
  

Fusion of the deep networks for rapid detection of branch-infected
aeroponically cultivated mulberries using multimodal traits
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Abstract: Automatic  diagnosis  of  diseases  in  aeroponically  cultivated  branches  is  crucial  for  enhancing  the  efficacy  of  root
development and overall plant survivability during propagation. Deep learning and visible imaging offer potential for precise
health assessment, despite challenges in feature selection and model design, impacting diagnostic accuracy and effectiveness.
The primary objective of  this  study is  to  explore  a  hybrid deep network that  integrates  multimodal  data,  such as  texture  and
color attributes, as well as image color modes, to accurately detect the presence of mildew on mulberry branches. The proposed
framework incorporates a Convolutional Neural Network (CNN) and Gated Recurrent Units (GRU). Various color modes were
utilized,  including  grayscale,  RGB  (Red-Green-Blue),  HSV  (Hue-Saturation-Value),  and  CMYK  (Cyan-Magenta-Yellow-
Black). The traits based on RGB consist of nineteen vegetation color indices (VIs) and six texture variables obtained from the
gray-level co-occurrence matrix (GLCM). The outcomes demonstrated that the CNNCMYK-GRUf network effectively integrates
CMYK image data and color-texture features for tracking mulberry branch health during aeroponic propagation. It achieved a
validation  accuracy  (Ac)  of  99.50%,  with  classification  precision  (Pr),  recall  (Re),  and  F-measure  (Fm)  at  the  same  level.
Additionally, it obtained an intersection over union (IoU) of 98.90% and a loss value of 0.034. This network exhibited superior
performance compared to the model that relied solely on individual image attributes, surpassing other deep networks such as
Vision  Transformers  (Ac=94.80%),  Swin  Transformers  (Ac=89.80%),  and  Multi-Layer  Perceptrons  (Ac=88.30%).  Thus,  the
proposed  methodology  is  capable  of  precisely  assessing  the  health  of  mulberry  shoots,  enabling  the  swift  deployment  of
intelligent aeroponic systems. Furthermore, adapting the developed model for mobile platforms could enhance its accessibility
and promote sustainable, efficient agricultural practices.
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1    Introduction
Mulberry, a key species in sericulture ecology, plays a vital role

in  the  success  of  sericulture,  which  is  a  major  part  of  agriculture
worldwide[1].  However,  pests  and  diseases,  responsible  for  up  to
40%  of  global  food  production  losses,  pose  a  threat  to  food
security[2].  Despite  the  positive  impact  of  pesticides  on  food
production  since  the  1950s,  they  have  harmful  effects  on  both
human  health  and  the  environment[3,4].  Climate  change  and
environmental  stress  also  endanger  soils  and  crops,  disrupting  soil
biodiversity  and  ecosystem  services,  while  traditional  farming
practices  degrade  soil  health  and  long-term  productivity[5].  To
address  challenges  in  soil-based  farming,  innovations  like
hydroponics, substrate cultivation, and aeroponics have emerged as
sustainable  alternatives.  These  methods  reduce  water  and  fertilizer
use  and  offer  solutions  to  issues  like  soil  pollution  from  heavy

metals, showing potential for rapid progress in agriculture[6-8].
Aeroponics  rapid  propagation  technology  has  emerged  as  a

solution  for  breeding  seedlings.  It  delivers  nutrients  and  supports
plant  propagation  by  distributing  a  nutrient  solution  through
nozzles[9].  This  technique  incorporates  asexual  reproduction,
transmitting desirable traits from the mother tree to its offspring. By
reducing  dependency  on  high-quality  seeds,  aeroponics  enables
rapid  growth  and  development,  shortening  the  breeding  cycle[10].
The success of plant growth in rapid propagation via aeroponics is
strongly  influenced  by  humidity  levels  within  the  systems[11,12].
Humidity fluctuations can affect plant growth, impair physiological
functions,  and  increase  susceptibility  to  diseases  like  mildew[13,14],
potentially  disrupting  water  uptake  and  overall  growth.  While
traditional  disease  detection  depends  on  expert  observation,
continuous  monitoring  is  essential,  as  experience-based  judgments
may lead to  misdiagnoses.  In  this  light,  the  present  work develops
image-based  methodologies  for  monitoring  branch  infections  in
aeroponically  cultivated  mulberries.  High-resolution  plant  images
are  captured  via  advanced  digital  imaging  techniques,  processed
through algorithms to identify potential stress or disease markers[15].
These methods utilize differences in color, texture, and shape, each
of  which  may  signal  specific  health  issues  in  plants[16].  Digital
imaging is  a  cost-effective,  straightforward,  and rapid  solution[17,18].
In  contrast,  direct  methods  like  spectral  analysis  or  chlorophyll
measurement,  while  reliable  for  plant  health  evaluation,  often
require expensive, specialized equipment, destructive sampling, and
are  less  suited  for  large-scale  monitoring[19].  Furthermore,  such
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techniques demand expertise in both data acquisition and analysis[20].
By  integrating  artificial  intelligence  (AI),  these  techniques  can
detect  subtle  signs  of  disease  that  might  otherwise  go  unnoticed,
enabling the early identification of plant health problems[17].

The  effective  and  accurate  identification  of  diseases  in
mulberry branches cultivated aeroponically through AI depends on
the  consideration  of  several  crucial  factors.  These  encompass  the
selection  of  an  optimal  color  space  for  image  representation,  the
application  of  RGB  vegetation  indices  (VIs)  for  advanced  color
analysis,  the  incorporation  of  texture  descriptors  derived  from  the
gray  level  co-occurrence  matrix  (GLCM),  the  implementation  of
data  augmentation  strategies,  and  the  integration  of  multiple  deep
learning  (DL)  networks.  These  considerations  are  vital  for  the
development  of  an  effective  framework  for  precise  disease
identification  in  mulberry  branches.  Elsherbiny  et  al.[21]  compared
various  image  color  modes,  including  CMYK  (cyan-magenta-
yellow-black),  HSV  (hue-saturation-value),  RGB  (red-green-blue),
and  grayscale,  through  deep  networks  to  diagnose  water  status  in
wheat  crops  with  IoT-based  multimodal  data.  The  findings
demonstrated  that  deep  neural  networks  relying  on  RGB  images
outperformed other modes, emphasizing the importance of selecting
the  right  color  mode  for  accurate  plant  condition  assessment.  The
success  of  a  digital  image-based  framework  depends  on  the
selection  of  handcrafted  features,  such  as  VIs  and  GLCM-based
texture  characteristics.  Research  highlights  a  strong  link  between
plant  diseases  and  the  biochemical  and  physical  changes  in  crops,
often  resulting  in  noticeable  color  variations  in  leaves.  Generally,
digital  images  are  composed  of  pixels  that  merge  the  RGB  color
channels. These channels empower the calculation of VIs[22],  which
serve as valuable indicators for various factors,  comprising canopy
moisture  content[23],  chlorophyll  levels[24],  nitrogen  content[25],  and
disease-related  stresses[26].  RGB-based  VIs,  characterized  by  high
sensitivity  to  subtle  changes,  facilitate  efficient  monitoring  and
enable  targeted  management  strategies  to  optimize  growth  and
boost  crop  yield[27].  GLCM,  a  variant  implemented  with  RGB
images,  is  applied  to  assess  plant  health.  Mathew  et  al.[28]  utilized
GLCM for leaf symptom analysis and developed a composite voting
model  combining  decision  trees,  support  vector  machines  (SVM),
and k-nearest neighbors (k-NN) for early disease detection. Bhimte
and Thool[29] created an automated system for diagnosing cotton leaf
diseases by extracting color and texture features and applying SVM
for classification.

