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Abstract: Efficient leaf azimuth angles and plant spacing are crucial for enhancing light interception efficiency in maize,
thereby increasing yield per unit area. Traditional methods for measuring these traits are labor-intensive and prone to error. This
study aimed to develop an accurate and efficient method for determining leaf azimuth angles and plant spacing in maize to
improve understanding of field competition and support breeding programs. Utilizing light detection and ranging (Lidar)
technology, 3D point cloud data of maize plants were collected, enabling effective 3D morphological reconstruction through
multi-frame stitching. Principal component analysis (PCA) was employed to determine the leaf azimuth angles of individual
maize plants. Additionally, a method based on point density analysis was developed to identify the central axis position of
single maize plants. Specifically, point density in the neighborhood of each point in the maize point cloud was calculated, with
the central axis determined along the direction of highest point density. The integration of PCA-based leaf azimuth detection
and point density analysis provided a robust framework for accurately determining leaf azimuth angles and plant spacing. In the
detection of leaf azimuth angles, this method achieved an R of 0.87 and an RMSE of 5.19°. For plant spacing detection, the R*
was 0.83 and the RMSE was 0.08 m. This approach facilitates parameterized modeling of field competition, significantly
enhancing the efficiency of breeding programs by providing detailed and precise phenotypic data. Despite the high accuracy
demonstrated by the proposed methods, further investigation is needed to evaluate their effectiveness under varying
environmental conditions and across different maize varieties. Additionally, challenges related to partial occlusions and
complex canopy structures may impact the accuracy of point cloud data analysis, necessitating further refinement of the
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1 Introduction

In China, maize is the primary edible material and a highly
used cash crop. It occupied a key position in the international
agricultural trading market. Timely, accurate and detailed
information on crop growth and development as well as dynamic
monitoring data during the growth period are an important part of
implementing crop yield management and timely regulation'.
Maize is a monocotyledonous plant, its leaves are directional. In the
middle and late stages of growth, leaf cross-shading will affect the
efficiency of photo-synthesis. Phenotypic parameters such as plant
spacing, row spacing and leaf growth direction are important for
maize yield??. Maize phenotypic traits, especially plant growth
azimuth and plant spacing, have a wide range of applications value
for improving crop yield. Moreover, the growth azimuth of maize
leaves is closely related to photosynthesis rate, and it can effectively

serve as a phenotypic parameter for crop competition in the field™.
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In recent years, computer vision technology has advanced
quickly in intelligent agriculture®®. Currently, RGB images with
features such as low cost and convenience are mainly used to
analyze maize biomass, leaf morphology, and cob traits”*.
However, in real fields, the RGB images which acquired through a
single perspective contain a limited amount of information. Maize
plants wusually have complex growth patterns and heavily
overlapping leaf shading. The information on plant morphology that
can be used for analysis is incomplete when obtained through RGB
images. Three-dimensional data can provide more detailed and
comprehensive plant phenotype information than RGB images®.
Therefore, the advent of 3D digitizing technology has greatly
facilitated the study of 3D structural modeling of crops!'®'.
Unfortunately, 3D digitizing technology requires physical contact
and interaction with the plant during data collection, which can
disturb the plant and the measurement process tends to be time-
consuming.

With the rapid development of Lidar sensors, collecting 3D
point cloud data of plants by Lidar and conducting phenotypic
studies has become an effective means
morphological and structural phenotypes in high throughput!*.

