaf disease dataset show that the parameter
quantity of the SSD_MobileNetV2 model with backbone network of MobileNetV2 was 50.9% of the SSD_VGG model taking
VGG as the backbone. Compared with SSD_VGG model, the P, R, F1 values, and mAP of the MobileNetV2 model increased
by 4.37%, 3.3%, 3.8%, and 8.79% respectively, while FPS increased by 22.5 frames/s. The SE, ECA, and CBAM attention
mechanisms were introduced into the SSD VGG model and SSD MobileNetV2 model. Using gradient weighted class
activation mapping algorithm to explain the model detection process and visually compare the detection results of each model.
The results indicate that the P, R, F'1 values, mAP and FPS of the SSD_MobileNetV2+ECA model were higher than other
models that introduced the attention mechanisms. Moreover, this model has less parameter with faster running speed, and is
more suitable for detecting cotton diseases in complex environments, showing the best detection effect. Therefore, the
improved SSD_MobileNetV2+ECA model significantly enhanced the semantic information of the shallow feature map of the
model, and has a good detection effect on cotton leaf diseases in complex environments. The research can provide a

lightweight, real-time, and accurate solution for detecting of cotton diseases in complex environments.
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1 Introduction

Crop diseases constrain the sustainable development of
agriculture and form one of the challenges that plague agricultural
production!. Cotton is an important cash crop in China, and the
output and consumption of cotton in China ranks the first in the
world. However, cotton diseases can lead to a significant decrease
in production and cause huge losses to the agricultural economy®.
Therefore, early diagnosis and control of cotton diseases are
important safeguard measures for high cotton yield.

Traditional cotton disease detection is mainly achieved through
manual on-site diagnosis, which has the drawbacks of high
workload and strong subjectivity, and cannot meet the needs of real-
time monitoring of large-scale cotton diseases. The use of computer
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information technology for detecting and identifying cotton diseases
is an advanced and effective method. Scholars have used classic
machine learning methods to detect and recognize cotton diseases
and have achieved high accuracy®. However, classic machine
learning methods include three processes: disease image
segmentation, disease feature extraction, and pattern recognition.
The performance quality of these methods depends on whether
useful disease features can be extracted. In addition, the process of
generating features for cotton disease recognition is time-consuming
and laborious, and the generalization performance of the methods
is poor.

Compared with classical machine learning methods, deep
learning adopts end-to-end learning, inputting raw data, outputting
target tasks, and gradually abstracting the raw data into the required
features for the target task through layer by layer extraction, which
can avoid the impact of manually selected features on classification
performance and effectively enhance the robustness of the model. In
recent years, the emerging deep learning technology based on
convolutional neural networks has been applied in the detection and
recognition of crop diseases. For example, Nazki et al.”? used GAN
networks to identify tomato diseases and achieved high accuracy.
Liu et al.®™ improved the SqueezeNet model to identify multiple
types of leaf diseases. Wang et al.”? proposed a bimodalNet crop
disease identification model for disease identification of six crops.
Li et al." used an improved lightweight residual network to identify
plant leaf diseases, which has a low error recognition rate. However,
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there is relatively little research on the detection and recognition of
cotton diseases based on convolutional neural networks in existing
studies. For example, Zhang et al. used an improved VGG
convolutional neural network to identify cotton diseases and
achieved good classification results'’. Wang et al.l' used an
adaptive discriminant deep confidence network for predicting cotton
pests and diseases, with a prediction accuracy of 82.84%. Zhao et
al." recognized cotton leaf diseases and pests through transfer
learning, which has a high classification accuracy. However, in the
above research, the background of the dataset images is clear and
simple, and the format of the images is standardized, which is not in
line with the actual application environment. In the real agricultural
production environment, crop images taken by farmers have
complex and changeable backgrounds, and the location of diseases
is generally not centered. Therefore, it is difficult for disease
detection and recognition models in simple backgrounds to meet the
needs of real agricultural production.

Given the above reasons, scholars have introduced object
detection algorithms based on deep learning for crop disease
detection in complex backgrounds"!. Using object detection
algorithms for detecting crop leaf diseases has high detection
accuracy and fast detection speed. For instance, Fuentes et al.'
completed object detection on tomato disease dataset with the Faster
R-CNN, R-FCN and SSD models, and the conclusions show that
the combined model of Faster R-CNN and VGG16 showed the
maximum disease detection rate. Li et al.'”’ applied the improved
Faster R-CNN in bitter gourd leave disease detection, and the
improved model presented high robustness and efficiency. Ye et
al." used SSD model to realize crop disease detection based on self-
built data set with complicated background and achieved an average
detection precision of 83.90%. Liu et al." proposed an improved
model based on MobileNetv2 and YOLOvV3, which conducted early
detection on grey speck disease of tomato. The improved model has
the advantages of small memory size, high detection precision and
fast identification speed. Wen et al.* applied the improved
YOLOV3 algorithm to detect the diseases of pseudo-ginseng leaves,
achieving good detection results.