To  address  limited  dataset  sizes,  data  augmentation  is  vital.
Geometric  transformations  (resizing,  cropping,  rotation,  horizontal
flipping) and intensity variations (contrast, brightness, color, noise)
are  employed  to  boost  the  dataset’s  diversity  and  size,  ultimately
strengthening  the  model’s  robustness  and  performance[30].  In
addition,  the  integration  of  multiple  deep  networks,  each
meticulously  trained,  has  been  instrumental  in  boosting  both  the
excellence  and  resilience  of  the  expectation  model.  This
methodology,  previously  deployed  to  assess  plant  characteristics,
enhances  model  performance  and  precision.  Jin  et  al.[31]  indicated
that  a  hybrid  deep  neural  network  combining  2D-Convolutional
Neural  Networks  (CNNs)  and  bidirectional  Gated  Recurrent  Units
(GRUs)  attained  0.74  accuracy  in  categorizing  healthy  and
Fusarium-infected wheat heads. Ullah et al.[32] introduced a mixture
network  with  EfficientNetB3  and  MobileNet  for  tomato  disease
detection,  showcasing  strong  feature  extraction  and  reliable
automated detection.

Image  classification  and  DL  approaches  provide  solutions  to
reduce mildew impact on mulberry branches and minimize pesticide

and  fertilizer  use.  By  enabling  accurate  and  timely  health
assessments,  the  implemented  system has  the  potential  to  improve
the survivability and yield of aeroponically grown mulberry shoots.
Hence, the primary objectives of this research were: 1) to develop a
novel  hybrid  deep  network  that  leverages  multimodal  data  -
specifically,  image  data  and  characteristics  derived  from  VIs  and
GLCM - aiming to advance mulberry branch health management in
aeroponic cultivation; 2) to evaluate a range of deep networks, such
as  CNN,  GRU,  and  hybrid  combinations  of  both,  while  deploying
different image color modes; 3) to identify top-level features of VIs
and  GLCM  to  optimize  model  behavior;  and  4)  to  delineate  the
superior  components  of  deep  network  architecture  and  enhance
model interpretability by highlighting regions of interest  for robust
detection of health states in mulberry branches. 

2    Materials and methods
 

2.1    Efficient aeroponic growth management system 

2.1.1    System design overview
At  Jiangsu  University  in  Zhenjiang  city,  Jiangsu  province,

China, an aeroponics experiment was undertaken to study the rapid
growth of mulberry branches. Figure 1 depicts the configuration of
the  regulated  system  and  its  hardware  constituents.  The  system
regulating  humidity  and  temperature  was  composed  of  six
components:  one  module  for  gathering  data,  another  for  analyzing
data,  an  interface  for  human-machine  interaction,  a  storage
component,  a  mechanism  for  execution,  and  a  unit  for  data  relay.
The  system  consisted  of  a  central  computer  and  a  sensor  for
measuring humidity and temperature. Every half second, the sensor
transmitted data to the computer,  which then relayed it  via a serial
link  to  the  Synchronous  Transport  Mode-32  (STM32)  device  for
processing. If the mold growth rate stayed within acceptable limits,
the computer forwarded the data to the uCOS-III message queue for
subsequent  calculations.  The  task  associated  with  the  Emergency
Managers  Weather  Information  Network  (EMWIN)  used  message
queue  data  to  create  live  humidity  and  temperature  visuals.  When
mildew  levels  exceeded  a  set  threshold,  the  STM32  device  sent
commands  to  adjust  the  atomizing  sheet’s  spray  frequency  and
control  the  liquid  pump.  A  touch-responsive  TFT-LCD  (thin-film
transistor  liquid  crystal  display)  on  the  human-machine  interface,
powered  by  the  uCOS-III  platform,  swiftly  detected  inputs  and
executed  commands.  Among  the  components  of  the  data  storage
module  were  the  SD  card,  STM32  FLASH,  and  the  FatFs  file
system,  which  seamlessly  collaborated  to  facilitate  efficient  data
storage and retrieval. When activated, the system recorded humidity
and temperature readings in a file named “dataTH.txt,” with the SD
card automatically cleared each time the system was powered on.
  

Incubator
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Figure 1    Schematic depicting the composition of the controlled
system and its hardware components

 
In the FLASH memory of the STM32, there resided an array of

crucial  data:  the  repository  of  system  text,  thresholds  for
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temperature  and  humidity,  rates  defining  mildew,  intervals  for
spraying,  and duration  of  each spraying event.  Within  the  actuator
module,  an  assemblage  of  elements  was  present,  comprising  a
cooling  fan,  liquid  supply  pump,  power  supply,  fogging  tablet,
lower  computer  relay,  LED light  board,  and  an  alarm mechanism.
The serial port facilitated the transfer of actuator control data from
the  STM32  to  the  STC89C52  microcontroller  within  this
configuration.  Upon  receiving  the  data  packet,  the  STC89C52
microcontroller  decoded  the  contents  to  discern  the  necessary
actions,  which  were  subsequently  executed  in  accordance  with  the
provided  specifications.  Wireless  communication  was  achieved  by
employing  the  ZigBee  serial  transmission  module,  thereby
upgrading the conventional serial communication method. 

2.1.2    System management operation
The  operational  mechanism  was  designed  to  operate  in  two

modes:  user-controlled  and automated.  In  a  controlled  greenhouse,
no  heater  was  required  due  to  natural  temperature  regulation.  The
system  monitors  aeroponic  growth,  comparing  real-time  humidity
and  temperature  data  to  set  reference  points.  When  mold  growth
remains  within  the  expected  range,  it  automatically  adjusts  the
cooler  and atomizing sheet  to  maintain  optimal  conditions.  During
the  automated  regulation  period,  the  LED  fill  light  remains  on.  If
the temperature exceeds the upper limit, the cooling fan activates to
cool the device and shuts off once the temperature returns to the set
range.  A drop in  temperature  below the minimum triggers  an alert
for  greenhouse  staff.  The  fogging  system activates  when  humidity
falls  below the threshold,  operating until  the  maximum is  reached,
then  shuts  off.  Rising  mildew  levels  prompt  the  system  to  adjust
cooling,  misting,  and  water  pumping  to  maintain  optimal
conditions.

The  operational  setup  empowers  the  handler  with  precise
control over each actuator, all of which begin in an off state. These
actuators include the ventilation fan, fluid pump, misting panel, and
fill light. Users can manually activate the pump to refill the nutrient
reservoir  based  on  mildew  levels.  The  ventilation  fan  allows  for
manual  temperature  regulation,  while  the  light’s  brightness  can  be
adjusted. For the misting panel, users can set the spray duration and
break intervals, with the system operating for 2 minutes followed by
a 1-minute pause. 