Lidar sensors can obtain 3D information of crops instantly,

to obtain plant

accurately and on a large scale, and they are an important
technological tool for monitoring the growth status of crops.
Michael et al.'"! measured canopy height of maize and wheat using
ground-based Lidar scanning technology in the field. And then the
growth pattern of canopy height over time was analyzed by these
measurements. Jin et al.' used Lidar to collect maize point clouds,
and proposed a median normalized-vector growth (MNVG)
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algorithm, which can segment stem and leaf with four steps, i.e., pre-
processing, stem growth, leaf growth, and post processing. Gao et
al.' combined seedling detection and clustering algorithms to
segment single maize plants from UAV airborne Lidar and RGB
images. Digital orthophotography of maize seedlings was used to
locate individual maize plants and calculate maize plant height.
Zhou et all'’ acquired RGB images of maize plants using a
downward photography approach using ground vehicles and UAVs,
and they obtained several plant parameters characterizing the maize
seedling stage from the RGB images. The principal component
analysis (PCA) is used to determine the direction of the principal
axis of the maize-seedling skeleton. The principal axis is then
introduced as a reference to identify the direction angle of the plant
in binary images. Using 3D reconstruction and skeleton extraction,
Lei et al.'" calculated the leaf base angles and inclination angles by
extracting geometric features from the entire point cloud and
skeleton. A phenotype extraction method using end-to-end
segmentation networks from a top-view image of maize seedlings
was proposed by Li et al."¥ that automatically retrieved phenotypic
data, including maize canopy cover and plant azimuth plane angle.
Lin et al."! created a field maize organ hierarchy model using data
collected from point clouds of maize plants using terrestrial Lidar.
They used the DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) clustering algorithm for individual
segmentation of maize in the field, and used the multi-conditional
identification method to separate various maize organs from the
point cloud. Sheng et al.”” used Laplace algorithm and adaptive
algorithm for skeleton extraction of three varieties and 24 different
growth stages of maize. The proposed approach successfully
generates accurately extracted skeleton from 3D point cloud and
estimate phenotyping parameters with high precision of maize
plants (leaf length, leaf inclination angle, leaf azimuthal angle and
plant height). Su et al.?¥ used terrestrial Lidar to study maize
phenotype dynamics under drought stress. They collected Lidar data
at six growth stages using a FARO Focus3D X120 scanner from
five fixed positions around the maize, at a height of 1.5 m. High-
reflectance target balls were used for accurate point cloud
registration. Lei et al.”” investigated the effect of leaf occlusion on
maize leaf area index (LAI) inversion using UAV- Lidar data. Data
were collected on 28 August and 14 September 2018 with a Riegl
VUX-1 sensor flown at 15 m above ground at a speed of 3 m/s. The
scanning frequency was 550 kHz, with a spot diameter of 0.0075 m
and an average ground point distance of 0.0239 m. The data were
acquired using pendulum scanning, and point cloud density and
incidence angles were consistent across both dates. Jin et al.”*! used
terrestrial Lidar to estimate maize biomass non-destructively. In
2018, they used a FARO Focus3D X 330 HDR scanner mounted on
a tripod, collecting data from 10 mx10 m plots and individual
plants. In 2019, the same sensor was mounted on a high-throughput
phenotyping system called Crop3D, which moved on tracks to
cover larger areas. Data were collected in “Helical Mode” for higher
efficiency, allowing for detailed phenotypic trait extraction at
various levels, including plot and individual plant. Drouet et al.”*
demonstrated that the maize plant leaves’ growth-related azimuth
shift led to a more dispersed distribution of leaves in the plant’s top
leaf position without a discernible trend to move the distribution
between rows. The phenomenon of azimuth shift of plant leaves
during growth causes the canopy structure of maize populations to
change over time>*l. At present, the research about leaf azimuth
during maize growth is not deep enough and the conclusions still
vary widely. Thus, there is a need for further research on leaf

azimuth during maize plant growth through improved monitoring
and analysis methods.

This study aimed to develop an automated method for
determining maize growth parameters from multi-temporal 3D point
cloud data. A new method is proposed to automatically determine
maize growth azimuth and central axis based on multi-temporal
point cloud data using principal component analysis (PCA). Laser
scanning was first performed to acquire 3D point clouds of maize
plants from different time points in the field. After cropping the
point clouds using a region of interest, Gaussian mixture modeling
was applied to stitch the fragmented point clouds back together.
Individual plant segmentation and outlier removal were then
conducted on the stitched point clouds. The key innovation lies in
using PCA and point density method to extract the azimuth
information from 3D point clouds.