In order to further improve the detection performance of cotton
complex backgrounds, considering the
characteristics of cotton leaf diseases, in this paper, an improved
SSD model for cotton leaf disease detection was proposed, which
addresses the failure of SSD model in fully utilizing shallow high-
resolution feature maps and its inability in distinguishing feature
weights. A lightweight network MobileNetV2 was applied to
improve the backbone feature extraction network, which could

leaf diseases in

provide more abundant semantic information and details by
reducing the number of model parameters and the computation
amount. Integrating different attention mechanisms help to screen
out disease target features, effectively suppress feature information
of jamming target, and balance the weight of feature information in
the feature map.

2 Test data

The dataset in this study comes from the captured cotton leaf
disease images, and the samples in the dataset are the images of
cotton leaf diseases shot in the complicated background of real field
environment. The self-built dataset collected 1666 cotton leaf
images with different leaf sizes, disease types, and brightness levels.
The dataset includes 6 types of cotton diseases, which are
anthracnose, brown spot, verticillium wilt, fusarium wilt, ring rot,
and white mold as shown in Figure 1.

f. White mold

e. Wheel disease

d. Fusarium wilt

Figure 1 Sample image of cotton disease

Then uniformly clip leaf images to 640x640 pixels in size,
label the leaf images using the Labelimg tool. In model training, the
dataset was divided into training set, validation set, and test set. In
this study, based on the 9:1 proportion, 1500 images of training set
and validation set and 166 images of test set were generated.
Subsequently, based on the 9:1 proportion, 1350 images of training
set and 150 images of test set were generated. The number of
images of various diseases in the dataset is listed in Table 1.

Table1 The number of images of various diseases

Disease types Graphics ~ Training set ~ Validation set ~ Test set
Anthracnose 250 203 22 25
Cercospora leaf spot 285 231 26 28
Verticillium wilt 231 187 21 23
Fusarium wilt 270 219 24 27
Wheel disease 225 181 21 23
White mold 405 329 36 40

The construction process of disease data set is as follows: First,
cotton disease data set is obtained after image preprocessing; Then,
Labellmg software was used to annotate the images. Then, the data
set is divided into training set, verification set and test set. Finally,
the images were enhanced by brightness transformation, noise
addition, scaling, rotation and mirroring, and finally cotton disease
data set samples were obtained.

3 Model introduction

3.1 SSD model

There are mainly two types of object detection algorithms
based on CNN: one is the object detection method based on regional
proposal, namely, the two-stage object detection, represented by the
Faster R-CNN algorithm®". This type of algorithm first generates
candidate boxes based on heuristics or convolutional neural
networks, and then classifies and regress the candidate boxes. It has
the advantage of high precision; however, the algorithm has a
longer training time and slower running speed. The second method
is the one stage object detection with no-region proposal, in which
typical algorithms are YOLO series algorithm and SSD
algorithm™?%. This type of algorithm performs uniform and dense
sampling at different scales at various positions of the image,
followed by classification and regression by convolutional neural
networks. It runs fast, but the accuracy of the algorithm is low and
is not suitable for small target detection.

The SSD model combines the anchor mechanism of the Faster
R-CNN algorithm and the regression idea of the YOLO algorithm
to detect targets through multi-scale feature maps. The SSD model
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includes two parts: the prebase network and expanded network, and
the network structure is shown in Figure 2. The prebase network is
used to extract image features, and the VGG16 network was used as
the backbone network for feature extraction”. The extended
network consists of multi-scale feature maps for object
classification and detection. The SSD model modified the last two
full convolutional layers (FC6, FC7) of VGG16 to convolutional
layers (Conv6, Conv7), while adding convolutional layers of
Conv8, Conv9, Convl0 and Convll. First, the SSD model
generates target feature maps of different dimensions in cascaded

Convl.5 blocks

convolution, which are 38x38, 19x19, 10x10, 5x5, 3x3 and 1x1.
Then, multiple prior bounding boxes are set at each unit of the
feature maps for localization and classification prediction. The prior
bounding boxes are then decoded to obtain the prediction boxes,
and a non maximum suppression algorithm is run to obtain the final
detection results. Conv4 3 in SSD model and Conv7 belong to
shallow feature layer, mainly used for detecting small targets.
Conv8_ 2, Conv9_ 2, Conv10_2 and Convll_ 2 belong to the deep
feature layer and is mainly used for detecting medium to large
targets.

