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Abstract: Pig  body  measurement  is  an  important  evaluation  criterion  for  breeding  and  production  management.  Automatic
measurement  algorithms for  pig  body sizes  exhibit  sensitivity  to  the  point  cloud posture,  but  non-standard  pig  postures  may
result in inaccurate joint point localization in body measurement, further affecting measurement accuracy and the commercial
application of these algorithms. To address this challenge, this paper proposed a pig point cloud posture transformation method
based on pig’s skeleton model to adjust non-standard postures before conducting body size measurements. The method utilized
an improved L1-median skeleton model to extract the three-dimensional skeleton of the pig point cloud, capturing the skeleton
joint points on the target pig’s head, body, and limbs. By binding the skeleton joint points with the local point cloud and using
rotation  matrices,  non-standard  postures  were  adjusted  to  standard  ones,  enabling  accurate  body  size  measurements.  The
experimental  results  demonstrated  that  the  average  relative  errors  between  the  transferred  posture  and  the  original  standard
posture were reduced to 0.89% in body length, 0.76% in body width (front), 1% in body width (back), 0.89% in body height
(front), 1.7% in body height (back), 2.03% in thoracic circumference, 3.37% in abdominal circumference, and 1.89% in rump
circumference. To conclude, the posture standardization transfer method can significantly reduce errors in important body size
parameters such as body length, body height, and body width. The method displays a greater stability and robustness compared
to existing posture normalization and regression adjustment methods, providing both guidance and insight for future research in
intelligent agriculture.
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1    Introduction
Accurate  body  measurement  can  reflect  the  growth  and

development  of  livestock,  estimate  body  weight,  and  assess  body
condition,  facilitating  genetic  breeding  and  intelligent  feeding
management[1-4].  Traditional  measurement  methods  rely  on  manual
operation  and  require  restraining  animals  in  specific  areas,  which
are  not  only  time-consuming  and  inefficient  but  also  prone  to
unnecessary  stress  responses  of  livestock[5,6].  Furthermore,  manual
measurement  methods  fail  to  meet  the  demands  of  large-scale
livestock farms for batched, efficient, and continuous monitoring.

With  the  increasing  demand  for  smart  farming  and  precise

animal  monitoring,  depth  cameras  such  as  Kinect  and  RealSense
have  been  successfully  applied  in  the  livestock  industry[7-10].  In  the
process  of  automated  body  measurement,  multiple-view  depth
cameras are first used to more efficiently capture three-dimensional
data of livestock in standing or walking states. The data from diff-
erent views are then reconstructed into a complete livestock model
through  target  detection,  extraction,  registration,  and  fusion[11-14].
Key  points  for  body  size  measurement  are  located  using  effective
methods such as point cloud density distribution, geometric feature
calculation,  and part  segmentation to  obtain pig body length,  body
width, body height,  and circumference parameters[15-17].  By utilizing
ellipse fitting, point cloud segmentation, and curvature analysis, the
body  weight,  surface  area,  and  volume  of  animals  are
determined[7,18,19], which are helpful in body condition scoring[20-22].

During  manual  measurement  of  livestock  body  sizes,  animals
are required to maintain an ideal standard posture. Specifically, the
head and tail of the pig should align in a straight line, with the limbs
forming  a  rectangular  stance.  This  posture  facilitates  monitoring
from  top,  side,  and  leg  point  clouds,  directly  displaying  the  pig’s
primary  body  contours  and  structures.  It  minimizes  measurement
errors due to posture variations, ensuring consistency and accuracy
of  the  data[23].  However,  in  actual  measurements,  even  when
restricted to a narrow measurement area, livestock tend to lower or
raise  their  head,  turn  their  head,  and  bend  their  body,  resulting  in
various  non-standard  postures.  Additionally,  measurements  in
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different  postures  may  bring  about  different  body  sizes.
Experimental  results  indicate  that  the  proportion  of  standard
postures is only 25% in the actual data acquisition (those accurately
reflecting  the  pig’s  actual  body  sizes),  while  75%  represent  non-
standard  postures,  introducing  a  considerable  level  of  uncertainty
into  body  size  measurements[24].  Therefore,  to  ensure  accuracy  in
manual measurements, the average values of body parameters from
multiple  measurements  on  the  same  animal  are  often  taken.  The
results  of  manual  measurements  are  subjective  and  influenced  by
non-standard postures, making them unreliable as the gold standard
for true body measurements.

Different  postures  can  affect  the  accuracy  of  body
measurements. For instance, compared to the standard posture of a
pig,  when the  head tilts  more towards  the  ground,  the  body length
tends  to  increase,  the  front  height  diminishes,  and  measurements
like  abdominal  girth  and  chest  girth  tend  to  be  larger.  Moreover,
increased  body  twisting  amplitude  corresponds  to  longer  body
length, which can also affect body width. Ling et al. show that point
cloud  postures  of  livestock  collected  in  free-walking  states  are
diverse,  with  only  a  quarter  of  the  data  representing  the  standard
posture[24].  Compared  with  manual  measurement,  the  automatic
measurement  method  of  standard  posture,  and  the  error  of  body
length,  body  width,  body  height,  and  abdominal  circumference  in
non-standard  posture,  the  maximum  error  can  reach  10%.  The
previous research aimed to improve the accuracy of livestock body
size  measurement  by  quantifying  the  relationship  between  the
vector  set  of  skeleton  joint  points  and  body  sizes  and  applying  a
regression model to calibrate the body size data. Another approach
involves  fitting  point  cloud  data  with  statistical  three-dimensional

models of animals and normalizing the point cloud postures through
methods  such  as  estimating  the  animal’s  forward  direction,
segmenting  point  cloud  of  body  parts,  bilateral  symmetry,  and
posture  normalization[25,26].  However,  this  method  requires  high-
precision  three-dimensional  models  for  each  type  of  livestock  and
significant  computational  costs[27].  Automated  measurement  of
livestock body sizes should be conducted in the standard posture, as
direct  measurements  in  non-standard  postures  can  lead  to
considerable errors. Therefore, posture correction of livestock point
clouds  is  crucial.  In  this  study,  we  present  a  method  for  posture
standardization transfer and body size measurement based on a pig
skeleton  model,  which  is  marked  by  transforming  non-standard
postures  to  a  standard  posture  before  conducting  body  size
measurements.