2 Materials and methods

2.1 Study area and data acquisition device
2.1.1 Study area

The experiment was carried out from April to June 2022 at the
experimental farm located in Baohe District, Hefei City, Anhui
Province (31°N, 117°E). The maize was planted into nine plots with
a plot spacing of 0.5 m. Nineteen plants were planted on each row
with a plant spacing of 0.3 m to 0.8 m, for a total of fifteen 13 m
long rows. Point cloud data were acquired on June 8, 2022 at 5 pm
using a High-resolution Lidar. This Lidar collects point cloud data
at the pixel level based on the Time of Flight principle, with up to
1 500 000 points collected per second and a 45° horizontalx25°
vertical field of view. Data collection took place during daylight
hours in calm weather conditions to prevent shadows and target
motion effects. Communication for data acquisition was conducted
via Ethernet. Besides using Lidar to gather plant data, manually
measured plots on the ground were also utilized for validation
purposes. The experimental layout is illustrated in Figure 1.
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a. Plots 1 through 9 the experiment area and nine plots; b. Picture of the
experiment site; c. An enlarged view of a plot and its planting; d. Data acquisition
process diagram: 1. Maize plant of field, 2. 16-line Lidar, 3. Slide sensors,
4. Laptop.

Figure 1  Sketch of the field experiment

2.1.2 Data acquisition

The point cloud data acquisition system consists of a 16-line
Lidar (Velodyne VLP-16, Velodyne Lidar, Inc., San Jose, USA), a
slide rail, and a radar mount. The slide rail device includes of a
sensor and a 1-meter-long aluminum track, with the Lidar mounted
on the slide rail located south of the experimental area. The radar
mount is equipped with two liftable tripods, allowing the system to
capture point cloud data at various heights steadily and clearly. The
Velodyne VLP-16, a commercial product renowned for its
reliability and high performance, is utilized in this study. Table 1 is
a summary of the key specifications of the VLP-16 Lidar.
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Table 1 Performance parameters of VLP-16 Lidar

and row spacing. Through these newly developed methods, leaf

Specifications Parameters azimuth and plant spacing for maize can be efficiently determined.
Laser line number 16 The first step was using 16-line Lidar to capture the original 3D
Measurement accuracy +3 cm point cloud of maize. Then, in order to obtain 3D data of maize
Field of view (Vertical) 30° plants in the area, a uniform data file type and pre-processing
Field of view (Horizontal) 360° operations like cropping and stitching of the 3D point cloud were
Measuring range 0.5-100.0 m used. This prevented the large amount of redundant data generated

For the data acquisition process, the Lidar was mounted on the
slide rail, which was positioned parallel to the rows of maize. The
slide rail enabled the Lidar to move horizontally along the length of
the rail, facilitating the acquisition of point cloud data. For each of
the nine plots, the Lidar was placed at one end of the plot and
moved horizontally along the rail to scan the entire plot. This
procedure was repeated for each plot. The Lidar was oriented
perpendicularly to the ground, ensuring a comprehensive vertical
scan of the maize plants from top to bottom.

2.2 Overall process flow for calculating growth azimuth and
plant spacing

This study proposed a PCA-based method to calculate the
growth azimuth of maize plants. Furthermore, a local maxima-based
approach is developed to precisely determine maize plant spacing

by the Lidar scan and the interference of multiple types of data
storage, as well as further improved the speed of data processing.
The 3D data of maize plants in the region were manually cropped
based on this to produce point cloud data of single corn plants. To
reduce the influence of multiple data on the accuracy of the growth
azimuth of maize plants, PCA was employed to measure the growth
azimuth of single maize plants. Furthermore, structural information
such as plant spacing and row spacing were determined using the
maximum local approach based on an exact calculation of maize
plant growth’s azimuthal angle. In the last step, the effectiveness of
the method described in this study was verified using linear
regression analysis of generated and measured phenotypic data.
Figure 2 shows the flow chart for calculating maize plants’ leaf
azimuth and spacing.
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Figure 2 Flow chart for calculating the azimuth and spacing of maize plants

2.3 Data pre-processing

The point cloud data obtained by high-resolution Lidar contains
a significant amount of ground and field information, necessitating
preprocessing to isolate the maize plants. Initially, the point cloud
data is cropped to remove irrelevant information by defining the
spatial range of the target plants and discarding points outside this
range. During this cropping stage, ground data is removed based on
depth information, excluding points identified as belonging to the
ground.