N

Non-
maximu'm Detection
300><3OO><30 38x38%502 4 4 ||1ox1oxipasl 1010%513 suppression
Conv8 2 Conv9 2 Convl0 2 Coll 2
lmage_ ----- Convd 3 Conv6 Conv7(FC7) Extra feature layers
VGG 16

Figure 2 Framework diagram of SSD

The SSD uses a multi-scale prediction approach, with shallow
networks detecting small targets and deep networks detecting large
targets. Although shallow network contains rich geometric
information and more accurate localization, it has small receptive
field and weak semantic information representation ability. In
contrast to shallow networks, deep networks have large receptive
fields and rich semantic information, but their resolution is small
and their ability to represent geometric information is weak.
Therefore, SSD will have serious missing and false detection in
target detection.

3.2 MobileNetV2 network

The MobileNetV2 network is updated based on the Mobile-
NetV1 network, and it is a lightweight network ****. Compared with
MobileNetV1, MobileNetV2 improves network performance
through reverse residual module and linear bottleneck layer.

The reverse residual module adopted by MobileNetV2 first
realize dimension raising through 1x1 convolution kernel, and the
activation function is ReLU6. Then extract the feature information
in high-dimensional feature maps through 3x3 depthwise separable
convolution; and finally realize dimension reduction by using 1x1
convolution kernel and reduce the number of channels, to ensure the
contensistency of channel number at this time with that of input
features. The structure of reverse residual module is shown in
Figure 3.

In the dimension reduction convolution layer, MobileNetV2
replaces the nonlinear activation functions such as ReLU with a
linear activation function to construct a linear bottleneck layer,
which can avoid the loss of low dimensional feature information,
and expand the network by setting coefficients and control the
network size, where the step size is 1.

In MobileNetV2 network, deep separable convolution is
introduced to replace ordinary convolution, and linear bottleneck
and inverse residual structure are introduced to avoid information
loss and improve accuracy, greatly reduce the number of model
parameters and calculation amount, and thus improve the
characterization ability of the network.

Add
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T Input
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Stride=1 block Stride=2 block

Figure 3  Structure of Inverted residual block

3.3 Attention mechanism

The invariance in translation of CNN lets the convolution
kernel treat different regions and channels equally in extracting
image features, resulting in failure of extracting useful features. In
response to the above-mentioned shortcomings of convolutional
neural networks, the introduction of attention mechanism can help
disease detection models autonomously learn the weights of disease
features, pay attention to important feature information while
ignoring irrelevant information, reduce the complexity of detection
tasks, and thus improve the detection efficiency of the models. In
this paper, SE channel attention mechanism, CBAM spatial
attention mechanism and ECA efficient channel attention
mechanism are used. The complexity of SE attention mechanism
model is low, and the new parameters and calculation amount are
small. ECA attention mechanism is a lightweight channel attention
module, which increases the complexity of the model less and
improves the effect significantly. CBAM attention mechanism can
improve network performance more effectively by connecting
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spatial domain and channel domain in series. Specifically:
3.3.1 SE channel attention mechanism

SE channel attention mechanism has an additional attention
mechanism in the CNN direction ", and it has the advantages of
low complexity, small parameter quantity and little amount of
calculation. SE includes two processes, compression and excitation,
and tis network structure is shown in Figure 4.

Global average

pooling e
__________ i
IXIxClr 1
|
1
Ix1xClr |
Squeeze \ Excitation
1
Ix1xC |
1
|
IXIxC
1
1
Feature N
HxxC *| recalibration LR
Input feature Output feature
map S map §'

Figure 4 SE network structure diagram

The compression is made on feature maps based on spatial
dimensions. During compression, global average pooling is used to
compress the HxWxC feature maps into 1x1xC one-dimensional
feature vector, which expands the receptive field of the feature
maps, and then it turns to the activation process. The activation

Max pool
avgpool

I1x1xC/r

Ix1xC/r

Max pool
avgpool Conv

process includes two fully connected layers. The first one includes
C/r neurons, and r is the dimension reduction scaling parameter, its
input is 1x1xC and its output is 1x1XC/r. The second one includes
C neurons, its input is 1x1xC/r and its output is 1x1xC. The using
of two fully connected layers can better fit the complicated non-
linear relationship of channels and reduce model complexity. After
two fully connected layers, a one-dimensional vector is obtained
through Sigmoid activation function, at last, the features are
recalibrated and multiply the one-dimensional vector 1x1xC and the
input feature map S according to channel weight, and then output
the HxWxC feature map .

