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Abstract: The continuous development of smart agriculture puts forward the requirement of high accuracy slope path tracking
for the agricultural wheel-legged robot. Compared to flat terrain, path tracking control on sloped terrain faces the obstacle of
motion instability of the wheel-legged robot induced by the slope gravitational force component,  which causes instantaneous
steering center to offset. To address this problem, this study proposed a slope path tracking control algorithm by combining the
methods of virtual sensing radar and two-level neural network. Firstly, the kinematic and dynamic models of the wheel-legged
robot are deduced, from which the crucial factors affecting control accuracy of slope path tracking are recognized. Secondly,
this  study  constructs  the  slope  path  tracking  control  algorithm,  in  which  the  virtual  sensing  radar  is  utilized  to  realize  route
perception, and the two-level neural network is employed to provide drive motors’ speeds to adapt to path tracking on different
slopes. Furthermore, the corresponding compensation methods of the identified impacting factors are embedded in the proposed
algorithm,  including  the  lateral  tracking  deviation  factor,  heading  angle  deviation  factor,  slope  change  factor,  and  slip  rate
factor. Finally, the co-simulation model of slope path tracking control is constructed, including the multi-body dynamic model
of the wheel-legged robot in RecurDyn and the proposed slope path tracking algorithm complied by Python. Subsequently, the
simulation tests of the wheel-legged robot are carried out under various slope angles and velocities. The results reveal that the
proposed algorithm’s effectiveness and accuracy are superior, with tracking errors reduced by more than 47.2% compared to an
optimized pure pursuit algorithm.
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1    Introduction
With  the  continuous  development  of  smart  agriculture,  the

scope  of  application  for  agricultural  robots  in  various  working
environments is gradually expanding. Path tracking control is a key
factor  of  automatic  navigation  technology  for  agricultural  robots
under  flat  terrains.  Nevertheless,  there  is  currently  a  scarcity  of
automatic  navigation  systems  suitable  for  hilly  and  mountainous
terrains.  The  varying  gradients  of  sloped  terrains  will  bring  new
challenges  in  path  tracking  control  since  the  navigation  equipment
relies  on  obtaining  position  information  from  an  earth  plane
coordinate  system.  Under  these  circumstances,  direct  utilization  of
position  information  without  proper  conversion  will  lead  to
unexpected  tracking  errors.  Moreover,  the  unstructured  slopes  will
have  significant  impact  on  the  unmanned agricultural  robot  in  two
main aspects. On the one hand, the steep road slope will disrupt the
motion  stability  of  the  agricultural  robot,  resulting  in  reduced
perception  with  the  target  path.  On  the  other  hand,  the  unstable
lateral tire slippage and sinking of agricultural robots resulting from
various  road  surface  hardnesses  and  gravity  components  along  the

slope will also lead to unexpected lateral error and heading error in
the  path  tracking  implementation.  The  commonly  used  control
methods  typically  focus  solely  on  the  planar  motion  of  the  robot,
neglecting  or  directly  disregarding  the  influence  of  gravity.  Such
oversights can result in a significant decline in the robot’s tracking
progress  when  navigating  sloped  paths.  Therefore,  it  is  in  urgent
demand  to  verify  the  crucial  disturbance  factors  affecting  the
tracking  accuracy  of  agricultural  robots  under  sloped  terrains  and
improve the adaptation of the control algorithm.

With  regards  to  slope  path  tracking  control,  there  is  little
related research. Auria et al.[1] performed real agricultural robot tests
in  sloped  terrain  conditions  to  investigate  the  potential  control
issues  in  the  path  tracking  process.  The  fundamental  control
elements for slope path tracking control are discussed in their study.
Dogan  et  al.[2]  proposed  a  robust  adaptive  model  and  position
control method with adaptive state variables, consisting of the robot’
s  dynamic  model,  the  slope  angle,  and  other  related  parameters  to
establish the longitudinal force and lateral force models of the robot.
Additionally,  the  relationship  between  slip  and  friction  was
established  by  using  a  magic  formula  wheel  model,  as  well  as  the
relationship  between  body  speed  and  wheel  speed  by  using  a  slip
system.  Jeong[3]  presented  a  path  tracking  control  algorithm  for
slope  autonomous  navigation  robots  with  four-wheel  steering,  in
which  the  direct  yaw  moment  control  was  employed  to  achieve
accurate  path  tracking  performance  considering  the  various
influencing  factors  such  as  control  forces,  actuator  limits,  ride
comfort,  and  body  slip  when  determining  steering  inputs  for  front
and  rear  wheels,  respectively.  Qi  et  al.[4]  proposed  a  model
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predictive control-based path tracking method for a car-like mobile
robot on slopes, considering the effects of gravity and internal load
changes.  The  method  enables  accurate  path  tracking  on  slopes  by
addressing  the  complex  relationship  between  the  wheel  and  road
surface  due  to  the  influence  of  gravity,  as  well  as  accounting  for
slope variations. Hu et al.[5] proposed a cascaded navigation control
method for  straight  path  tracking.  The  navigation  control  task  was
decomposed  into  two  cascaded  control  tasks,  namely,  the  path
tracking  control  task  and  the  steering  control  task.  Then  the
controller  is  obtained  by  establishing  a  kinematic  model,  and  its
feasibility is verified by experiments.