The region of interest (ROI) is established according to the
experimental settings, specifying the sections of the experimental
cornfield where the study is focused. Point clouds falling outside
this ROI are considered invalid and deleted. Once the ROI data is
obtained, redundant information is removed using statistical
filtering to eliminate noise and outliers. The specific steps are as
follows:

1) Calculate the average distance (d;) of each point to all K-
neighborhood points;
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2) Calculate the mean () and sample standard deviation (o7) of
the distance container of the whole point set;

3) Compare the distance threshold with the distance of each
point in turn, and the points that satisfy d, —u > ko (where & is an
empirical parameter) are marked as outliers and removed.

a. Raw data

Following this process, the remaining point cloud data is free
from ground points, noise, and redundant information. This refined
data is used for further analysis (Figure 3). By providing detailed
steps of the preprocessing procedures, this description ensures
clarity and reproducibility of the methods used.

b. Data clipped in region of interest

Figure 3 Point cloud data clipped in region of interest from the raw data

2.4 Splitting single plants to measure plant azimuth

The azimuth of maize growth is crucial in determining how
maize plants grow their leaves®”. With the development of maize,
all the unfolded leaves will move toward and be uniformly distributed
along a plant azimuthal plane. The azimuth of the maize is the angle
formed by this plane and the direction of the planting row. The
point cloud data can be projected in two dimensions to depict better
the plant azimuthal plane and the growth azimuth angle. This study
evaluates three commonly used methods for assessing the azimuth
of maize growth azimuth from point cloud data (Figure 4): principal
component analysis (PCA), random sample consensus (RANSAC)

and least squares (LS). PCA projects the multi-dimensional cloud
into a linear subspace, with the primary component representing
growth azimuth. The steps for PCA are as follows:

Step 1: First, transform the point cloud data into a matrix with 3
columns and n rows. Calculate the centroid of the point cloud. The
centroid calculation formula is as follows:

1 n
Centroid = — P; 1
entroid = — E ; (1)
i=1

where, P; represents the coordinates of each point, and 7 is the
number of points in the point cloud set.
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Figure 4 Three methods for determining maize growth azimuth

Step 2: Decentralize the point cloud data. Specifically, perform
zero-mean normalization on each row of P, subtracting the mean of
the row from each data point within the row to obtain a new
matrix P’.

Step 3: Compute the covariance matrix C of the new matrix P’,
as shown in the following equation:

1 T pr
C= mP P 2)

Step 4: Calculate the eigenvalues and eigenvectors of the
covariance matrix C. The eigenvector corresponding to the largest
eigenvalue represents the direction of the principal component,
which is the direction of the growth azimuthal plane.

RANSAC iteratively estimates model parameters from random
subsets, while least squares finds the azimuth minimizing residual
errors. To compare the methods, fifteen maize plant datasets are
collected for a rotation experiment. The plant azimuth fitted by each
algorithm are compared against manually measured values to
analyze error plots (Figure 5).

Due to the point cloud data of maize plants being collected
from different angles using Lidar, there would be varying degrees of
missing data points. The point cloud data of maize plants whose

growth azimuth angle is 90° suffers the most data loss, hence the
largest errors of the three algorithms occur in this case. The results
showed that PCA achieved the smallest error range of 2.0°-9.5°
among the algorithms and demonstrated the most stable accuracy
across angles. PCA achieved the highest fitting accuracy of R*=0.87
for modeling growth azimuth, with RMSE of 5.19°. PCA yielded
the minimum error in determining growth azimuth for point clouds

—a—1S
—e—RANSAC
—A—PCA

20

—
W
T
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=
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Figure 5  Error plots of the three methods
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containing missing data, exhibiting optimal precision and stability.
Therefore, PCA was selected for computing the growth plane in this
research.
2.5 Maize plant spacing measurement

The location of individual maize stalks is determined by
calculating the number of points in the projected point cloud area of
the maize plant in a large field. Then, the plant spacing is calculated
by calculating the plant spacing and row spacing of the maize in the
field from the relative positions of the individual maize stalks.

The point cloud data are first gridded to ensure that each grid
has a point cloud with a certain amount of data within it. The size of

X/m

each small grid is a set fixed parameter. The total number of grids is
calculated by counting how many grids have projection points in
them. The number of point clouds within each grid is also
calculated to obtain the coordinates of the grid area with the largest
point density. The coordinates of this highest density grid area
represent the location of the maize stalk. Colors are then assigned to
the points within the largest grid area to distinguish the maize stalk
position (Figure 6).