The main contributions of this paper are as follows:
(1)  Improving  the  L1-median  skeleton  model  to  accurately

extract the three-dimensional point cloud skeleton of pigs.
(2)  Introducing  a  point  cloud  posture  standardization  transfer

method based on skeleton joint points,  which enables the livestock
point  clouds  in  non-standard  postures  to  transfer  to  a  standard
posture. 

2    Materials and methods
Extraction  of  the  3D skeleton  model  and  skeleton  joint  points

from  complete  pig  body  point  cloud  data  makes  posture
standardization  transfer  feasible.  Meanwhile,  comparative
measurements  can  also  be  realized,  such  as  body  length,  body
height, thoracic circumference, abdominal circumference, and rump
circumference. The specific process is shown in Figure 1.
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Figure 1    Specific process of pig posture transfer and body measurement
 
 

2.1    Data preprocessing
All  procedures  in  this  experiment  were  approved  by  the

laboratory  Animal  Ethics  Committee  of  South  China  Agricultural
University  (reference  number  2020G008).  The  data  for  this
experiment were collected from July 1 to August 1, 2022, at Wens
Foodstuff  Group  Co.,  Ltd.  in  Heyuan  City,  Guangdong  Province.
Depth cameras  in  three directions were used to  capture  local  point
cloud  data,  and  after  registration,  denoising,  and  downsampling,
complete pig body point clouds in different postures were obtained.
For  detailed  information  on  the  data  acquisition  process  and  the
specific  definitions  of  different  pig  postures,  please  refer  to  our
previous studies[24,28]. 

2.2    Pig skeleton model
A  three-dimensional  skeleton  can  describe  the  geometric

topology  of  a  pig,  providing  an  intuitive  and  comprehensible
representation. Similarly, a pig skeleton model can assist in posture
classification  and  posture  transfer.  Due  to  limitations  in  camera
perspectives  and  factors  such  as  strong  sunlight,  incomplete  point
cloud data or uneven distribution of local point clouds may be found
in  the  front  or  hind  legs  of  a  target  pig.  Directly  applying  the  L1-
median skeleton extraction algorithm cannot accurately describe the
shape of the pig body[29]. Therefore, in this paper, an improved local
L1-median  skeleton  extraction  algorithm  is  employed  to  describe
the shape features of the pig body with more accuracy. 
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2.2.1    Pig skeleton extraction

Q = {q j} j∈J ⊂ Ω3

X = {xi} , i ∈ I ⊂ Ω3

In our  experiment,  the pig skeleton point  cloud is  acquired by
randomly  sampling  the  input  point  set    to  obtain  a
sparse point set  , determining the local centers of
points  within  the  neighborhood,  and  gradually  expanding  the
neighborhood range. The point cloud data of a pig skeleton can be
ultimately obtained:

argmin
x

∑
i∈I

∑
j∈J

∥xi −q j∥θ
(
∥xi −q j∥

)
+R (X) (1)

I J
X Q θ (r) = e−∥r∥2/(h/2)2

h

r xi q j

R (X)

where, the first part determines the local L1-median, which obtains
the central points of the local point cloud.   and   index the set of
points   and points  , respectively. The parameter 
is the Gaussian weight function of the initial radius  . The weight is
lower  in  high-density  regions  to  generate  effective  skeleton
branches;   is the Euclidean distance between point   and point  ,
allowing  the  skeleton  extraction  algorithm  to  adaptively  process
point cloud regions with different density levels. The term   is
introduced  as  a  regularization  function  that  adjusts  the  repulsive
force of the skeleton points to maintain sparsity, while the weight is
greater  in  low-density  regions  to  make  the  skeleton  closer  to  the
true shape.

R (X) =
∑

i∈I

γi

∑
i′∈I\{i}

θ
(
∥xi − x′i∥

)
σi∥xi − x′i∥

(2)

γi

σi

σi

λi
2

λi
0 +λ

i
1 +λ

i
2

λi
0 λ

i
1 λ

i
2

λ2

x′i
xi

where,    is  the  parameter  that  balances  gravity  and  repulsive
forces;  and    is  used to  differentiate  between skeleton points  and

non-skeleton points.   =  ，represents the concentration

of the point cloud in a local region, and  ,  ,    is  the extent of
stretch in different directions at that point. The closer the parameter
is  to  1,  the  greater  the  concentration  of  the  point  cloud  along  the
direction  ,  resulting  in  a  line-like  distribution.  When  handling
irregular  and  incomplete  point  cloud  data,  enhancing  the  accuracy
and  stability  of  skeleton  extraction  makes  it  more  likely  that  the
skeleton  point  is  located  on  a  skeleton  branch.    represents  the
points adjacent to  . 

2.2.2    Skeleton optimization
Extracting  the  L1-median  skeleton  heavily  relies  on  surface

points.  When  the  distribution  of  surface  points  on  the  pig  body  is
uneven,  the  extracted  local  skeleton  tends  to  be  concentrated  in
regions  where  surface  points  are  relatively  dense.  To  achieve  a
uniform  distribution  of  skeleton  points  and  form  a  complete  and
consistent pig body skeleton model, density weighting is applied to
initial pig skeleton optimization. This involves quantifying the point
cloud  density  in  local  regions  to  obtain  density  weights  for  the
skeleton points, which are formulated as follows:

d j = 1+
∑
i′∈I{i}

θ (r) (3)

xk+1
i =

∑
j∈J

q jα
k
i j/d j∑

j∈J

αk
i j/d j

+µσk
i

∑
i′∈I{i}

(xk
i − xk

i′ )β
k
ii′∑

i′∈I{i}

βk
ii’

(4)

d j r
xi q j

αk
i j =
θ
(
∥xk

i −q j∥
)

∥xk
i −q j∥

xi

q j

βk
ii′ =
θ
(
∥xk

i − xk
i′∥
)

∥xk
i − xk

i′∥2

where,   denotes the weighted local density of  , which is used to
regulate  the  local  density  between  point    and  point  .

  is  the angular discrepancy between point   and

point  ,  which  contributes  to  calculating  the  repulsive  force

between the two points. Meanwhile,   signifies the

k
σk

i = σ
(

xk
i

)attractive force between these points,   indicates the iteration count,
and  .