Yue  et  al.[6]  highlighted  that  during  slope  path  tracking,  the
interaction between the robot’s wheel and the road surface becomes
increasingly intricate due to gravitational effects, thereby rendering
tracking control more challenging amidst varying slopes. Therefore,
they proposed a model  predictive control  method combined with a
fuzzy  system  that  effectively  incorporates  both  the  dynamic
characteristics  of  the  body  and  wheels  on  sloped  roads.  By
enhancing the two-dimensional  kinematics  and dynamics model  of
the  robot,  their  approach  enables  it  to  adapt  to  varying  slopes  and
road  conditions  while  accommodating  curvature  mutations.
However,  the  approach  does  not  fully  consider  the  body  slip
phenomenon  in  hilly  and  mountainous  areas,  resulting  in  poor
portability of the control algorithm.

Given  the  intricate  and  dynamic  control  environment,  neural
networks have been increasingly employed by scholars to optimize
the control process, making machine learning with neural networks
the  primary  prominent  research  area  in  agricultural  machinery
identification  and  control.  Yang  et  al.[7]  proposed  an  asymmetric
dual-priority  polling  control  system  model  and  utilized  a  neural
network  algorithm  for  performance  prediction  and  analysis.  The
mathematical  model  of  the  continuous-time  state  system  was
established  using  the  embedded  Markov  chain  theory  and
probability generating function. Furthermore, accurate analysis and
verification of  system characteristics  such as  average queue length
and average cycle were conducted through simulation experiments.
The results demonstrate that the model not only distinguishes multi-
service  tasks  effectively  but  also  ensures  minimal  system  delay,
thereby highlighting the advantages of hierarchical neural networks.
Zhou  et  al.[8]  introduced  a  multi-level  attention  network  combined
with policy reinforcement learning for image captioning to address
limitations observed in existing methods that solely focus on global
representation  at  the  image  level  or  specific  concepts  alone.  This
model comprises a multi-level attention network module aiming to
capture  both  global  and  local  object  details,  along  with  a  region
attention network module targeting local features within regions of
interest. The learning task is graded in this model, simplifying each
learning  module’s  content  while  facilitating  communication
between  both  modules.  Experimental  results  indicate  superior
learning  capabilities  compared  to  other  existing  image  captioning
methods.  Li  et  al.[9]  proposed  a  prediction  model,  namely  the  two-
level resolution deep neural network, which addresses the limitation
of traditional GCN’s small receptive field that hampers referencing
traffic characteristics from remote sensors and consequently leads to
inaccurate  long-term  predictions.  This  model  comprises  two
resolution  blocks:  low-resolution  blocks  for  macroscopic  scale
traffic  prediction,  such  as  regional  traffic  changes;  and  high-
resolution blocks that utilize GCN to extract spatial correlation and
reference regional variations generated by the low-resolution block
for  microscopic  scale  flow  prediction.  Experimental  results
demonstrate that  hierarchical  processing in neural  networks refines

perceptual  content,  thereby  yielding  more  accurate  prediction
outcomes.  Based  on  these  studies,  hierarchical  neural  networks
exhibit promising development potential across various fields due to
their  efficient  and  accurate  information  processing  capabilities
along  with  their  unique  ability  to  decompose  complex  tasks  and
fuse  network  correlations.  Bai  et  al.[10]  proposed  a  neural  network
control  method  with  NMPC  as  the  learning  sample.  The  design
process  of  this  control  method  includes  establishing  the  NMPC
controller  based  on  the  time-varying  local  model,  generating
learning  samples  based  on  this  NMPC  controller,  and  training  to
obtain  the  neural  network  controller.  But  this  method  considers
fewer control factors, resulting in lower control accuracy.