3.3.2 CBAM spatial attention mechanism

CBAM can enhance useful features in the input feature map
while suppressing useless features, and is widely used in practical
application®’. The CBAM attention mechanism is a mixed domain
attention mechanism, which is composed of the Channel Attention
Module (CAM) and the Spatial Attention Module (SAM). The
network structure is shown in Figure 5.

Compared to the SE module, the CAM module has added a
parallel maximum pooling layer. First, by averaging pooling and
maximizing pooling, the HxWxC feature map is compressed into a
1x1xC one-dimensional feature vector. Next, the one-dimensional
vector is sent into the multi-layer perception area MLP, which
contains two fully connected layers. The first fully connected layer
reduces the channel dimension from C to C/r, and the second
connected layer increases the channel dimension from C/r to C.
Then add the features according to the elements, and get a 1x1xC
one-dimensional feature vector Mc through the Sigmoid activation
function. Finally, Mc and the input feature map S are multiplied by
elements to obtain HxWxC feature map, which is taken as input to
the SAM module.

Input feature
map §

Output feature
map S”

Figure 5 CBAM network structure diagram

The SAM module first applies the two feature maps HxWx1
obtained by maximum pooling and average pooling in the channel
dimension, then splice the two feature maps into a HxWx2 feature
map; secondly, utilize 3x3 convolutional layers to perform
dimension reduction process on the spliced feature map and obtain a
HxWx1 feature map. Then obtain an HxWx1 spatial attention
feature map through the Sigmoid activation function. Finally,
through multiplication of elements, based on the spatial attention
feature map obtained from the previous step and the initially input
feature map , the HXxWxC output feature map can be obtained
through calculation.

3.3.3 ECA efficient channel attention mechanism

ECA has some improvements based on SE; it is an extremely
lightweight attention module®. ECA realized the local cross-
channel interaction strategies without dimensionality reduction and
the self-adaptive method of selecting the size of the one-
dimensional convolutional kernel. It reduced the complexity of the
module by improving the performance of the attention module. The
network structure of the ECA is shown in Figure 6.

First, enter HxWxC feature map, compressed the feature map
into 1x1xC one-dimensional feature vector by using global average
pooling; next, the size of one-dimensional convolutional kernel K is
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adaptively selected, and the value of K is adaptively determined by
the number of channels. Then cancel the latitude reduction
operation to achieve local cross-channel connection, and use the
KxK convolution layer to perform one-dimensional convolution
operations on one-dimensional feature vectors. Finally, obtain
HxWxC output feature map through Sigmoid activation function.

Global average
pooling

4

Adaptive K value calculation based on
channel number

+

KxKconvolution
(one dimension)

v

Sigmoid | 1x1xC

e ]

Input feature
map S

1x1xC

Ix1xC

1x1xC

Output feature
map S”

Figure 6 ECA network structure diagram

3.4 Improved SSD model
mechanisms

based on different attention

The SSD-based cotton leaf disease detection model has
unsatisfactory detection performance in complex environments with
irregular disease distribution and high timeliness requirements.
Through analysis, the reasons are as follows:

(1) The shallow feature extraction network of SSD model lacks
semantic information and seriously loses details in the process of
feature extraction. The target feature information of cotton diseases
in complex environment is less, so the semantic information and
detail information of cotton diseases are particularly important for
disease detection. Incomplete semantic information and detail
information may affect the detection performance of the model.

(2) The feature layers used for detection in the SSD model have
equal weights in both channel and spatial dimensions. Different
channels and spatial dimensions represent different semantic
information, so the feature layers with the same weight makes it
difficult to distinguish the detection target and interference target of
the disease.

In response to the above problems, in order to improve the
detection performance of SSD detection models for cotton leaf
diseases in complex environments, in this paper, the SSD model for
cotton leaf disease detection was optimized by improving the
backbone network and integrating attention mechanisms. The
specific measures are as follows:

(1) Improving the backbone network

Due to the large parameter quantity of the VGG16 network, it
takes much runtime in the feature extraction process. Nonlinear
transformation in forward propagation will lead to the loss of key
feature information. Therefore, enhancing the feature extraction
capability of the backbone network is the key factor of improving
the model detection precision and accelerating model detection
speed. In this paper, MobileNetV2 lightweight network was used
instead of VGG16 network for pruning processing. Through deeply
separable convolution, the number of model parameters was
significantly reduced to avoid the occurrence of gradient
disappearance, weaken the dependency between parameters, and
effectively alleviate the overfitting phenomenon. Through the
shallow feature module, the receptive field of the feature map was
expanded to provide rich semantic information and details of the
cotton disease, so as to improve the feature extraction capability of
the model and enhance the detection performance of small target
diseases.