Furthermore,  pig  point  clouds  often  have  small  missing
portions,  and  the  generated  L1-median  skeleton  may  deviate  from
these  missing  parts,  thus  affecting  the  overall  structure  of  the
skeleton.  This  paper  introduces  an  ellipse  fitting  approach,  which
finds  an  ellipse  that  minimizes  the  distance  between  known  point
clouds  and  the  ellipse  to  approximate  the  missing  surface  point
cloud[30]. The formula for ellipse fitting is as follows:

F (a, x) = ax = ax2 +bxy+ cy2 +dx+ ey+ f = 0 (5)
a = [a,b,c,d,e, f ]T

x = [x2, xy,y2, x,y,1]T xi,yi F(a, xi)

F (a, x) = 0

where,  the  parameter  vector    and  the  coordinate
vector    are  used.  For  a  point  ( ), 
represents  the  algebraic  distance  from  the  point  to  the  curve

.
By applying  density  weighting  optimization  and  ellipse  fitting

to  the  pig  skeleton  model,  the  generated  skeleton  points  not  only
exhibit  a  uniform  distribution  but  also  provide  a  complete
description of the pig contour. 

2.3    Posture standardization transfer
There  are  significant  differences  in  body  length,  body  width,

body  height,  abdominal  circumference,  and  other  measurements
between  pigs  in  non-standard  postures  and  pigs  in  standard
postures.  In  real  scenarios,  various  point  cloud  postures  are
collected in a pig’s free-walking state, which can affect the accuracy
and  stability  of  body  size  measurements.  To  reduce  measurement
errors caused by posture variations, this study proposes a method to
adjust non-standard postures to standard postures. 

2.3.1    Skeleton joint extraction
The  skeleton  of  a  pig  is  divided  into  four  parts:  head,  torso,

front legs,  and hind legs.  As a definition of pig skeleton in a strict
biological  sense is  not yet  available,  this study utilizes 32 skeleton
joint  points  from  the  pig  skeleton  that  represent  the  main
physiological  structures  of  the  pig’s  hoof.  As  shown  in  Figure  2,
three  joint  points  are  uniformly  obtained  from  the  pig’s  head,  17
joint  points  from  its  torso,  and  12  joint  points  from  its  front  and
hind legs, totaling 32 joint points on a pig skeleton. The purpose of
selecting  these  nodes  is  to  ensure  a  uniform  distribution  of  data
across each part of the skeleton, which aids in accurately identifying
standard  postures  and  enhancing  the  precision  of  body  size
measurements.
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Figure 2    32 joint points of pig skeleton
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gi = {xi,yi,zi}
G = {g1,g2, . . . ,gk} , k = 20

vi,i+1

The joint points from the head and torso of a pig are arranged
in  ascending  order  along  the  x-axis  to  establish  the  coordinate
system  for  the    joint  point,  denoted  as  coordinate  system

. The collection of joint points from the head and body
, comprising 20 joints from the pig’s head

to  its  hindquarters,  constructs  a  vector  denoted  as  ,  which  can
be calculated by Equation (6):

vi,i+1 = {gi+1 −gi|i = 1,2, . . . ,K −1} (6)
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2.3.2    Skeleton joint weight binding
To  achieve  posture  standardization  transfer,  the  skeleton  joint

points of the pig are selected as the central points of the local point
cloud.  The  skeleton  joint  points  can  represent  the  important
geometric  features  of  the  local  point  cloud,  such  as  the  pig  body
contour  and  the  pig  posture,  which  are  crucial  for  posture
standardization transfer.

c0

p r0

M(M ≥ 2) M

c0 c0

r0

Based  on  the  distance  between  the  skeleton  joints  and  the
surface  point  cloud  of  the  pig  body,  the  points  within  a  certain
distance from the skeleton joints in the local point cloud are bound
to  their  corresponding  joints.  As  shown in Figure  3,  each  skeleton
joint  serves  as  the  center  of  a  sphere,  where  the  surface  of  the
sphere  represents  the  distribution  of  the  pig  body  surface  point
cloud  around  that  joint.    is  the  coordinates  of  the  skeleton  joint
points,    represents  the  pig  body  surface  point  cloud,  and 
represents  the  distance  between  the  skeleton  joint  points  and  the
surface  point  cloud.  Figure  3a  illustrates  the  ideal  relationship
between  the  skeleton  joint  points  and  its  associated  local  point
cloud. Assuming there are   point clouds on the sphere, 
points  are  evenly  distributed  along  the  edge  of  the  circle  and  are
closest to point  . The distance from these points to the center   is
equal to the radius of the sphere  , which can be expressed as:

d (pi,c0) = r0 for i = 1,2, . . . ,M (7)
 
 

p1 p1p2

r0

c0

r0

c0

p3

p4

p5

p…
pN

p2

p3

p…

d(p1, c0)=d(p2, c0)=…=d(pM, c0)=r0
d(p1, c0)≈d(p2, c0)≈…≈d(pN, c0)≈r0

a b

pM

Figure 3    Illustration of radius calculation using the
nearest distance

 

M {w1,w2, . . . ,wM}

c
c

c

In Figure 3b, the situation is more realistic, where there is noise
on the surface and the pig body surface point cloud p is haphazard
and not entirely located on the edge of the sphere. In this case, given
a set of   points, a combination of weights   is used
for any arbitrary convex combination to obtain the nearest distance.
The  weights  for  point  clouds  closer  to  the  skeleton  joint  point 
have larger values, while those farther from   have smaller values,
even  zero.  The  skeleton  point    is  approximated  as  a  convex

ccombination  of  the  input  local  point  cloud  that  is  closer  to  .
Therefore,  through  the  same  combination  weights,  the  weighted
average of the nearest distances is used as an approximation of the
radius  to  obtain  a  reasonable  estimation  of  the  true  radius.  The
sphere radius can be calculated as:

M∑
i=1

wid (pi,c0) = r0 with
M∑

i=1

wi = 1 (8)

p ci

Combining  the  two  scenarios  mentioned  above,  the  farthest
distance from point   to all skeleton joints   is defined as:

d (p, {ci}) =min
c∈{ci }
∥p− c∥2 (9)

p
ci r0

r0

Pi

When the distance between point   and the skeleton joint point
 is less than the radius  , the point is considered part of the local

point cloud and is bound to the skeleton joint point. If the distance
is greater than  , the point is not considered part of the local point
cloud and will not be bound to the skeleton joint point. In the case
where  a  point  cloud  is  close  to  two  adjacent  skeleton  joint  points,
according to the nearest neighbor principle, the point cloud is bound
to  the  skeleton  joint  point  that  is  closest  in  distance,  indicating  a
stronger  association with  the  nearest  skeleton joint  point.  With  the
above method, the complete pig point cloud data can be divided into
20 local point cloud datasets   by the 20 skeleton joint points on a
pig torso.  Each local  point  cloud corresponds to one skeleton joint
point and reflects the shape features around that joint point. 