2.2    Data collection
The  experiment  was  carried  out  on  healthy  mulberry  cuttings,

aged  1-2  years,  characterized  by  strong  metabolism,  high  energy,
and  rapid  root  development.  Segments,  15-20  cm  in  length  and
containing 2-4 buds, were taken from the central and lower portions
of the cuttings. These were disinfected in a potassium permanganate
solution  for  30  min,  rinsed,  and  dried.  The  cuttings  were  then
soaked in a rooting powder solution for 2-3 h, ensuring the base was
immersed  approximately  3  cm.  Before  placing  the  cuttings  in  a
multi-layered incubator, any additional moisture was taken off. The
incubator  was  designed  with  four  distinct  sections:  a  layer
specifically  for  nutrient  delivery,  an  area  reserved for  the  plants,  a
segment  with  a  misting  sheet,  and  an  illumination-focused  light
layer.  In a span of 10 to 15 days, the cuttings displayed prominent
callus  growth  and  developed  new  roots.  The  incubator  housed  24
mulberry branches (Figure 2), from which 20 samples were chosen
due to their appropriateness for the study. Of these, 10 were healthy,
while  the  other  10  displayed  signs  of  mildew infection.  Images  of
these branches were systematically taken every two days for a total
of  40  days,  leading  to  the  creation  of  21  separate  image  sets,
summing  up  to  420  images.  Captured  under  various  lighting
conditions,  these  images  mainly  concentrated  on  the  detection  and

analysis  of  mildew,  the  disease  being  studied.  The  RGB  images,
oriented perpendicularly, were captured and saved in JPEG format,
with a spatial resolution of 1080×1920 pixels, and were specifically
focused on branches at a height of 20 cm.
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Figure 2    Healthy and mildew-infected branches in
aeroponic incubator

  

2.3    Color image mode
Color  features  can  be  derived  by  converting  images  into

different color spaces, such as CMYK, RGB, HSV, and grayscale[33].
These transformed color  representations yield valuable insights  for
analysis  and  application.  The  CMYK relies  on  the  combination  of
four  ink  colors  -  cyan,  magenta,  yellow,  and  black  -  and  is
extensively  utilized  in  the  printing  industry  to  reproduce  full-color
images.  The  RGB  blends  red,  green,  and  blue  light  in  various
proportions, enabling the creation of a wide spectrum of colors. The
HSV  serves  as  a  framework  for  color  representation  within  the
cylindrical  coordinate  system.  It  represents  colors  through  three
components:  hue  (type  of  color),  saturation  (vibrancy),  and  value
(brightness).  Grayscale  images  are  composed  of  shades  of  gray,
varying  from  black  to  white.  Such  color  features  underwent
thorough scrutiny to identify the optimal input for the models. 

2.4    Image preprocessing
This process consists of three stages: 1) segmenting the image

to eliminate the background, 2) augmenting the data to increase the
size  of  the  training  dataset,  and  3)  transforming  the  features  by
rescaling  them  through  normalization.  To  precisely  assess  the
branch’s  health,  it  must  be  isolated  from  the  background  through
thresholding,  then  converted  to  grayscale  and  segmented  into  a
binary  image[34].  There  are  two  potential  pixel  values:  pixels  with
intensity  values  greater  than  or  equal  to  the  threshold  value  of  1
represent the foreground (white), while pixels with intensity values
lower  than  or  equal  to  the  threshold  value  of  0  signify  the
background  (black)  and  can  be  discarded.  Afterward,  data
augmentation  (Figure  3)  enhanced  learning  by  expanding  the
dataset  to  4200  images  and  improving  object  differentiation  under
varied  real-world  conditions.  Potential  color  VIs  and  GLCM
features  were  also  extracted  for  further  analysis.  Finally,
normalization was applied to individual attributes (A) to account for
variations in magnitude among different features. To standardize the
characteristics (An), a computation was conducted by deducting the
lowest  image  data  point  (Amin)  and  subsequently  dividing  it  by  the
range  between  the  highest  (Amax)  and  lowest  feature  values,  as
delineated in the following equation:

An =
A−Amin

Amax −Amin
(1)
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Note: The numbers in parentheses represent the parameters for each transformation, indicating the degree or intensity of the modification applied to the image.

Figure 3    Augmented RGB images of healthy branches
 
 

2.5    Feature extraction 

2.5.1    Color RGB vegetation indices
VIs were integrated into RGB-based multimodal data to detect

color  shifts  indicative  of  mulberry  branch  health,  capturing
variations  in  pigmentation,  chlorophyll  levels,  and  physiological
changes  related  to  infections  like  mildew.  The  relevant  indices
(Table 1) are capable of revealing subtle differences not discernible
in  raw  images.  By  tracking  shifts  in  plant  coloration,  VIs  offer  a
quantitative  gauge  of  mildew  infection  severity,  which  likely
correlates  with  its  progression,  providing  valuable  insights  for
timely and effective disease management[35]. As outlined in Table 1,
nineteen  VIs  were  designated  for  their  proven  efficacy  in
characterizing plant health through RGB color spaces. These indices
primarily  focus  on  subtle  variations  in  the  red  (r),  green  (g),  and
blue  (b)  bands,  which  are  highly  sensitive  to  changes  in  plant
pigmentation  and  stress  responses.  To  ensure  accurate  disease
diagnosis,  RGB  color  space  percentages  were  extracted  as  sample
features.  The  mean  values  of  the  RGB  channels  (r,  g,  b)  were
computed  for  each  sample,  forming  the  basis  for  deriving  the  19
VIs.  The  derived  indices  were  then  utilized  as  input  features  for
various  DL  models.  The  interaction  between  RGB  color  data  and
multimodal  features  was  instrumental,  as  the  VIs  effectively
correlated color variations with the plants’ physiological condition.
This integration markedly enhanced the model’s capacity to predict
infection  severity  with  high  precision.  As  highlighted  by  Zhu  et
al.[36], Peng et al.[37], and Elsherbiny et al.[17], the fusion of multimodal
data has the potential to significantly enhance predictive accuracy in
precision agriculture. 

2.5.2    GLCM-based texture features

Pi, j

GLCM, known as grayscale correlation-based texture analysis,
examines  the  connection  between  two  pixels  in  an  image  at  a
defined distance. It derives texture features of mulberry branches by
employing  probabilistic  attributes.  In  this  work,  six  variations  of
GLCM  were  utilized,  including  dissimilarity  (Di),  contrast  (Co),
homogeneity  (Ho),  energy  (En),  correlation  (Cor),  and  angular
second moment (ASM). Di measures pixel pair distance, Co reflects
image  depth  and  texture,  Ho  indicates  pixel  value  similarity,  En
assesses  texture  uniformity,  Cor  evaluates  pixel  association,  and
ASM  describes  image  roughness  and  texture  distribution.  Hall-
Beyer[51]  outlined  an  explanation  of  the  RGB-based  GLCM
variables.  The  probabilities  associated  with  specific  pixel  value
combinations, denoted as  , are calculated using row index i and
column index j. The mean values for indices i and j are denoted as

µi µ j

σi σ j

  and  ,  respectively.  The  standard  deviations  for  values
associated  with  the  i  and  j  indices  are  given  as    and  ,
respectively. The variable N represents the total number of rows or
columns.