(2) Integration of different attention mechanisms

The introduction of SE attention mechanism into the SSD
model is more concerned about the channel features with the largest
amount of information by suppressing the unimportant channel
features; the introduction of ECA into the SSD model achieves
appropriate cross-channel interaction, significantly reducing the
complexity of the model while maintaining good performance; the
introduction of CBAM into the SSD model makes the disease
detection model consider the importance of different pixels as well
as the importance of pixels in different positions in the same
channel. All the three of these attention mechanisms mentioned
above can be seamlessly integrated into the SSD model, which
helps the disease detection model learn the weight of disease
features independently and realize end-to-end training. To solve this
problem, 6 feature images with different sizes were extracted from
the SSD model and input into the SE, ECA and CBAM attention
modules to screen out disease object features, to enhance the feature
images’ representational ability in key feature information and
improve the detection precision of SSD model on cotton disease
objects.

The improved SSD model structure framework based on
different attention mechanisms is shown in Figure 7, where the
Attention Mechanism includes the SE attention module, ECA
attention module, and CBAM attention module. After the cotton
disease images were input, the lightweight network MobileNetV2
was used to extract the disease features. Then the multi-scale feature

map is generated by the extended network. Then, 6 feature maps of
different scales were input into different attention modules. Finally,
the non-maximum suppression algorithm is run to get the final
detection result.

R

30030003 | 38x38x5]2
Image Convd Convi
Conv1--Conv7
MobileNetV2

Non-
maximum |,
| suppression

Detection

Convl0  convil

Extra feature layers

Figure 7 Framework diagram of improved SSD model
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In summary, the detection of cotton leaf diseases in complex
environments in this article is mainly based on improved SSD models
with different attention mechanisms. First, in the data preprocessing
stage, obtain the cotton disease dataset, complete the target detection
labels of the disease, and divide the dataset proportionally. Second,
in the model training stage, train the improved SSD model. When

the model converges to a certain extent and the accuracy of the
validation set no longer changes, the training is terminated to obtain
the cotton disease detection model. Finally, in the cotton disease
detection stage, a trained model is used to predict cotton diseases,
and the performance of this model is evaluated based on the target
detection results. The algorithm flow is shown in Figure 8.

Data set of cotton diseases

Labelimg

Target detection label

l

| |
| |
| |
| |
| |
| |
Data pre- | |
RO : Data clipping, enhancement, and partition of training set and test set :
| | |
| |
| ' ' I ' |
: Training set Training set truth Test set Test set truth :
| |
B BV S O O D |
| . . |
| Backbone network replacement Engage the attention mechanism |
| |
| - }
: Improved SSD model Data set of cotton diseases :
Model

training | v Target |
: Training cotton disease detection model detection :
| |
| |
| |
| |
| |
| |
| |
| |
| |
. U e o) ;— ——————————————— —
-y |
| . i ) |
| Cotton disease detection results True value of cotton disease |
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[ T
| ¥ |
Detection | . : |
| Evaluation of target detection results |
of cotton | |
diseases | [ |
| l l l l 1 l |
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| Recall F1 Precision FPS parameters |
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O e R e e . i

Figure 8 Algorithm flowchart

4 Test and result analysis

4.1 Evaluation indexes

In this study, P (Precision), R (Recall), comprehensive
evaluation index F1 value, mAP (Mean Average Precision), FPS
(Frames Per Second) and number of parameters were adopted to
evaluate the detection results.

The Precision P represents the proportion of correct predictions
being positive and all predictions being positive; The Recall R
represents the proportion of correctly predicted positive and all
positive samples. The calculation equations of P, R are Equations
(1) and (2), respectively.

™

P=— %100 1
TprFp <1007 1
TP

R=———x100° 2
e < 00% 2)

where, TP represents the number of disease samples predicted to be

positive in the disease dataset and actually positive; FP represents
the number of disease samples predicted to be positive but actually
negative; FN represents the number of disease samples predicted to
be negative but actually positive.
F1 value is the harmonic mean of Precision P and Recall R.
The calculation equation of F'1 value is shown in Equation (3):
2XPxXR
Fl==pk 3)
mAP is the results of averaging the average precision AP of all
diseases, it can measure a model’s performance on all kinds of
diseases. The definition of average precision 4P is shown in
Equation (4), and the definition of mAP is shown in Equation (5).

‘ 4
AP = fo PRAR 4)
1 N
mAP = ZAPN, (5)
m=1
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where, N is the number of kinds of diseases; 4P, is the average
precision of the m-th kind of disease.