2.3.3    Posture  standardization  transfer  and  local  point  cloud
rotation

Vnorm

Vpose

θi θ j θk XOZ XOY YOZ

To  extract  posture  information  from  skeleton  joint  points,  we
first  establish  a  collection  of  vector  angles  for  standard  and  non-
standard  postures  of  each  target  pig.  This  collection  primarily
focuses on the skeleton joint points of the head and trunk, excluding
the legs. We define the vector angle set   for standard postures
and  the  vector  angle  set    for  non-standard  postures,  forming
local vector angles  ,  , and   with planes  ,  , and  ,
respectively. The vector angle sets are formulated as follows:

Vnorm =
{

vnorm, i|vnorm, i = (θi, θ j, θk) for i = 1, 2 , . . . , k−1
}

(10)

Vpose =
{

vpose, i|vpose, i = (θ′i , θ
′
j, θ
′
k) for i = 1, 2 , . . . , k−1

}
(11)

where, K represents the skeleton joint points of the trunk and head,
totaling  20  joint  points.  Figure  4  shows  the  vector  angles  of  the
skeleton joint points for standard and non-standard postures.

 
 

a. Standard posture

b. Non-standard posture

θi
θk

θj

θ′i

θ′k

θ′j

Figure 4    Comparison of vector angles for pig postures
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The  objective  of  this  study  is  to  transfer  the  non-standard
posture  of  pigs  to  the  standard  posture,  which  cannot  construct  a
fixed  or  uniform  collection  of  skeleton  joint  vectors.  In  previous
research, Ling et al. discovered that pig skeleton joint vectors can be
used for posture classification[24]. For instance, when a pig lowers its
head,  arches its  back,  or  twists  its  body,  the vector angles of  these
postures  are  significantly  larger  than  those  of  standard  postures.
Based  on  the  skeleton  joint  vectors,  pig  postures  can  fall  into  two
categories:  standard  postures  and  non-standard  postures.  However,
given  biological  dynamic  variations,  the  standard  posture  of  any
individual  pig  is  unique,  and  the  vector  angles  of  non-standard
postures may not precisely reach the ideal target values of standard
postures. Therefore, in the preprocessing phase, all point cloud data
of each pig are first classified as standard postures and non-standard
postures.  After  normalizing  the  vector  angles  of  the  skeleton  joint
points  to  the  range  [0,  1],  a  standard  posture  threshold  range  for
each skeleton joint  point  is  set,  with thresholds of 0.1 for the head
and  0.03  for  the  trunk.  These  threshold  ranges  serve  as  references
for  the  standard  posture,  while  the  vector  angles  of  the  head  and
trunk  for  non-standard  postures  are  greater  than  the  threshold
ranges.  Provided  that  all  the  vector  angles  of  the  transferred
skeleton joint points fall within the threshold ranges of the reference
standard  posture,  the  pig  point  cloud  data  is  considered  to  have
approached and transferred to the standard posture.

Rx (θ) Ry (δ) Rz(γ)

First,  the  corresponding  rotation  matrices  are  calculated  based
on  each  pair  of  vector  angles  of  the  skeleton  joint  points.  These
rotation  matrices  are  then  applied  to  the  respective  local  point
clouds  of  non-standard  postures,  resulting  in  rotated  local  point
clouds denoted as  ,  , and  , respectively:

Rx (θ) =

 1 0 0
0 cosθ −sinθ
0 sinθ cosα

 (12)

Ry (δ) =

 cosδ 0 sinδ
0 1 0
−sinδ 0 cosδ

 (13)

Rz(γ) =

ñ cosγ −sinγ 0
sinγ cosγ 0

0 0 1

ô
(14)

θ = |θ′i − θi| < ε δ = |θ′j − θ j| < ε γ = |θ′k − θk | < ε θi θ′i
ith

ε

R

where,  ,  ,  ,  ,  and 
represent  the  vector  angles  of  the    skeleton  joint  points  for
standard  postures  or  non-standard  postures,  and    represents  the
threshold value of the vector angles for standard postures. The three
rotation  matrices  are  multiplied  to  obtain  the  total  rotation  matrix
denoted as  :

R = Rx (θ)×Ry(δ)×Rz(γ) = cosδcosθ sinγsinδcosθ− cosγsinδ cosγsinδcosθ+ sinγsinθ
cosδsinθ sinγsinδsinθ+ cosγcosθ cosγsinδsinθ− sinγcosδ
−sinδ sinγcosδ cosγcosδ


(15)

R
Pi

P j

The  rotation  matrix    is  applied  to  the  corresponding  local
point cloud   of the non-standard posture, generating a new rotated
local point cloud denoted as  :

P j = R×Pi (16)
To  ensure  the  continuity  between  adjacent  local  point  clouds

during the transfer  process,  the  lengths  of  the  skeleton joint  points
between the original local point clouds are calculated. These lengths
are maintained unchanged during the rotation process to prevent any
pig body discontinuities.  Finally,  the  rotated local  point  clouds are
connected  in  the  sequential  order  of  the  skeleton  joints,  forming  a
complete transferred standard posture of pigs, as shown in Figure 5. 

2.3.4    Evaluation metrics

S 1

S 2

This study utilizes evaluation metrics to assess the feasibility of
posture  transfer.  Due  to  the  unordered  nature  of  point  clouds,
Chamfer  Distance  (CD)  and  Mean  Absolute  Error  (MAE)  are
commonly used as evaluation methods to measure the error between
the  transferred  non-standard  posture  and  the  original  standard
posture.  CD  calculates  the  average  distance  between  the  points  of
the  transferred  point  cloud    and  the  point  cloud  of  the  original
standard  posture  ,  while  MAE  reflects  the  overall  error  level
during the transfer process.