Di =
levels−1∑

i, j=0

Pi, j · |i− j| (2)

Co =
levels−1∑

i, j=0

Pi, j · (i− j)2 (3)

Ho =
levels−1∑

i, j=0

Pi, j

1+ (i− j)2 (4)

 
 

Table 1    Explanation of the VIs derived from RGB images
Category of indices Equation Citations
Normalized blue (bn) b/(r+g+b) [38]
Normalized green (gn) g/(r+g+b) [38]
Normalized red (rn) r/(r+g+b) [38]
Red-blue ratio (RBRI) r/b [39]
Green-blue ratio (GBRI) g/b [40]
Green-red ratio (GRRI) g/r [41]

Woebbecke (WI) (g−b)/(r−g) [42]
Kawashima (IKAW) (r−b)/(r+b) [43]
Normalized difference

(NDI) (rn−gn)/(rn+gn+0.01) [44]

Green-red vegetation
(GRVI) (g− r)/(g+ r) [43]

Excess blue vegetation
(ExB) 1.4×bn−gn [45]

Excess green vegetation
(ExG) 2×gn− rn−bn [45]

Excess red vegetation
(ExR) 1.4× rn−gn [45]

Visible atmospheric
resistance (VARI) (g− r)/(g+ r−b) [46]

Vegetative (VEG) g/(ra×b(1−a )) ,a = 0.667 [47]
Principal component
analysis (IPCA) 0.994× |r−b|+0.961× |g−b|+0.914× |g− r| [48]

Color index of
vegetation (CIVE) 0.441× r–0.881×g+0.385×b+18.78745 [49]

Excess green minus
excess red (ExGR) ExG−ExR [45]

Combination (COM)
0.25×ExG+0.3×ExGR+0.33×CIVE+

0.12×VEG
[50]
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ASM =
levels−1∑

i, j=0

P2
i, j (5)

En =
√

ASM (6)

Cor =
levels−1∑

i, j=0

Pi, j

ï
(i−µi) · ( j−µi)

σi ·σ j

ò
(7)

 

2.6    Superior  feature  selection  based  on  SelectKBest  with  the
Decision Tree Classifier

Feature selection streamlines the dataset by preserving essential
features,  addressing  challenges  such  as  computational  burden  and
overfitting arising from the curse of dimensionality[52]. This research
utilizes  the  SelectKBest  approach  with  ANOVA F-value  scores  to
prioritize  features  according  to  their  relevance  in  forecasting  the
target  variable[53].  The  introduced  approach  combines  feature
selection  with  hyperparameter  tuning  for  the  Decision  Tree
Classifier (DT). By doing so, the model’s parameters are fine-tuned
for  the  selected  feature  subset,  producing  a  model  that  is  both
efficient  and  accurate.  The  process  of  constructing  decision  trees
from  training  datasets  is  termed  as  decision  tree  induction.  These
trees,  resembling  flowcharts,  comprise  root,  decision,  and  leaf
nodes:  the  root  initiates  the  tree,  decision  nodes  guide  the  path
based on data attributes, and leaf nodes signify the final outcomes.
During  training,  parameters  like  maximum  depth  (Md)  were
considered with values (2, 4, 6, 8, 10), minimum samples leaf (Ms)
with (1, 2, 3, 4, 5), and maximum leaf nodes (MLn) with (2, 4, 6, 8,
10).  The  DT  model  exploited  multimodal  inputs,  consisting  of  19
VIs  and  6  GLCMs,  for  enhanced  feature  selection.  It  assessed
various  quantities  of  selected  features  (k)  through  a  pipeline
integrating  SelectKBest  with  a  DT  model.  Within  this  setup,
GridSearchCV  identified  the  most  fitting  hyperparameters  for  the
classifier, emphasizing the top k features based on accuracy. Figure 4
illustrates the fundamental steps involved in training the DT model,
fine-tuning hyperparameters, and structuring features.
  

Figure 4    Pseudo-code for training a decision tree with
SelectKBest for selecting top variables 

2.7    Proposed deep networks 

2.7.1    Convolutional Neural Network (CNN)
The  CNN  holds  the  predominant  position  as  a  deep  learning

architecture  for  processing input  data  with  two spatial  dimensions.
It follows a structure denoted by he×wi×Cn, where he represents the
height,  wi  denotes  the  width,  and  Cn  signifies  the  number  of
channels  within  the  image.  This  network  was  fed  with  images  in
various color spaces (grayscale, CMYK, RGB, HSV). These images
had corresponding values for the number of channels, with Cn being
equal to 1, 4, 3, and 3 bands. As stated by Kamilaris and Prenafeta-
Boldú[54],  the  CNN  is  widely  recognized  as  the  leading  model  in
computer vision applications and has gained increasing significance
in  the  field  of  agriculture.  CNN models  generally  consist  of  three
distinct  layers  in  their  architectural  composition.  The  input  layer
serves as the primary data source, receiving multimodal inputs such
as  image  data  and  8  significant  features  chosen  by  the  DT model.
The  hidden  layers  include  components  such  as  convolution,  batch
normalization,  ReLU  activation,  max-pooling,  and  flattening.  The
output  layer,  through  full  connectivity,  transforms  the  inputs  from
preceding layers into two separate categories: healthy branches and
mildew-infected branches.

a[i−1]

a[i]

b[i]
j

ψ[i]

The  CNN  structure  is  depicted  in  Figure  5,  whereas  Table  2
outlines  the  key  features  of  each  layer  within  the  CNN.
Convolutional layers extract features from image slices using filters,
enabling  multiple  transformations.  These  filters  are  customized  to
the  input  slices  and  undergo  nonlinear  processing  to  learn  abstract
features and introduce nonlinearity in the feature space[55]. Nonlinear
processing generates different activation patterns, aiding in learning
semantic  differences  across  the  dataset.  To  address  covariate  shift
and normalize gradients during training, batch normalization layers
are incorporated[56]. Pooling mechanisms decrease output complexity
via  max-pooling,  capturing  utmost  essential  attributes.  The  pool
sizes  chosen  for  optimal  VI-GLCM  features  are  (1,2),  while  for
images,  the  selected  pool  size  is  (2,2).  Training  the  CNN involves
utilizing  an  Adam  optimizer,  a  momentum  value  of  0.9000,  a
learning  rate  of  0.001,  350  epochs,  and  a  batch  size  of  70.  The
output  of  the  pooling  layer  is  flattened  into  a  1D  vector  since
subsequent  dense  layers  only  accept  1D  vectors.  The  ultimate
densely  connected  stages  function  as  categorizers  and  utilize  the
softmax formula. These layers contain a limited number of neurons
that  receive  input  from  a  vector    and  produce  a  vector
output , specifically for the jth node of the ith layer. The weights
wj,l,  with nl–1×nl parameters,  represent the learned factors in the  lth
layer.  Moreover,  the  bias  of  the  layer  is  denoted  as  ,  and  the
activation function is represented by  .

z[i]
j =

ni−1∑
l=1

w[i]
j,l ·a[i−1]

l +b[i]
j → a[i]

j = ψ
[i] ·
(

z[i]
j

)
(8)

 

2.7.2    Gated Recurrent Units (GRU)
GRU  is  a  specific  type  of  Recurrent  Neural  Network  (RNN)

architecture  designed to  overcome certain  limitations  of  traditional
RNNs. It plays a crucial role in effectively handling time-series and
nonlinear  data[57,58].  The  architecture  of  this  network  comprises  an
input  layer  denoted  as  x,  a  hidden  layer  represented  as  h,  and  an
output layer labeled as y. The output layer and hidden layer can be
computed via the following formula:

Yt = g · (S t ·Why) (9)

S t = f · (Xt ·WS X +S t−1 ·WS S ) (10)
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Conv2D Batch normalization Activation MaxPooling2D Flatten

Figure 5    Comprehensive architecture of the CNN model
 
  