FPS represents the number of images processed per second.
The higher FPS is, the faster the detection speed of the algorithm.
4.2 Experiment platform and parameter setting

In this study, Windows 10 operating system was adopted. The
computer is equipped with 16GB of memory, using Pytorch 1.10.1
as a deep learning framework, and the hardware configuration and
model parameters related to the experiment are listed in Table 2.

Table 2 Test related hardware configuration and
model parameters

Name Configuration Name Taking values

GPU RTX3070Ti Size of images 640%x640

CPU  AMD Ryzen 7 5800X @ 3.8GHz  Learning rate 0.001
CUDA 11.3 Optimizer Adam
CuDNN 8.2.1 Batch size 16

Note: CUDA: Compute Unified Device Architecture; CuDNN: NVIDIA
CUDA® Deep Neural Network
4.3 Experiment results and analysis
4.3.1 Detection effect of the SSD model using different backbone
networks

To explore the impact of the SSD model based on different
backbone networks on detection of cotton leaf diseases, P, R, F1
values, mAP, FPS, and number of parameters were compared under
the same experimental conditions. The experimental results are
shown in Figure 9, and the detection effect is shown in Figure 10.

120 -
100
80
60
40
20

P%) R(%) FI(%) mAP(%) FPS  Sizeof

parameters(MB)
= SSD VGG = SSD_MobileNetV2
Note: The SSD model with VGG16 as the backbone network is abbreviated as
SSD_ VGG, the SSD model with MobileNetV2 as the backbone network is
abbreviated as SSD_ MobileNetV2. The same below.
Figure 9 Detection results of cotton diseases based on
different backbones

b.SSD MobileNetV2

Figure 10 Detection effect of cotton diseases based on
different backbones

As shown in Figure 9, the P, R, F1 values, mAP, and FPS of
the SSD MobileNetV2 are all higher than those of the SSD VGG
model, and the parameter quantity of SSD MobileNetV2 was
significantly reduced. As shown in Figure 10, the detection
performance of the SSD_MobileNetV2 model is significantly better
than that of SSD VGG model. The confidence level for most
prediction boxes in the detection effect map is higher, and there is a

significant improvement in leak detections.  Therefore,
MobileNetV2 was used to replace the backbone network VGG16
and significantly reduced the parameter quantity of the model,
retained more location and marginal information and improved the
detection precision rate.
4.3.2 SSD model detection effect by adopting different attention
mechanisms

To explore the impact of the SSD model based on different
attention mechanisms on the detection of cotton leaf diseases, P, R,
F1 values, mAP, FPS, and number of parameters were compared
under the same experimental conditions. The experimental results
are shown in Figure 11, and the detection effect is shown in Figure 12.

140
120
100
80
60
40
20
0

P(%) R(%) F1(%) mAP(%)  FPS

Size of
parameters(MB)

= SSD VGG+SE = SSD VGG+ECA

] SSD:VGG+CBAM SSD:MobileNetV2+SE

= SSD_MobileNetV2+ECA = SSD_MobileNetV2+CBAM
Note: The SSD_VGG model after introducing the SE attention mechanism is
called SSD_VGGHSE for short; the SSD_VGG after introducing the ECA is
called SSD_VGG+ECA for short; the SSD_VGG model after introducing CBAM
is called SSD_VGG+CBAM for short; the SSD_MobileNetV2 model after
introducing SE is called SSD_MobileNetV2+SE  for short; the
SSD_MobileNetV2 model after introducing ECA is called SSD MobileNetV2
+ECA for short; the SSD MobileNetV2 model after introducing CBAM is called
SSD_MobileNetV2+CBAM for short. The same below.

Figure 11 Detection results of cotton diseases based on different
attention mechanism

It can be obtained from Figure 11 that:

(1) After introducing SE, ECA and CBAM into the SSD_VGG
model, SSD_VGG+ECA showed optimal detection effect, followed
by SSD VGGHSE model and finally the SSD VGG+CBAM
model. The P, R, F1 values, mAP and FPS of SSD VGG+ECA
were all higher than that of SSD VGG+SE model and
SSD_VGG+CBAM model, while the parameter quantity of the
three models were basically equal.

(2) After introducing SE, ECA and CBAM into the
SSD MobileNetV2 model, the SSD MobileNetV2+ECA model
showed the best detection performance, followed by SSD
MobileNetV2+SE model, and finally the SSD MobileNetV2 +
CBAM model. The P, R, F1 values, mAP, and FPS of the
SSD_MobileNetV2+ECA were all higher than those of the
SSD MobileNetV2+SE model, and the SSD MobileNetV2+
CBAM, and the parameter quantity of the three models was
basically equal.