 
 

a. Before posture standardization transfer (top view) b. After posture standardization transfer (top view)

c. Before posture standadrdization transfer (side view) d. After posture standardization transfer (side view)

Figure 5    Comparison before and after posture standardization transfer
 

(1) Chamfer distance (CD):

dCD (S 1,S 2) =
1
S 1

∑
x∈S 1

minlim
y∈S 2

∥x− y∥22 +
1
S 2

∑
x∈S 2

minlim
y∈S 1

∥x− y∥22 (17)

where,  x  and  y  represent  the  3D  coordinates  of  respective  point

S 1

S 2

clouds. A smaller CD value indicates a smaller difference between
the transferred point  cloud   and the reference point  cloud of the
standard  posture  .  However,  CD  is  a  global  metric  that  only
considers  the  distance  between  points  and  does  not  take  into
account  the  correspondence  between  point  clouds.  Therefore,  it  is
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combined  with  mean  absolute  error  (MAE)  to  comprehensively
evaluate the accuracy in the posture standardization transfer.

(2) Mean absolute error (MAE):

MAE =
1
N

∑
i=1

|s1 − s2| (18)

N
s1 S 1 s2

S 2

S 1

S 2

where,    represents  the  number  of  points  in  the  point  cloud.  For
each point   in the point cloud  , the nearest neighboring point 
in  the  point  cloud    is  found,  and  the  distance  is  calculated  to
obtain  MAE.  A  smaller  MAE  value  indicates  higher  accuracy  in
posture  standardization  transfer,  suggesting  better  correspondence
between  the  point  clouds    (the  transferred  posture)  and  the
reference point cloud   (the standard posture). 

3    Results and analysis
The  experimental  subject  in  this  study  was  Landrace  pigs

whose body weight ranged from 80 to 140 kg. A total of 739 sets of
point  cloud data  from 96 pigs  were  collected,  with  each target  pig
providing  at  least  three  sets  of  complete  3D  point  cloud  data,
including  at  least  one  set  in  standard  postures  and  several  sets  in
non-standard postures. In addition, the point cloud data of each pig
were classified into standard posture and non-standard posture.  By
extracting  the  skeletal  model  from  the  pig  body  point  cloud  and
manipulating  the  skeleton  joint  points,  posture  standardization
transfer  was  performed  and  eventually  the  body  sizes  of  the  pigs
were calculated. 

3.1    Skeleton extraction results
A  complete  skeleton  structure  of  a  pig  consists  of  a  trunk

branch  and  four  leg  branches.  Direct  application  of  the L1-median
skeleton  extraction  method  can  generate  skeleton  extraction,  as
shown  in Figure  6.  In  the  pig  point  cloud  data  in  our  experiment,
there  were  missing  regions  along  the  abdominal  contour  line,  and
these  missing  regions  could  not  generate  a  particular  part  of  the
skeleton,  causing  discontinuity  in  the  connection  regions  between
the  limbs  and  the  trunk  (Figures  6a-6f).  Moreover,  when  the  front
legs or the hind legs of a pig were too close to each other, or when
the  legs  were  raised  or  bent,  the  point  clouds  interfered  with  each
other,  resulting in  only one skeleton branch that  did not  match the
actual  topology  of  the  pig  (Figures  6b-6d).  In  addition,  the  high
density  of  point  cloud in  the  head and ear  regions  led  to  a  chaotic
extraction of the skeleton, failing to accurately describe the shape of
the pig (Figure 6e).

An improved skeleton extraction algorithm has been applied in
this research, as shown in Figure 7.  First,  the missing points along
the abdominal contour line were repaired using ellipse fitting,  thus
eliminating the missing regions and ensuring the correct connection
between  the  trunk  branch  and  the  leg  branches  (Figures  7a-7c).
What is more, in regions with dense point cloud such as the legs and
the  head,  local  point  cloud  density  quantization  was  performed,
ensuring  the  accurate  generation  of  skeleton  branches  for  the  legs
and  the  head.  Accordingly,  the  accuracy  and  integrity  of  the
skeleton was improved, and the topology and morphology of the pig
was precisely described (Figures 7d-7f).

 
 

a. Skeleton interruption b. Skeleton branch loss c. Skeleton morphology error

d. Skeleton topology mismatch e. Skeleton confusion f. Overall inaccurate skeleton structure

Figure 6    Incorrect skeleton extraction
 
 

a. Repair of missing abdominal point cloud b. Improved skeleton generation for legs c. Optimization of local point cloud density

d. Optimization of dense point 

cloud regions

e. Accurate skeleton topology and morphology f. Complete skeleton after improvement

Figure 7    Visualization of improved skeleton extraction
 
 

3.2    Posture standardization transfer results
The posture transfer of pigs involves the transfer of various non-

standard postures. Based on the results of pig skeleton extraction, it

is necessary to integrate the accurate pig skeleton into the process of
pig  posture  transfer  to  ensure  the  reliability  and  feasibility  of
posture transfer.
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Figures  8-11  show  the  results  of  transferring  non-standard
postures  to  standard  postures,  including  the  initial  non-standard
postures,  the  transferred  postures,  and  the  standard  postures.  The
skeleton joint points are marked with red dots. As shown in Figures 8
and 9, the non-standard L-shaped posture (Figure 8a) and C-shaped
posture  (Figure  9a)  were  so  successfully  transferred  that  they
basically  resembled  the  standard  posture  shown  in  Figure  9c.  The

skeleton  joint  point  vector  angles  from  the  pig’s  rump,  trunk,  and
head  remained  within  a  specific  threshold  range  of  the  standard
posture, and the skeleton joint points translated to accurate position
in the point cloud. This concordance in the contour of the torso with
that  of  the  standard  posture  indicated  that  the  source  posture  was
effectively transferred to a standard pose, with the pig’s head, body,
and tail aligned in a straight line.