After determining the central axes of the maize plants, the plant
spacing is then calculated based on the average distance between
all plants.

X/m

Figure 6 Stalk position of maize by point density method

3 Analysis and discussion

This study aimed to use point cloud data for growth azimuth
discrimination and spacing calculation of maize and to determine
the growth direction of maize plants in the field. This study is
achieved by the method, which determines the plant leaf growth
azimuth by projecting the maize plant point cloud data as two-
dimensional data and determining its PCA principal axis azimuth.
However, accurate validation using the point cloud data method
is challenging. Although the PCA can obtain more stable leaf
growth azimuths, another validation method: i.e., manual observation
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is chosen.
3.1 Results and analysis of leaf azimuth discrimination based
on PCA

First, single plant point cloud data needs to be obtained to
determine the leaf azimuth of maize plants. The point cloud data of
maize plants in the ROI area are manually segmented into single
plants. Some of these single plant point cloud data are incomplete
due to environmental factors during field collection. After acquiring
the separated single plant data from the field, methods are applied to
calculate the leaf growth azimuth of the plants and determine the
location of the plant growth azimuth axis (Figure 7).

« Point clouds
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-120 -0.80
X/m

« Point clouds
beta=—9.350603°
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Figure 7 Calculation of maize growth direction angle by PCA

To evaluate the accuracy of our method, we calculated the leaf

growth azimuth for each segmented plant using principal

component analysis (PCA). The results indicate that the proposed
method achieves a high degree of accuracy, with an R? value of 0.87
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and a root mean square error (RMSE) of 5.19°. Figure 8 shows a
scatter plot comparing the measured azimuth values against the
predicted values, highlighting the strong correlation between the
two sets of data.

40
R=0.87
30 RMSE=5.19° .

20 +

Automatic measurement/(°)

730 1 L
-30 20 -—10 0 10 20 30 40

Manual measurement/(°)
Figure 8 Relationship of manual vs automatic
measurements compared

3.2 Results and analysis of calculating maize plant spacing

To evaluate the effectiveness of the maize plant spacing
calculation method based on stalk positions, this study used manual
measurement and computational methods to measure maize leaf
azimuth in the field, and compared and analyzed the measurement
values from the two methods. Specifically, the manual measurement
values were obtained through in-field measurement using tools such
as tape measures, while the calculated values were derived through
the projected point density method. The calculation method shown
in Section 2.5 was used to calculate the number of maize plants in
the nine groups of fields.

The comparison results, as illustrated in Figure 9, demonstrate
that the proposed method closely aligns with the manual
measurement results. The analysis of plant spacing shows a strong
agreement between the two methods, further validating the accuracy
of the computational approach.

09 r

R*=0.83 *x
08 RMSE=0.08 m ex

0.7
0.6 |
0.5}
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Automatic measurement/m

01 1 1 1 1 1 1 1 )
01 02 03 04 05 06 07 08 09

Manual measurement/m

Figure 9 Relationship of manual vs automatic
measurements compared

4 Discussion

A new method for determining the growth azimuth and plant
spacing of maize plants using Lidar point clouds is described in this
study. In the test area, maize plants were densely distributed, and as
they grew, their leaves intertwined and tended to overlap,
particularly in the later stages of growth. The technique for
determining plant growth azimuths using PCA enables the
nondestructive detection of the growth azimuths of 255 maize plants
in the experimental area.

Comparing our results with existing literature, He et al.”®
utilized UAV imagery combined with deep learning algorithms to
accurately detect the leaf azimuth angle of maize at different growth
stages, achieving an RMSE of 6.1°. He’s study, which developed
the Swin-Roleaf tool incorporating Swin Transformer and Circular
Smooth Label for detecting oriented bounding boxes (OBBs) of
maize leaves, demonstrated a high correlation between the system-
derived leaf azimuth angles and ground truth. This approach
significantly improved the efficiency of measuring leaf azimuth
angles compared to traditional manual methods.