Table 2    Advanced layered design for the proposed CNN

Layer Type
Input size

Image Superior features
0 Input data (50×50×Cn) (1×8×1)
1 Conv2D (50×50×Cn) (1×8×1)
2 Batch Normalization (50×50×512) (1×8×512)
3 ReLU (50×50×512) (1×8×512)
4 MaxPooling2D (50×50×512) (1×8×512)
5 Conv2D (25×25×512) (1×8×512)
6 Batch Normalization (25×25×256) (1×8×256)
7 ReLU (25×25×256) (1×8×256)
8 MaxPooling2D (25×25×256) (1×8×256)
9 Conv2D (12×12×256) (1×8×256)
10 Batch Normalization (12×12×128) (1×8×128)
11 ReLU (12×12×128) (1×8×128)
12 MaxPooling2D (12×12×128) (1×8×128)
13 Flatten (6×6×128) (1×8×128)

 

In this  work,  the GRU model  was evaluated for  branch health
detection,  utilizing  image  data  and  first-level  characteristics.  The
model’s  architecture  is  detailed  in Table  3.  To  enhance  prediction
accuracy,  it  is  crucial  to  incorporate  various  multimodal  data,
including  images  and  8  VIs-GLCM  features  extracted  at  different
time  intervals  within  the  same  quadrat.  The  model’s  process,
depicted in Figure 6, involves the deployment of the previous output
(ht–1)  and  the  current  input  (xt).  The  reset  gate  determines  the
portion of information to be reset. The update gate is responsible for
updating the GRU output.  The candidate hidden layer is  processed
to  yield  the  current  output.  Throughout  the  training  process,  the
GRU gates (Zt and rt) and parameters (Wz, Wr, and W) are updated.

Zt = σ · (Wz · [ht−1,Xt]) (11)

rt = σ · (Wr · [ht−1,Xt]) (12)

h′i = tanh · (W · [rt ×ht−1,Xt]) (13)
 

2.7.3    Advanced multimodal data-driven classification model
This study aimed to explore the top-selected features based on

SelectKBest  and DT model.  Moreover,  it  sought  to  investigate  the
influence of multimodal variables on the performance of CNN and
GRU  models.  The  most  successful  hybrid  model,  depicted  in
Figure  7,  was  composed  of  two  models:  CNNCMYK  and  GRUf,
which  operate  different  multimodal  traits.  These  properties,  mined
from various origins, include F1 (CNNCMYK-related features derived
from  images)  and  F2  (GRUf-based  multimodal  characteristics

obtained  from  VI-GLCM).  By  integrating  these  diverse  attributes,
the hybrid model demonstrated robustness and achieved high accur-
acy in the classification of healthy conditions of mulberry branches.
 
 

Table 3    The deep network architecture proposed for the
GRU model

Layer Type
Input size

Image Superior features
0 Input data (2500×Cn) (8×1)
1 GRU (2500×Cn) (8×1)
2 Dropout (2500×64) (8×64)
3 GRU (2500×64) (8×64)
4 Dropout (2500×128) (8×128)
5 GRU (2500×128) (8×128)
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Figure 6    Configuration of GRU architecture
  

2.8    Processing of data and software tools
The  dataset  consists  of  4200  images  of  mulberry  branches,

divided into two groups: 2100 images of healthy branches and 2100
of those infected with mildew. For model training, 80% of the data
(3360  images)  was  applied,  and  the  remaining  20%  (840  images)
served  for  evaluating  the  model’s  performance.  The  process  of
creating the model and analyzing the data took place on the Kaggle
platform,  which  offers  complimentary  utilization  of  NVidia  K80
GPUs  within  kernels.  To  accelerate  the  training  of  the  proposed
deep learning model, the GPU available on the Kaggle platform was
utilized,  resulting  in  a  significant  12.5X  speedup  in  kernel
performance.  The  data  analysis  was  performed  on  a  PC  with  an
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Intel Core i7-3630QM CPU running at 2.4 GHz and 8 GB of RAM.
For  the  classification  task,  TensorFlow  library  version  2.4.1  was

employed,  and  both  CNN  and  GRU  modules  were  utilized.  The
implementation was conducted entirely with Python version 3.7.10.
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Figure 7    Configuring an optimal deep network architecture through multimodal data for detecting the health state of mulberry branches
 
 

2.9    Evaluation of detection performance
The  performance  evaluation  of  the  proposed  deep  networks

comprised  a  quantitative  assessment  based  on  measures  like  recall
(Re), precision (Pr), intersection over union (IoU), overall accuracy
(Ac),  and  F-measure  (Fm).  These  measures  were  computed  relied
on  the  number  of  true-positives  (TP),  true-negatives  (TN),  false-
positives  (FP),  and  false-negatives  (FN),  thus  providing  a
comprehensive  evaluation  of  the  networks’  performance.  The
calculations for these measures are as follows:

Re =

∑
TP

∑
FP+

∑
TN
×100% (14)

Pr =

∑
TP

∑
FP+

∑
TP
×100% (15)

IoU =
TP

TP+FP+FN
×100% (16)

Ac =

∑
TP+

∑
TN

∑
FP+

∑
FN+

∑
TP+

∑
TN
×100% (17)

Fm = 2× Re×Pr
Re+Pr

×100% (18)
 

3    Results and discussion
 

3.1    Automated  feature  selection  and  hyper-parameter  tuning
through DT Model

As  illustrated  in  Figure  8,  the  most  relevant  VIs  and  GLCM
characteristics  identified  in  each  DT  training  iteration  through
SelectKBest  are presented.  The figure underscores the significance
of various features across cycles, particularly RGB-derived VIs and
GLCM-based  textures.  The  VIs  of  highest  importance  are  gn  and
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COM, exhibiting importances of 49.99% and 50.01%, respectively.
In contrast, the fine-grained GLCM traits - Co, En, Ho, Cor, Di, and
ASM  -  have  importances  of  1.09%,  61.15%,  0.57%,  37.78%,
1.02%,  and  63.11%,  respectively. Table  4  details  the  performance
metrics  for  the  DT model,  covering the  mean accuracy score  from
different  cross-validation  folds  along  with  the  standard  deviation
(SD) of these scores. The tuned hyperparameters for the DT model,
specifically  Md,  Ms,  and  MLn,  were  ascertained.  The  DT  model
exhibited the highest efficacy when deploying traits from two VIs in
the 18th iteration and six GLCMs in the first. The incorporation of

two  VIs  enhanced  the  model’s  performance  to  a  score  of  0.790,
surpassing  the  0.770  achieved  with  19  VIs.  Additionally,  the
integration  of  six  GLCM  features  significantly  augmented  the
model’s  discriminative  power,  yielding  a  score  of  0.667.  This
outstripped the performance of the feature sets labeled 1 through 5,
with  respective  scores  of  0.536,  0.594,  0.595,  0.614,  and  0.612.
These findings are consistent with Gaagai et al.[59], who emphasized
the  influence  of  two  crucial  factors  on  the  behavior  of  machine
learning  (ML)  models:  the  training-based  filtering  of  semantic
features and the selection of upper hyperparameters.
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Figure 8    Assessment of feature importance for GLCM-derived texture and RGB color across various selection sizes
 
  

Table 4    Comparative analysis of DT performance with high-
level RGB-based traits and GLCM variables under optimal

hyperparameter configurations
RGB-
based
traits

Hyperparameters
(Md, Ms, MLn) High-level features

Train Test

Score SD Score SD

VI (2, 1, 2) gn, COM 0.805 0.025 0.790 0.091
GLCM (8, 1, 10) Co, En, Ho, Cor, Di, ASM 0.702 0.021 0.667 0.069
  