 
 

a. Source posture b. Transferred posture c. Standard posture

Figure 8    Comparison of standardization transfer results (L-shaped posture)
 
 

a. Source posture b. Transferred posture          c. Standard posture

Figure 9    Comparison of standardization transfer results (C-shaped posture)
 
 

a. Source posture b. Transferred posture c. Standard posture

Figure 10    Comparison of posture standardization transfer results (lowering head)
 
 

a. Source posture b. Transferred posture c. Standard posture

Figure 11    Comparison of head posture standardization transfer results (excessively lowering head)
 

In  Figures  10  and  11,  non-standard  postures  with  different
degrees of lowering the head were transferred to a standard posture
with level eyes. Different degrees of head lowering in non-standard
postures lead to varying degrees of stretching in the point clouds of
the back and abdomen. As the pig’s head lowers further, more point
clouds  are  observed  in  the  back  and  abdomen.  During  the  transfer
process,  not  only  the  head  posture  was  regulated,  but  the  entire
trunk  was  also  adjusted  to  the  posture  marked  by  looking  straight
ahead.  It  is  worth  noting  that  the  legs  had  a  minimal  influence  on
the overall posture during the posture classification and transfer, so
no  specific  adjustments  were  made  to  the  legs  during  the  transfer.
Although  the  skeleton  joint  point  positions  of  the  legs  are  fixed
during the posture transfer, the variations in the trunk point cloud of
the  pig  result  in  corresponding  changes  in  the  key  points  used  to
measure  body  width,  body  height,  girth,  and  other  parameters.
Therefore,  even  though  no  specific  adjustments  are  made  to  the
legs, they still affect the measurement results of body sizes.

In  this  study,  CD  and  MAE  were  used  to  make  comparisons
between  the  transfer  results  of  five  types  of  non-standard  postures
(L-shaped,  C-shaped,  slightly  lowering  head,  lowering  head,  and

excessively lowering head) and the reference standard posture. The
results are listed in Table 1.
 
 

Table 1    Evaluation results of CD and MAE for the transfer of
five types of non-standard postures

Non-standard posture CD/cm
MAE before
standardization
transfer/cm

MAE after
standardization
transfer/cm

L-shaped 0.651 1.867 0.538
C-shaped 0.728 2.738 1.165

Slightly lowering head 0.549 1.435 0.703
Lowering head 0.685 3.355 1.173

Excessively lowering head 0.831 5.446 1.409
Average 0.689 2.968 0.998

 

The first  column of the table presents the evaluation results of
CD. In all five types of non-standard postures, the CD values were
within a small range, with an average CD of 0.689. This shows that
the  transferred  point  clouds  generally  had  insignificant  difference
compared  to  the  reference  posture  point  clouds,  indicating  a  high
degree  of  overall  alignment  between  the  point  clouds.  The  second

　April, 2025 Zhu J M, et al.　Posture standardization of pig point cloud based on skeleton extraction and transformation Vol. 18 No. 2 　 69　



and  third  columns  represent  the  MAE  between  the  point  clouds
before  and  after  posture  standardization  transfer  and  the  reference
posture  point  clouds.  In  most  postures,  the  MAE  after
standardization  transfer  was  reduced  compared  to  that  before
standardization  transfer,  indicating  an  improvement  in  most  point
clouds  during  the  transfer  process.  The  transferred  point  clouds
matched  the  reference  posture  point  clouds  more  accurately,
suggesting more  resemblance.  However,  for  postures  with  obvious
changes  such  as  the  C-shaped  posture,  lowering  head,  and
excessively  lowering  head,  the  MAE  after  standardization  transfer
remained  relatively  large,  reaching  1.165,  1.173,  and  1.409,
respectively. The main reason for the large MAE is not the failure to
transfer  to  the  ideal  standard  posture  but  rather  issues  such  as
matching  errors  between  the  point  clouds  because  of  different
coordinate  systems,  different  numbers  of  point  clouds,  and  other
factors (Figure 12).

In Figure 12a represents the raw data before processing, where
each dataset is in a separate coordinate system. Challenges such as
missing  point  cloud  and  noise  can  occur,  making  it  difficult  to
accurately measure errors by aligning all the data of each pig in the
same coordinate system. Therefore, in the evaluation process, errors
should  be  minimized.  The  evaluation  metrics,  namely  CD  and
MAE,  remained  within  an  acceptable  range,  demonstrating  the
robustness and effectiveness of the proposed posture standardization
transfer method despite incomplete and noisy data.

In this process, accurate pig skeleton extraction and integration
into  the  posture  transfer  process  ensure  the  effective  and  accurate
transfer of non-standard postures to standard postures. Both the pig’
s  skeleton  joint  points  and  point  cloud  are  effectively  located  and
transferred.  This  step  ensures  the  effectiveness  and  accuracy  of
posture transfer. 

3.3    Body size measurement results
The  posture  standardization  transfer  results  in  this  study  have

been  validated  by  different  body  size  measurement  algorithms.
Figure  13  is  the  body  length  measurement  algorithm  proposed  by

Hao  et  al.[15],  which  is  based  on  PointNet++  for  pig  body  part
segmentation. Figure  13a  shows  the  body  length  fitting  results  for
non-standard  postures,  while  Figure  13b  shows  the  body  length
fitting results after transferring to a standard posture.
  

a. Point cloud before posture standardization transfer

b. Point cloud after posture standardization transfer

Figure 12    Comparisons of posture standardization transfer (Area
in red: standard posture; area in blue)

 

When the pig is in a non-standard posture, such as lowering its
head  (Figure  14b),  the  skin  of  the  pig  undergoes  stretching.
Consequently, this impacts the calculation of body length and girth,
leading  to  an  increased  density  of  point  clouds  in  the  dorsal  and
ventral  regions.  Concurrently,  this  also  results  in  suboptimal
localization of key points and curve fitting, causing recorded values
to  surpass  those  obtained  in  standard  postures  for  parameters  like
body length  and girth.  Nevertheless,  upon transferring the  pig  to  a
standard posture (Figure 14a), there is a notable enhancement in the
positioning  of  key  points  and  curve  fitting,  yielding  more  precise
measurement  outcomes.  Hence,  it  is  imperative  to  transition  pigs
from  non-standard  postures  to  standard  postures  to  uphold
measurement accuracy.