In order to improve the tracking accuracy of agricultural robot
under  sloped  terrains,  the  present  study  proposes  a  slope  path
tracking control  algorithm based on virtual  sensing radar  and two-
level  deep  neural  network.  The  algorithm  aims  to  address  the
control  instability  caused  by  slopes  in  hilly  and  mountainous
terrains,  as  well  as  active  steering  control.  The  research  content  is
mainly  divided  into  the  following  aspects:  1)  The  kinematic  and
dynamic models of the agricultural robot under sloped terrain were
established,  and  the  critical  factors  affecting  motion  stability  were
identified.  2)  The  slope  path  tracking  control  algorithm  was
constructed based on virtual sensing radar and two-level deep neural
network.  3)  The  co-simulation  model  was  accomplished  to  verify
the proposed algorithm under various tracking conditions. 

2    Materials and methods
In  this  part,  the  necessary  control  parameters  are  obtained  by

building  the  kinematic  and  dynamic  models  of  the  wheel-legged
robot  in  the  hills  and  mountains,  and  the  final  control  value  is
obtained  by  sorting  out  the  control  logic  and  building  the  deep
neural network framework, combining the virtual sensing radar map
and various control influence factors. 

2.1    Kinematic  and dynamic models  of  the wheel-legged robot
on the slope 

2.1.1    Kinematic model of the wheel-legged robot on the slope
The  kinematic  model  of  the  wheel-legged  robot  is  established

based on the following assumptions:
a)  The  wheel-legged  robot  is  regarded  as  a  rigid  body  at  all

times;
b)  The  physical  properties  of  the  four  wheels  of  the  wheel-

legged robot are the same;
c)  The  mass  center  of  the  whole  robot  coincides  with  its

geometric center.
The  kinematic  model  of  the  wheel-legged  robot,  as  shown  in

Figure 1, is built in the spatial coordinate system.
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Figure 1    Kinematic model of the agricultural wheel-legged
robot on the slope
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Through the geometric relationship, the angular velocity of the
wheel-legged robot at a certain time can be derived as follows:

ω =
Vc

rc

=
Vr

rc +
L
2

=
Vl

rc −
L
2

(1)

ω Vc Vr Vl rcwhere,  ,  ,  ,  ,  ,  and L are  the  angular  velocity,  rad/s;  the
centroid velocity, m/s; the converted speed of the right wheel, m/s;
the  converted  speed  of  the  left  wheel,  m/s;  the  steering  radius,  m;
and the width of the wheel-legged robot, m, respectively.

vr = vl , 0
vr > vl ω > 0

vr < vl ω < 0
vr = vl = 0

When  ,  the  wheel-legged  robot  will  go  straight  at  a
uniform  speed;  when  ,  ,  the  wheel-legged  robot  will
turn right; when  ,  , the wheel-legged robot will turn left;
when  ,  the  wheel-legged  robot  will  be  parking.  Among
them,  the  speed  of  turning  right  or  left  depends  on  the  speed
differential of the drive motors on both sides.

The  forward  kinematic  model  can  be  obtained  based  on  the
velocities of the left and right wheels:ï
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Based  on  the  velocity  decomposition  of  the  geometric  center
point, the inverse kinematic model can be obtained:ï

Vr
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[Vc ω]
[Vl Vr]

In which  T can be set according to the inverse kinematic
model  to  obtain  ,  to  precisely  control  the  rotation  of  the
driving wheel; the above formula is not affected by gravity.

However, the position and heading information obtained by the
navigation equipment are based on the coordinate system values of
the earth plane, while the value used in the actual tracking process is
its  projection  on  the  slopes.  Therefore,  coordinate  conversion  is
necessary in slope path tracking, as shown in Figure 2.
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Figure 2    Navigation and positioning data conversion of the wheel-
legged robot on the slope
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Figure  2  illustrates  how  the  wheel-legged  robot’s  relative
coordinates    on  the  global  plane  are  derived.  The  navigation
system  provides  the  robot’s  absolute  position    and  heading
angle  ,  which  are  then  combined  with  the  reference  path
coordinates  T to compute  .

α [
xr,

yr

cosα

]T
The slope angle  is  set  as  .  Then the projection of  coordinate

points on the reference slope path can be expressed as  .