3.2    Integrated CNN models with multimodal characteristics
The CNN model exploited CMYK, RGB, HSV, and grayscale

color  space  images  as  input  data  for  analysis.  Furthermore,  this
study  appraised  the  effectiveness  of  the  methodologies  by
investigating  multimodal  attributes,  merging  VIs  with  GLCM
parameters  while  training  the  CNN model  on  image  data. Table  5
summarizes  a  comparison  of  performance  measures  (Re,  Pr,  Fm,

and IoU) to assess CNN models’ efficacy in tracking branch health,
accounting  for  accuracy  and  loss  in  training  and  validation.
Incorporating the CMYK color space alongside multimodal features
led to a  significant  boost  in  accuracy.  The hybrid CNNCMYK-CNNf

model  unveiled  superior  performance  (Re=0.979,  Pr=0.979,
Fm=0.979,  IoU=0.968)  compared  to  the  standalone  CNNCMYK

model  (Re=0.969,  Pr=0.969,  Fm=0.969,  IoU=0.937),  showcasing
exceptional  classification  capabilities.  Moreover,  in  terms  of
validation scores, the model accomplished an accuracy of 0.979 and
a  loss  of  0.051,  outstripping  the  CNNCMYK  model  (Ac=0.969,
Ls=0.060). These outcomes align with Barbedo[60], who emphasized
the  potential  of  CNNs  to  extract  high-level  characteristics  during
training, making them effective tools for addressing plant pathology
concerns.  This  highlights  the  significant  role  and  effectiveness  of
CNNs in modern agriculture and the management of plant diseases.

 
 

Table 5    Outputs of CNN models utilizing various color spaces and multimodal features

Model Image f
Training Validation Performance

Ac Ls Tt Ac Ls Tv Re Pr Fm IoU

CNNimg

Gray - 1.0 8.365×10–5 6.883 0.921 0.219 0.351 0.921 0.921 0.921 0.858
RGB No 1.0 2.944×10–6 7.474 0.966 0.086 0.325 0.966 0.966 0.966 0.940
HSV - 1.0 3.346×10–5 5.719 0.938 0.208 0.261 0.938 0.938 0.938 0.885
CMYK - 1.0 8.927×10–5 8.385 0.969 0.060 0.321 0.969 0.969 0.969 0.937

CNNimg-CNNf

Grey - 1.0 1.212×10–4 7.388 0.928 0.210 0.339 0.928 0.928 0.928 0.867
RGB Yes 1.0 3.359×10–6 7.150 0.973 0.059 0.390 0.973 0.973 0.973 0.951
HSV - 1.0 5.798×10–5 7.239 0.957 0.131 0.407 0.957 0.957 0.957 0.918
CMYK - 1.0 0.003 9.784 0.979 0.051 0.433 0.979 0.979 0.979 0.968

Note: Where Ls signifies the model loss, f refers to high-level multimodal characteristics of VIs and GLCM, Tt stands for the total training time (min), and Tv denotes the
duration required to conduct a single-sample test (sec).
 
 

3.3    Fusion of GRU models with multimodal features
The  diverse  features,  comprising  VIs  and  GLCM,  were

simultaneously  appraised  during  image  training,  considering  them
as  multimodal  traits,  and  were  fed  into  the  GRU  models.  Table  6

displays  the  marks  related  to  performance  metrics  such  as  Re,  Pr,
Fm, and IoU. It also delineates the training and validation outcomes
through  metrics  like  Ls  and  Ac.  The  HSV-based  GRU  model
outperformed  other  color  image  modes.  Trained  solely  on  image
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data, it achieved the following performance metrics: Re (0.561), Pr
(0.321),  Fm  (0.412),  IoU  (0.400),  and  Ac  (0.561)  with  a  loss  of
0.667.  Meanwhile,  the  combined  GRUHSV-GRUf  model  slightly
outperformed  the  HSV  image-based  model  in  identifying  healthy
mulberry stems. Its performance scores encompassed a Re of 0.653,
a  Pr  of  0.429,  an Fm of  0.501,  and an IoU score  of  0.494.  During

validation,  it  attained  an  accuracy  of  0.653  with  a  loss  of  0.582.
These  results  correspond  with  those  of  Elsherbiny  et  al.[21],  who
explained  the  importance  of  conducting  a  thorough  investigation
into  deep  network  structures  and  feature  selection.  Such  an
investigation is essential, as it greatly enhances overall performance
and produces better outcomes.

 
 

Table 6    Outputs of GRU models deploying distinct color spaces and multimodal properties

Model Image f
Training Validation Performance

Ac Ls Tt Ac Ls Tv Re Pr Fm IoU

GRUimg

Gray - 0.572 0.671 32.561 0.559 0.681 1.770 0.559 0.311 0.399 0.391
RGB No 0.559 0.680 32.580 0.549 0.680 1.783 0.549 0.291 0.389 0.377
HSV - 0.573 0.668 31.571 0.561 0.667 1.759 0.561 0.321 0.412 0.400
CMYK - 0.560 0.683 32.891 0.530 0.687 1.189 0.530 0.288 0.379 0.371

GRUimg-GRUf

Gray - 0.635 0.609 32.855 0.620 0.621 1.690 0.620 0.395 0.471 0.462
RGB Yes 0.637 0.601 32.134 0.616 0.639 1.891 0.616 0.377 0.459 0.446
HSV - 0.668 0.571 30.966 0.653 0.582 1.844 0.653 0.429 0.501 0.494
CMYK - 0.659 0.595 32.591 0.609 0.625 1.490 0.609 0.365 0.433 0.426

 
 

3.4    Hybrid deep network with multimodal characteristics
Through  the  fusion  of  CNN  and  GRU  models,  this  study

successfully  attained  enhanced  accuracy  levels.  The  training
procedure  incorporated  diverse  space  images  and  RGB-based
multimodal  features,  including  combinations  of  higher  VIs  and
GLCM traits. The results in terms of the performance metrics of the
hybrid deep network, including Re, Pr, Fm, and IoU, as well as the
validation  outputs  of  Ac  and  Ls,  are  presented  in  Table  7.  The
hybrid  deep  network,  incorporating  both  CNN  and  GRU  models
with CMYK, exhibited outstanding performance compared to other
feature combinations. The integration of the CNN model alongside
CMYK  color  space  processing  and  the  GRU  model  utilizing
advanced  VIs-GLCM  features  demonstrated  outstanding
performance across multiple metrics.  It  achieved impressive scores
in  terms  of  Ac,  Re,  Pr,  and  Fm,  all  registering  at  an  exceptional

value of 0.995. Additionally, the model attained a notably high IoU
score  of  0.989,  while  maintaining  a  minimal  loss  of  0.034.  These
results  underscore the model’s  accuracy in making predictions and
its robust capability in localizing branch-infected mulberries. Due to
the well-designed framework[61], the first-level model, known as the
CNNCMYK-GRUf model, surpassed those models that rely solely on
training  images,  like  CNNimg-GRUimg  (Ac=0.984,  Re=0.984,
Pr=0.984,  Fm=0.984,  IoU=0.977,  and  Ls=0.045).  These  findings
highlight  the  importance  of  the  features  integrated  into  this
combined  network,  demonstrating  their  capacity  to  appropriately
estimate  the  health  of  the  mulberry  branch.  These  outcomes  are
similar to the findings of Jin et al.[31], who combined CNN and GRU
models  to  classify  healthy  and  diseased  wheat  heads  based  on
hyperspectral data, achieving a satisfactory accuracy level of 0.743,
exceeding the performance of single models.