 
 

a. Non-standard posture before standardization transfer b. Standard posture after standardization transfer

Figure 13    Body length measurement results
 
 

a. Non-standard posture body length fitting b. Standard posture body length fitting
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Figure 14    Body length measurement results before and after posture standardization transfer
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Figure 14 demonstrates the application results of the body size
measurement algorithm proposed by Yin et al.[16], revealing the body
length  fitting  results  for  non-standard  and  standard  postures
(Figures  14a,  14b).  It  can  be  observed  that  the  localization  of  key
points  and  curve  fitting  were  significantly  improved  in  standard
postures compared to non-standard postures.

Due  to  the  different  shapes  of  the  non-standard  posture  point
clouds,  deviations  can  be  found  in  the  measurement  positions  of
body  width  (BW)  compared  to  the  standard  posture  (Figure  15a).

However,  after  transferring  a  non-standard  posture  to  a  standard
posture  (Figure  15b),  the  localization  of  key  points  and
measurement positions for body width (BW) can be restored to the
correct  positions.  Although the  skeletal  joint  point  positions  of  the
legs  are  irrelevant,  the  overall  changes  in  the  point  cloud  of  the
trunk result in differences in the localization of surface key points.
When calculating parameters  that  involve the straight-line distance
between two points on the torso, the shape and posture of the entire
pig body point cloud are taken into consideration.

 
 

a. Non-standard posture body width measurement

BW (front)
BW (back) BW (front)

BW (back)

b. Standard posture body width measurement

Figure 15    Body width (BW) measurement results before and after posture standardization transfer
 

Figure 16 illustrates the differences in body size measurements
between  the  nose-down  posture  (Figure  16a)  and  the  head-up
posture  (Figure  16b).  In  the  nose-down  posture,  the  pig’s  body
(front)  arches  and  tilts  downward,  leading  to  underestimated
measurement  results  in  body  height  (front)  and  thoracic
circumference,  as  well  as  overestimated  measurement  results  in

abdominal circumference. However, the changes in the hind legs in
the  nose-down  posture  were  insignificant,  resulting  in  relatively
small  errors  in  hindquarter  height  and  rump  circumference
measurements.  To sum up, the degree of lowering head affects the
measurements  of  body  height  (front),  thoracic  circumference,  and
abdominal circumference.

 
 

a. Standard posture body height and 

circumference measurements

b. Non-Standard posture body height and 

circumference measurements

BH (back) BH (front)

CG
HG

AG

BH (back) BH (front)

CG

HG

AG

Figure 16    Measurement results of body height (BH), thoracic circumference (TC), abdominal circumference (AC), and rump circumference
(RC) before and after posture standardization transfer

 

The  pig  body  size  was  measured  using  the  body  size
measurement  algorithm proposed  by  Hao et  al.[15] Figure  17 shows
the  contrast  between  the  transferred  postures  and  the  original
standard posture before and after posture standardization transfer in
terms  of  relative  errors,  including  body  length  (BL),  body  width
(front), body width (back), body height (front), body height (back),
thoracic  circumference  (TC),  abdominal  circumference  (AC),  and
rump circumference (RC). The data included 96 pigs, with 739 sets
of  point  cloud  data  before  posture  standardization  transfer
(including the original standard postures and non-standard postures)
and  585  sets  of  point  cloud  data  after  transferring  to  standard
postures.  The  green  boxplots  represent  the  relative  errors  of  body
sizes for  the original  postures,  while  the yellow boxplots  represent
the relative errors between the transferred standard posture and the
original standard posture.

By  observing  the  results  of  body  length,  body  width,  body

height,  and  girth  calculations,  it  can  be  seen  that  after  posture
standardization  transfer,  upper  and  lower  limits  and  median  have
smaller  errors  compared  to  those  before  posture  standardization
transfer,  indicating  a  better  fitness  to  the  standard  posture,
especially  for  body  length,  body  width,  and  body  height  (front).
This  is  because  in  posture  standardization  transfer,  the  parameters
of  body  length,  body  width,  and  body  height  are  the  main  focus.
Therefore, the more skeleton joint points are available for the head
and  body,  the  better  the  transfer  effect  and  the  smaller  the
measurement  errors.  According  to  our  research,  the  measurements
of  both  thoracic  circumference  and  abdominal  circumference
showed good results. In the measurement of thoracic circumference,
different  standing  postures  of  the  same  pig,  such  as  walking  or
standing, lead to different lengths of the fitted ellipse. The key point
for abdominal circumference is the midpoint between the key points
for  body width  (front)  and  body width  (back).  In  the  standard  and
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non-standard  postures  of  a  pig,  the  back  of  a  pig  arches  when  the
pig  looks  ahead  or  lowers  its  head,  resulting  in  an  overestimated
measurement  of  abdominal  circumference.  In  our  experiments,  the
measurement results of body width (back) and rump circumference
did  not  show  significant  difference  compared  to  the  other
parameters.  This is  mainly attributed to the fact  that  a  pig tends to
arch its back, with its rump located at the bottom of the arch. Since
there  are  fewer  skeleton  joint  points  in  the  rump  region,  posture
standardization transfer results in larger errors in body width (back)
and rump circumference measurements, indicating less emphasis on
the posture standardization transfer of the rump.

Table  2  shows  the  comparison  of  body  size  errors  before  and
after  posture  standardization  transfer,  with  the  original  standard

posture  as  a  reference.  It  can  be  observed  that  after  posture
standardization transfer, the mean relative errors of body parameters
decreased. The relative errors of body length, body width, and front
height  decreased  significantly,  with  the  average  and  maximum
relative errors reduced by half. However, the mean relative errors of
body  height  (back),  thoracic  circumference,  abdominal
circumference, and rump circumference, although reduced, are still
relatively  large.  This  is  associated  with  the  insufficient
consideration of  the correlation between the abdomen and rump in
the posture standardization transfer, and this can also be attributable
to the robustness of the point  cloud completion algorithm for girth
measurement and the automatic key point localization algorithm for
body size measurement.
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Figure 17    Mean relative errors for body size measurements of pigs
 
  

Table 2    Comparison of body measurement errors between the
transferred posture and the original standard posture before

and after posture standardization transfer (%)

Body size

Before posture standardization
transfer

After posture standardization
transfer

Mean relative
error

Maximum
relative error

Mean relative
error

Maximum
relative error

Body length 4.71 6.49 0.89 2.22
Body width (front) 1.19 2.37 0.76 1.33
Body width (back) 1.31 2.11 1.0 1.43
Body height (front) 1.43 3.21 0.89 2.22
Body height (back) 1.74 2.64 1.7 2.73

Thoracic
circumference 2.8 5.42 2.03 3.61

Abdominal
circumference 3.61 8.6 3.37 2.29

Rump
circumference 2.24 3.17 1.89 2.85

 

In  summary,  the  posture  standardization  transfer  method
proposed in this study has achieved encouraging results. In posture
standardization transfer based on skeleton joint points, not only can
the transformation from non-standard postures to standard postures
be achieved, but also the localization of key points and curve fitting
are  improved,  effectively  reducing  the  errors  in  body  size
measurements. 