While He’s method is innovative and effective, it has certain
limitations. The UAV-based image analysis can struggle with
precision in dense and overlapping plant structures. In contrast, our
Lidar-based approach not only achieves a superior RMSE of 5.19°,
indicating higher accuracy, but also offers enhanced precision in
handling dense and complex plant architectures. The quantitative
detection accuracy expressed as coefficient of determination and
root mean square error is presented in Table 2. By leveraging Lidar
technology, the method of this study overcomes some of the
challenges associated with UAV-based imagery, providing a more
robust and accurate solution for analyzing maize plant architecture.

Table 2 Detection accuracy of the distance between two maize
plants under different conditions

Measured parameters R RMSE
Leaf azimuth 0.87 5.19°
Plant spacing 0.83 0.08 m

The proposed method’s effectiveness is highlighted by its high
accuracy and efficiency in determining the leaf azimuth and plant
spacing. By utilizing PCA for azimuth calculation and the projected
point density method for spacing measurement, this approach
ensures robustness against incomplete point cloud data, which is
common in field conditions.

In the experiment, the acquired Lidar point cloud data showed
that the majority of maize plant stalks were growing perpendicular
to the ground. However, a tiny percentage of maize plants still have
stalks that are not parallel to the ground. The most significant
causes of plant stalks that are not perpendicular to the ground are
phenomena involving shade and inversion. Meanwhile, maize plants
with poor perpendicularity to the ground may connect with
neighboring maize plants for shading, resulting in incorrect
identification of the stalks site and a more significant measurement
error for plant distance and row distance.

Figure 8 and Figure 9 provide visual evidence of the strong
correlation between the measured and predicted values, reinforcing
the method’s reliability. Additionally, this method’s ability to
handle large datasets efficiently makes it suitable for high-
throughput agricultural analysis.

The results of this study demonstrate the potential of Lidar data-
based plant monitoring in the field. Obtaining plant growth azimuths
using a portable 3D digital scanner is less efficient than the
approach described in this study. Because of the limitations of this
3D digital scanner, it can only identify individual plants in a narrow
area. In this study, individual maize plants were in the field using
Lidar to scan them, and their growth azimuth and plant spacing
were then assessed using point clouds data. The findings demonstrate
that the Lidar system can effectively and non-destructively extract
single and multiple crop structural metrics in the field.

In real-world conditions, our method can be adopted for various
applications such as precision agriculture, crop monitoring, and
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automated phenotyping. The method’s robustness to incomplete
data ensures it remains effective even in less controlled field envir-
onments. However, there are limitations to consider. The accuracy
of point cloud data segmentation plays a critical role in the overall
effectiveness of this method. Environmental factors such as lighting
conditions and sensor noise can affect the quality of the point cloud
data. Future work should focus on improving segmentation
algorithms and integrating more advanced sensors to mitigate these
issues. By addressing these aspects, it is believed that this proposed
method offers a significant contribution to the field and holds
potential for wide adoption in practical agricultural applications.

5 Conclusions

In this study, terrestrial Lidar scanning was utilized to acquire
3D point cloud data of maize populations, enabling investigation of
leaf azimuth discrimination and spacing calculation. Principal
component analysis (PCA) achieved the highest fitting accuracy of
R=0.87 for modeling growth azimuth, with RMSE of 5.19°.
Gridding of point clouds facilitated geolocation of plant stalks
across experimental plots for plant spacing analyses. The proposed
method of determining the central axis based on point density
achieved an R* of 0.83 and an RMSE of 0.08 m for maize growth
modeling. This novel Lidar-enabled workflow for non-destructively
assessing azimuthal and structural traits establishes an automated
process with applications for scientific maize cultivation
management and yield forecasting.

Despite the promising results, there are several limitations to
this study. Firstly, the accuracy of point cloud data segmentation is
critical for the overall effectiveness of this method. Environmental
factors such as lighting conditions and sensor noise can affect the
quality of the point cloud data, leading to potential errors in azimuth
and spacing calculations.

Future research should focus on improving segmentation
algorithms to enhance the accuracy of point cloud data interpret-
ation. Integrating more advanced sensors that can reduce the impact
of environmental noise will also be beneficial. Additionally,
dynamic monitoring of changing leaf azimuths over developmental
phases can further optimize precision agriculture approaches
through improved spatiotemporal characterization of crop structure
and growth. By addressing these aspects, this proposed method will
offer a significant contribution to the field and hold potential for
wide adoption in practical agricultural applications.
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