(3) After introducing SE, ECA and CBAM into the
SSD_MobileNetV2 model, the detection performance was better
than the SSD VGG after introducing the three attention
mechanisms above, and the parameter quantity of the SSD
MobileNetV2+SE model, the SSD_MobileNetV2+ECA model and
the SSD_Mobile NetV2+CBAM model were less than half that of
the SSD_VGG+SE model, the SSD VGG+ECA model and the
SSD_VGG+CBAM model.



218  April, 2024 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 17 No. 2

a. SSD_VGG+SE

b. SSD_VGG+ECA

P

c. SSD_VGG+CBAM

BT el
e. SSD_MobileNetV2+ECA

f. SSD_MobileNetV2+CBAM
Figure 12 Detection effect of cotton diseases based on different
attention mechanism

It can be obtained from Figure 12 that:

(1) Higher detection precision rate was obtained by introducing
ECA into the SSD_VGG model and the SSD_MobileNetV2 model,
thus better detection performance was obtained. It shows that, the
ECA module utilized the global information of cotton disease
images, and selectively enhanced the channel weight of the cotton
disease by effectively suppressing the unimportant feature
information in the environment, thus significantly improved the
precision of disease detection boundary.

(2) Some circumstances of leak detection occurred after
introducing SE into the SSD VGG model and the SSD_
MobileNetV2 model, showing that the SE module only selected
some interactive coverage, and ignored some channel information
of the cotton disease.

(3) Some circumstances of leak detection and false detection
occurred after introducing CBAM into the SSD VGG model and
the SSD_MobileNetV2 model, showing that, although the CBAM
was introduced into the spatial attention mechanism, its
discrimination of cotton diseases and the spatial and location
information of the environment was poorer than that of channel
attention mechanisms.

4.3.3 Detection performance by using different target detection
models

To explore the impact of the different detection models on the
detection of cotton leaf diseases, P, R, F1 values, mAP, FPS, and
number of parameters were compared under the same experimental
conditions. The experimental results are listed in Table 3, and the
detection performance is shown in Figure 13.

It can be obtained from Table 3 that:

(1) P, R, F1 value and mAP of Faster R-CNN model were 6.64,
9.65, 822 and 4.42 percentage points lower than SSD
MobileNetV2+ECA model, respectively, and FPS value was
12.22% of that of SSD_MobileNetV2+ECA model. The number of
parameters in this model is the highest among all models, which is
24.58 times that of SSD MobileNetV2+ECA model. The Faster R-

Table 3 Detection results of cotton diseases based on different
target detection model

Model Pl% RI% F1/% mAP/% FPS Par:n‘f:te‘;fMB
Faster R-CNN 79.80 7442 77.02 8038 1587  569.37

YOLOx 81.01 65.72 72.57 7479 7691 3438
SSD_VGG 78.05 72.26 75.04 7243 91.68 53.16

SSD_MobileNetV2 82.42 75.56 78.84 81.22 114.18 27.06
SSD_MobileNetV2+ECA 86.44 84.07 85.24 84.80 129.92 23.16

¥

i ‘
e. SSD_MobileNetV2+ECA
Figure 13  Detection effect of cotton diseases based on different
target detection models

CNN model uses the feature information extracted from the last
layer of the backbone network as the input part of the region
generation network and feature prediction head during the detection
process, resulting in the loss of a large amount of cotton disease
information and unsatisfactory detection results.

(2) Using YOLOx model, the P, R, F1 values and mAP were
5.43%, 18.35%, 12.67%, and 10.01% lower than the SSD _
MobileNetV2+ECA model, the FPS value was 53.01 frames/s,
which is lower than that of the SSD_MobileNetV2+ECA model,
model parameter quantity was 11.22 MB higher than that of the
SSD  MobileNetV2+ECA model. It shows that the YOLOx model
did not fully utilize the features of cotton diseases.

(3) Using the SSD_VGG model, P, R, F1 values and mAP were
8.39%, 11.81%, 10.2%, and 12.37% lower than that of the SSD_
MobileNetV2+ECA model, respectively, and the FPS value was
38.24 frames/s lower than the SSD MobileNetV2+ECA model, the
model parameter quantity was 30 MB higher than that of the SSD
MobileNetV2+ECA model. It shows that the anchor frame size used
in the SSD_VGG model was not suitable for cotton diseases, since
its precision in disease feature extraction was not high.

(4) In using the SSD_MobileNetV2 model, the P, R, F'1 values
and mAP were 4.02%, 8.51%, 6.4%, and 3.58% lower than that of
the SSD_MobileNetV2+ECA model, the FPS value was 15.74
frames/s lower than that of the SSD_MobileNetV2+ECA model,
model parameter quantity was 3.9 MB higher than that of the SSD
MobileNetV2+ECA model. It shows that the SSD MobileNetV2
chose larger feature dimensions in prediction, thus it is not suitable
for detection cotton diseases.