4    Discussion
The  proposed  method  of  pig  point  cloud  skeleton  extraction-

based  posture  standardization  transfer  addresses  the  issue  of
measurement  errors  caused  by  different  pig  postures.  By
establishing  the  pig  point  cloud  skeleton  model  and  using  the  3D
point cloud skeleton as a proxy, the posture standardization transfer
is achieved through weight binding of the point cloud skeleton and
local  point  cloud  rotation.  Compared  to  existing  posture

standardization transfer methods, the method proposed in this article
neither  relies  on  the  topological  structure  of  the  mesh  model  nor
requires  vertex correspondence between source postures  and target
postures.  Instead,  our  method  directly  processes  the  original  pig
point cloud data, remaining faithful to the collected pig point cloud
data.  According  to  the  research  results,  the  CD  and  MAE  were
0.689  and  0.998,  respectively,  manifesting  both  the  effectiveness
and  the  robustness  of  our  transfer  method.  Unlike  methods  that
involve regression analysis and prediction based on a large amount
of  data,  our  method does not  require  extensive data  for  prediction,
thus reducing prediction inaccuracies.

As  for  the  comparison  of  body  size  measurement  results,
subjective  factors  can  be  avoided,  as  can  potential  inaccuracies
introduced  by  human  measurement,  by  using  one  body  size
calculation method for both the standard and non-standard postures
of the same pig.  The experimental  results  demonstrate that  posture
standardization  transfer  can  effectively  improve  the  accuracy  of
body  size  measurements.  Compared  to  non-standard  postures
without posture standardization transfer,  the average relative errors
of  the  transferred standard posture  are  reduced to  varying degrees,
with  body  length,  body  width,  body  height  (front),  thoracic
circumference, and abdominal circumference producing satisfactory
transfer results.

Our method has some limitations. One restriction is that we did
not  establish  a  universal  standard  posture,  so  the  goal  of  posture
standardization  transfer  is  not  to  make  the  pig  posture  exactly  the
same  as  the  standard  posture  but  to  make  it  close  to  the  standard
posture  as  much  as  possible.  Additionally,  the  pig  legs  were  not
included  in  the  transfer  process  because  their  influence  on  the
measurements  is  relatively  limited  in  our  model.  Although  the
skeletal joint points of the legs remain unchanged during the posture
standardization  transfer,  the  overall  changes  in  the  pig  body  point
cloud affect the measurements of body width, body height, and girth
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to some extent.
The  research  focus  of  this  study  is  on  pig  point  cloud  posture

transfer, and a more detailed comparison of posture standardization
transfer  can  be  seen  in  Figures  18  and  19.  Future  work  will  be
required for  further  improvements;  for  instance,  the  transfer  of  the
pig  legs  will  be  taken  into  account  to  enhance  measurement
accuracy. Currently, the emphasis is on point cloud posture transfer,

but  no  end-to-end  network  model  is  available  for  point  cloud
posture transfer. Following the proposed approach in this study, we
will  make  more  efforts  to  achieve  point  cloud  posture  transfer  by
resorting  to  neural  networks.  In  the  research  field  of  animal  body
size measurements, the application can be extended to more datasets
and  improved  for  different  animal  body  parts  by  optimizing  the
skeleton extraction and posture standardization transfer methods.

 
 

a. Source posture b.Transferred posture c. Standard posture

Figure 18    Comparisons of pig posture transfer (top view)
 
 

a. Source posture b. Transferred posture c. Standard posture

Figure 19    Comparisons of pig posture transfer (side view)
 
 

5    Conclusions
To handle the problem of inaccurate key point localization and

algorithm robustness  caused by different  pig  postures  in  automatic
body  size  measurement  based  on  point  cloud  data,  we  propose  a
posture  standardization  transfer  method  based  on  pig  skeleton
extraction models to transfer non-standard pig postures to standard

pig  postures  for  further  body  size  measurement.  The  main
conclusions are summarized as follows:

(1)  The  pig  skeleton  extraction  model  based  on  point  clouds
can accurately describe pig postures. Although there are differences
in the skeleton joint point vector sets between standard postures and
non-standard  postures,  posture  standardization  transfer  can  be
implemented  through  local  point  cloud  rotation  in  non-standard
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postures  such  as  L-shaped,  C-shaped,  and  nose-down  postures,
hence accurate point cloud data of pigs in standard postures can be
generated.

(2)  By  comparing  the  experimental  findings  between  non-
standard  postures  and  those  of  the  original  standard  posture  of  the
same  target  pig,  the  body  size  measurement  results  reveal  that  the
average relative errors were 4.71% for body length, 1.19% for body
width (front), 1.31% for body width (back), 1.43% for body height
(front),  1.74%  for  body  height  (back),  2.8%  for  thoracic
circumference, 3.61% for abdominal circumference, and 2.24% for
rump  circumference.  These  results  indicate  that  the  body  size
parameters  in  non-standard  postures  exhibit  higher  fluctuations,
reflecting the influence of pig postures on the accuracy and stability
of  body  size  measurements.  When  comparing  the  results  of  the
transferred  posture  with  those  of  the  original  standard  posture
following  posture  standardization  transfer  and  body  size
measurement,  the  average  relative  errors  for  body  length,  body
width  (front),  body  width  (back),  body  height  (front),  body  height
(back), thoracic circumference, abdominal circumference, and rump
circumference  were  0.89%,  0.76%,  1%,  0.89%,  1.7%,  2.03%,
3.37%,  and  1.89%,  respectively.  The  parameters  with  the  most
significant  impact  on body size  errors  follow the descending order
of: body length, body height (front), body width (front), body width
(back),  abdominal  circumference,  thoracic  circumference,  rump
circumference, and body height (back). 
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