 
 

Table 7    Outputs of the hybrid CNN-GRU model employing multiple color spaces and RGB-extracted variables

Model Image f
Training Validation Performance

Ac Ls Tt Ac Ls Tv Re Pr Fm IoU

CNNimg-GRUimg

Gray - 1.0 1.675×10–4 38.582 0.912 0.260 1.933 0.912 0.912 0.912 0.839
RGB No 1.0 1.35×10–5 37.989 0.970 0.116 1.929 0.970 0.970 0.970 0.939
HSV - 1.0 8.761×10–5 38.591 0.979 0.112 2.024 0.979 0.979 0.979 0.947
CMYK - 1.0 0.003 38.484 0.984 0.045 2.134 0.984 0.984 0.984 0.977

CNNimg-GRUf

Gray - 1.0 2.316×10–4 7.559 0.943 0.201 1.142 0.943 0.943 0.943 0.890
RGB Yes 1.0 8.581×10–6 7.585 0.979 0.081 1.039 0.979 0.979 0.979 0.952
HSV - 1.0 6.971×10–5 7.251 0.983 0.098 1.075 0.983 0.983 0.983 0.959
CMYK - 1.0 5.353×10–6 7.088 0.995 0.034 1.065 0.995 0.995 0.995 0.989

 
 

3.5    Advanced model vs. current deep learning architectures
The performance of the top-tier hybrid network, as exemplified

in Figure 9,  is  benchmarked against  the most  recent  advancements
in image classification technologies. Notably, this comprises Vision
Transformers  (ViT)  introduced  by  Dosovitskiy  et  al.[62],  Swin
Transformers  (Swin)  developed  by  Liu  et  al.[63],  and  Multi-Layer
Perceptrons  (MLPMixer)  as  proposed  by  Tolstikhin  et  al.[64].  The
comparative analysis presented in this study confirmed a significant
improvement  in  the  proposed  approach,  attaining  superior  image
classification performance compared to earlier models. The planned
model consistently demonstrated better performance in terms of Ac
(99.5%),  Re  (99.5%),  Pr  (99.5%),  Fm  (99.5%),  and  IoU  (98.9%)
compared to the ViT (0.948, 0.948, 0.948, 0.900), the Swin (0.898,
0.898,  0.899,  0.897),  and  the  MLPMixer  (0.883,  0.883,  0.895,

0.882,  0.791).  The  proposed  framework  utilizes  multimodal
learning  to  integrate  data  from  various  sources,  enabling  effective
feature  extraction  and  facilitating  the  development  of  more  robust
models for informed agricultural decision-making[65-67]. 

3.6    Training curves of the deep networks
Numerous  procedures  have  been  undertaken  to  advance  the

effectiveness  of  categorization  algorithms:  1)  analyzing  the
characteristics of nominated advanced attributes during the training
of  a  specific  deep  learning  model,  2)  fine-tuning  parameters,
3)  thoroughly  exploring  components  within  the  deep  network
architecture,  4)  considering  different  image  color  spaces,
5) integrating VIs with GLCM features, and 6) fusing various deep
learning  models.  Together,  these  endeavors  have  played  a  pivotal
role  in  advancing  the  learning  curve  of  the  higher-classification

　April, 2025 Elsherbiny O, et al.　Fusion of the deep networks for rapid detection of branch-infected aeroponically cultivated mulberries Vol. 18 No. 2 　 83　



model, as depicted in Figure 10. It proves the amended performance
of  the  model  by  deploying  upper  variations  mined  from  CMYK
color space images during the training and validation phases. These
specific  attributes,  coupled  with  RGB-extracted  traits,  exhibited  a
larger ability to evaluate the fitness status of branches compared to
other  color  space  images.  As  illustrated  in  Figures  10a-10c,  the
precision  of  both  the  instructional  and  verification  datasets
consistently  improved  as  the  number  of  epochs  increased.
Simultaneously,  there  was  a  steady  decrease  in  the  models’  loss,
interspersed  with  occasional  increases  followed  by  subsequent
decreases.  Additionally,  it  was  observed  that  the  training  accuracy
tended  to  surpass  the  validation  accuracy.  The  advanced  model,
known  as  CNNCMYK-GRUf,  demonstrated  an  outstanding  learning
curve,  as revealed in Figure 10b.  The incorporation of two models
led  to  the  successful  establishment  of  the  CNNCMYK-GRUf  two-
stage model  framework.  It  achieved excellent  classification perfor-
mance, reaching 99.5% accuracy in terms of Re, Pr, and Fm, along
with IoU of 98.9% and Ls of 0.034. Compared to other models, the
CNN  model  based  solely  on  image  input  (Figure  10a)  achieved
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Figure 10    Performance assessment measures (accuracy and loss) of deep networks for mulberry branch health detection
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96.9%  for  Ac,  Re,  Pr,  and  Fm,  with  IoU=93.7%  and  Ls=0.060,
while  the  ViT  model  (Figure  10c)  attained  94.8%  for  Ac,  Re,  Pr,
and Fm, with IoU=90.0% and Ls=0.186. The implementation of the
superior  model  aligns  with  the  anticipated  outcomes  delineated  by
Wakamori  et  al.[68],  who  underscored  that  the  adoption  of
multimodal  approaches  markedly  augments  accuracy  relative  to
single-modal  methods.  Elmetwalli  et  al.[69]  validated  the  enhanced
performance  as  well,  noting  that  the  adoption  of  early  stopping
during backpropagation training mitigated the risk of overfitting. 

3.7    Confusion  matrices  and  the  interpretability  of  deep
networks

As  shown  in  Figure  11,  the  confusion  matrices  showcase  the
performance  of  the  proposed  CNNCMYK,  hybrid  CNNCMYK-GRUf,
and  ViT  models  in  identifying  the  health  of  mulberry  twigs.  In  a
collection  of  840  images,  the  first,  second,  and  third  models
exhibited approximately 30, 8, and 44 instances of misclassification,
respectively. This analysis indicated that the CNNCMYK-GRUf model
revealed  a  marked  reduction  in  misclassifications,  repeatedly

exposing  higher  true-positive  and  true-negative  rates,  while
concurrently minimizing both false negatives and false positives. To
facilitate  a  more  in-depth  analysis  of  these  models,  saliency  map
visualizations  were  utilized  to  evaluate  their  interpretative
transparency.  As  exposed  in  Figure  12,  the  CNNCMYK  model
produced a widely scattered distribution of high-activation regions,
suggesting that it relies on multiple features but lacks a clear focus
on  disease-relevant  areas.  This  could  contribute  to  its  moderate
misclassification  rate.  In  contrast,  the  CNNCMYK-GRUf  model
generated  more  centralized  and  structured  activations,  indicating
that the inclusion of GRU layers helped refine the model’s focus on
disease-prone  regions,  leading  to  a  reduced  misclassification  rate.
Conversely,  the  ViT  model,  despite  its  ability  to  capture  global
dependencies,  exhibited  a  higher  misclassification  rate  (44
instances)  than  the  CNNCMYK-GRUf.  The  saliency  maps  indicate
that while ViT provides better-distributed attention across the entire
twig,  it  might  have  struggled  with  distinguishing  subtle  textural
differences between healthy and unhealthy samples.
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Figure 11    Confusion matrix for the assessment of mulberry branch health detection via the proposed models
 