As can be seen from Figure 13, when using the Faster R-CNN
model, YOLOx model, SSD_VGG model and SSD_MobileNetV2
model to detect cotton diseases, there were certain missing and false
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detection in all images. SSD_MobileNetV2+ECA model correctly
detected all cotton diseases and had the best detection effect.
4.3.4 Model visualization

In a convolutional neural network, the features of the fully
connected layer are difficult to understand, but the last layer of
convolutional units contains the most comprehensive semantic
information, and each channel can detect different activation
regions of the target. Therefore, the characteristic information of the
last layer of convolutional unit is fully used to explain the network
model, and the internal characteristics of the neural network are
understood by visualization technology to realize the interpretation
of the model decision. In order to better reflect the advantages of
attention mechanisms, the gradient weighted class activation map
Grad-CAM was used as a visualization tool®”. Grad-CAM obtains
the weight values of each channel by calculating the gradient
information of the last convolutional layer, and maps the weighted
feature map to the original image in the form of a heat map. The
pixel values in the heat map represent the importance of the pixel
area to the model’s detection results, and the redder the color, the
more attention the model pays to the area. The visualization results
of different models are shown in Figure 14.

h. SSD_MobileNetV2+ECA

.

i. SSD_MobileNetV2+CBAM
Figure 14 Grad-CAM diagram of different models

As can be seen from Figure 14, compared with the original
figure, the color parts of the SSD VGG model and SSD_
MobileNetV2 model are distributed around the leaves, and after the
introduction of the attention module, the color parts of the model
are mostly concentrated on the leaves, indicating that the model
focuses on the cotton leaves. Among them, the color part of
SSD_MobileNetV2+ECA model concentrated on the disease parts
of the leaves, and paid the most attention to the disease spots.
Therefore, the addition of attention module makes the model
strengthen the ability to extract important disease features, restrain
the extraction of background features, and extract key disease
features significantly stronger than the unimproved model, and
improves the classification accuracy. In summary, the improved
model can well solve the problems of low accuracy and low
generalization of cotton leaf diseases.

5 Conclusions

An improved SSD model for detecting cotton leaf diseases in
complex backgrounds was proposed in this paper. The improved
SSD model has good timeliness and robustness, and could achieve
more comprehensive and precise cotton disease detection in
complex field environments. It can inspire ideas for the detection of
cotton leaf diseases in practical applications. The main conclusions
are as follows:

(1) Adopting the lightweight network MobileNetV2 to replace
the original backbone network VGG16 of SSD effectively reduced
the parameter and computational quantity of the model. The
parameter quantity of the SSD_MobileNetV2 was just 50.9% that of
the SSD_VGG. At the same time, the SSD_MobileNetV2 model
effectively integrated the rich detail information in the shallow layer
with the rich semantic information in the deep layer, significantly
improving the extraction capability of cotton disease features, and
accelerating the running speed of the algorithm. Compared to
SSD_VGG, the P, R, F1 values, and mAP of SSD_MobileNetV2
model increased by 4.37%, 3.3%, 3.8%, and 8.79%, respectively,
while FPS increased by 22.5 frames/s.

(2) After introducing SE, ECA and CBAM into the SSD_VGG
model, the SSD_VGG+ECA model presented the optimal detection
performance, followed by the SSD_VGG+SE model, and finally the
SSD VGG+CBAM model. After introducing SE, ECA and CBAM
into the SSD_MobileNetV2 model, the SSD_MobileNetV2 +ECA
model presented the optimal detection performance, followed by the
SSD_MobileNetV2+SE model and finally the SSD_MobileNetV2+
CBA model. Visualize the focus areas of each model using Grad-
CAM. After introducing the three attention mechanisms into the
SSD_MobileNetV2 model, the detection performance of the model
was better than that of the SSD_VGG model after also introducing
the three attention mechanisms. Therefore, the introduction of the
ECA attention mechanism improved the feature utilization rate of
cotton diseases, enhanced the equalization of integration of disease
features, and effectively promoted the detection performance of
cotton leaf diseases. The SSD_MobileNetV2+ECA model proved
optimal detection performance, and its P, R, F1 values, mAP and
FPS were all higher than that of other models that were introduced
with attention mechanisms, moreover, for its smaller parameter
quantity and higher running speed, it is more suitable for cotton
disease detection in complex environments.

(3) The P, R, F1 values, mAP, and FPS of the SSD
MobileNetV2+ECA model were higher than that of the other four
commonly used object detection models, and the model has
significant advantages in parameter quantity to achieve better
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detection results.
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