In  this  study,  the  CNNCMYK-GRUf  framework  had  superior
accuracy  in  diagnosing  the  health  status  of  mulberry  twigs.
Compared to prior research, the findings confirmed a higher level of
precision,  particularly  in  contrast  to  the  approach  introduced  by
Narimani  et  al.[70],  who  developed  an  IoT-based  system  for
monitoring plant situations in an aeroponic greenhouse. The VGG-

19,  InceptionResNetV2,  and  InceptionV3  algorithms  were  utilized
for  Geranium plant  disease  detection.  The  outcomes  disclosed that
the VGG-19 algorithm attained a 92% accuracy in categorizing rust
diseases  in  Geranium  plants.  Moreover,  the  methodology  of  this
study  outperformed  that  of  Kurup  et  al.[71],  who  utilized  capsule
networks for plant infection detection and leaf classification. With a
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dataset  of  54 306 images  from 14 crop species,  they realized 94%
accuracy for disease diagnosis and 85% for leaf classification with
2997  images  from  11  species.  Furthermore,  the  first-level  model
excels beyond the methodology introduced by Karlekar and Seal[72]

in terms of soybean disease identification accuracy. Their two-stage
approach  involves  extracting  leaf  components  by  eliminating
complex  backgrounds,  followed  by  the  application  of  a  CNN  for
disease  classification.  In  experiments  conducted  on  the  “Image
Database  of  Plant  Disease  Symptoms”  which  encompasses  16
categories,  they  achieved  an  exceptional  identification  accuracy  of
98.14%.  The  observations  detailed  herein  align  with  the  broader
trend  in  agricultural  research,  which  highlights  the  integration  of
multiple data sources into dynamic models for more effective plant
status  diagnosis[73],  disease  prediction[74,75],  and  soil  analysis[76].  This
approach  enhances  agricultural  decision-making,  optimizes  crop
management,  and  sets  the  stage  for  more  efficient,  data-driven
solutions in modern agriculture.

This work contributes to the precision of detecting the health of

mulberry  twigs,  facilitating  timely  intervention.  It  aids  in  the
preservation  of  water  and  nutrients  that  might  otherwise  be
inefficiently expended on diseased plants, thereby promoting robust
root  formation  and  increasing  the  efficiency  of  water  absorption.
Diseases  like  mildew  can  disrupt  water  uptake,  emphasizing  the
necessity  of  this  study’s  advanced  deep  learning  framework  for
early  detection  of  mildew  presence  on  mulberry  branches  and  the
implementation  of  targeted  remedial  actions.  These  actions  may
involve  adjusting  water  and  nutrient  supply[77],  optimizing  plant
spatial  arrangement  to  prevent  pathogen  transmission[78],  and
utilizing  beneficial  microbes  or  biostimulants  to  enhance  plant
defenses[79].  The  results  demonstrated  the  effectiveness  of  this
innovative  classification  approach,  potentially  revolutionizing
aeroponic  cultivation  through  automated  disease  diagnosis.  This
advancement could lead to improvements in plant health, crop yield,
and  overall  sustainability,  while  also  opening  doors  for  broader
applications  of  deep  learning  and  image  analysis  in  agriculture,
heralding a new era in sustainable crop disease management.
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Figure 12    Saliency map visualization for model interpretability, highlighting regions of interest and comparing feature maps of healthy and
unhealthy images across different models

 
 

3.8    Potential limitations and future outlook
Despite  the  promising  outcomes  established  by  the  employed

methodology,  several  constraints  within  this  framework  remain,
which could be explored in future research endeavors.  The current
experiments  were  confined  to  mulberry  branches.  Extending  the
testing  to  other  crops  would  significantly  improve  its  applicability
in  precision  agriculture,  particularly  for  automated  detection.  The
efficacy  of  the  study  strategy  is  contingent  upon  the  incorporation
of  fusion  traits,  particularly  those  derived  from  VIs  and  GLCM.
Given  the  inherent  variability  across  datasets,  incorporating
supplementary  features  (like  environmental  factors,  for  instance
temperature,  humidity,  light  intensity,  and  carbon  dioxide  levels)
may  be  crucial  to  ensuring  consistent  accuracy  across  different
environments  and  crop  types.  Moreover,  as  the  ensemble  models
were  established  via  specific  ML  approaches  such  as  CNN  and
GRU,  exploring  alternative  configurations  could  yield  valuable
insights.  With  the  continuous  emergence  of  novel  models  and
techniques  such  as  transformer  networks,  periodic  updates  may  be
essential  to  sustain  predictive  performance.  Although  executed
under  controlled  conditions,  appraising  the  framework  in  semi-
controlled  greenhouse  environments  across  seasons  would  offer
crucial  perspectives.  Long-term  trials  of  this  nature  could  deepen
the  understanding  of  its  performance  under  a  broader  range  of
operational  conditions.  Lastly,  the  robust  framework  of  the
established model on the mulberry dataset indicates its potential for
adaptation to mobile platforms, such as smartphones or drones, for

real-time  disease  detection  in  the  field.  Developing  a  lightweight
version to lower computational demands while preserving accuracy
would enhance its viability for use in precision agriculture. 

4    Conclusions
This  study  proposes  a  novel  hybrid  deep  network  for  precise

mildew  detection  on  aeroponically  grown  mulberry  branches.  The
model  combines  a  Convolutional  Neural  Network  (CNN)  with
Gated Recurrent Units (GRU) and processes RGB images across a
variety  of  color  channels.  It  is  trained  with  multi-dimensional
attributes,  including  color-based  vegetation  indices  (VIs)  and
texture features from the gray-level co-occurrence matrix (GLCM).
The  experimental  outcomes  demonstrated  that  the  hybrid  deep
network (CNNCMYK-GRUf), which combined CMYK and advanced
VIs-GLCM features,  outperformed  competing  models.  This  model
attained  an  impressive  validation  accuracy  (Ac)  of  99.50%  with  a
corresponding  loss  (Ls)  of  0.034.  In  contrast,  the  standalone
CNNCMYK  model  attained  Ac  of  0.969  and  Ls  of  0.060.  The
GRUCMYK  model,  trained  solely  on  image  data,  exhibited
significantly inferior performance (Ac=0.530, Ls=0.687).

The  suggested  framework  enhances  model  performance
through  optimal  feature  selection,  architecture  exploration,
hyperparameter  tuning,  and  multimodal  data  integration.  This
approach  leads  to  efficient,  nondestructive  detection  of  branch
infections  in  mulberry  trees,  enabling  timely  interventions  and
promoting tree recovery without labor-intensive processes. Beyond
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application  in  mulberry  cultivation,  the  advanced  hybrid  deep
network  presents  significant  potential  for  broader  use  across
agricultural  sectors.  The  ability  to  detect  plant  diseases  early  with
high  accuracy  could  streamline  disease  management  protocols,
reduce  the  need  for  chemical  treatments,  and  promote  sustainable
agricultural practices. Moreover, this methodology could be adapted
to  detect  a  wider  range  of  plant  pathogens  (such  as  rusts,  blights,
and  molds)  across  various  crops.  In  the  future,  integrating  this
model into real-time monitoring systems could provide farmers with
accessible,  accurate,  and  cost-effective  diagnostic  tools,
contributing  to  improved  food  security  and  global  agricultural
productivity. 
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