The other parameter settings are shown in Figure 2, where the solid

line is on the slope road surface and the dotted line is on the earth
plane. Then:

b′ =
b

cosα
(4)

s′ =

…
a2 +

b2

cos2α
(5)

sinβ =
a
s′

(6)

β = arcsin
a…

a2 +
b2

cos2α

(7)

a b b′ α βwhere,  ,  ,  ,  ,    are  the  horizontal  coordinate  value  of  the
wheel-legged  robot  earth  plane  absolute  coordinate  system,  m;  the
vertical  coordinate  value  of  the  wheel-legged  robot  earth  plane
absolute  coordinate  system, m; the vertical  coordinate  value of  the
wheel-legged robot slope projection coordinate system, m; the slope
angle  and  the  heading  angle  in  the  wheel-legged  robot  slope
projection coordinate system, respectively.

(
a,

b
cosα

)
a…

a2 +
b2

cos2α

It  can  be  deduced  that  the  coordinates  of  the  wheel-legged
robot  on  the  sloped  road  at  any  time  can  be  expressed  as

,  and  the  heading  angle  can  be  expressed  as  arcsin

,  which  can  be  used  directly  by  the  navigation

system. 

2.1.2    Dynamic model of the wheel-legged robot on the slope
Figure 3 shows the dynamic relationship between the forces on

each wheel and the robot body.
According  to  the  geometric  relationship  in  Figure  3,  the

dynamic model of the wheel-legged robot can be deduced:

m(u̇−ωv) = Fx1 +Fx2 +Fx3 +Fx4 −mgsinαcosθ (8)

m(v̇−ωu) = Fy1 +Fy2 +Fy3 +Fy4 −mgsinαsinθ (9)

Jω̇ =
L
2

(−Fy1 +Fy2 −Fy3 +Fy4)+L f (Fy1 +Fy2)−Lr(Fy3 +Fy4) (10)

m J α

Fxi

Fyi

L f Lr

L

where,   is the mass, kg;   is the moment of inertia, kgm2;   is the
slope of the simulated road surface, °;    is the longitudinal static
ground friction force applied to each wheel, N;   is the transverse
static  ground  friction  force  applied  to  each  wheel,  N;    and 
are  the  front  and  rear  wheelbases,  respectively,  m;  and    is  the
width, m.
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Figure 3    Dynamic model of wheel-legged robot in hilly
mountainous areas
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It  is  difficult  to  control  the  lateral  force  of  the  wheel-legged
robot  tire  in  the  tracking control  process.  When wheel  slip  occurs,
the control consideration can be taken into account after conversion,
and  the  remaining  robot  body  tracking  parameters  can  be
transformed into the following formula:

u̇ =
Fx

m
−gsinαcosθ+ωv (11)

v̇ =
Fy

m
−gsinαsinθ−ωu (12)

ω̇ =
M
J

(13)

According  to  the  formula,  the  course  deviation,  slopes,  and
related  wheel  slip  problems  should  be  fully  considered  in  the
determination of wheel-legged robot control quantity. 

2.2    The construction of slope path tracking control algorithm 

2.2.1    The functioning principles of virtual sensing radar
Liu  et  al.[11]  proposed  a  virtual  sensing  radar  model  for  path

tracking  control  of  tractors  in  orchards.  Instead  of  using  lateral
deviation and heading deviation as the perception input of the path
navigation  algorithm,  the  scanned  virtual  sensing  radar  map
information  was  used  as  the  perception  input.  The  virtual  sensing
radar  map  can  not  only  establish  the  relative  position  relationship
between  the  hilly  and  mountainous  wheel-legged  robot  and  the
target path,  but also predict  the direction of the target path by pre-
perception of the failed path segment to a certain extent,  to reduce
the  possible  overshoot  and  collision,  and  provide  convenience  for
further accurate control of the hilly and mountainous wheel-legged
robot tracking operation. At the same time, the virtual sensing radar
avoids  the  problem  of  the  real  radar  sensor,  which  is  easily
disturbed by the environment. It is not sensitive to the real working
environment and has high stability.

The use of virtual sensing radar needs to obtain the target path
segment  first,  and  the  target  path  segment  should  include  the
coordinates of the starting and ending positions and other necessary
parameters.  However,  the  target  path  lines  connected  by  the  target
waypoints  directly  obtained  by  the  navigation  equipment  do  not
have  the  property  of  road  width,  so  the  target  path  needs  to  be
widened manually.  In the algorithm, the discrete target  path points
are connected to the target path line segment, and because the robot’s
width is 1 m, the target path line segment is translated to the left and
right sides by 0.5 m equidistant to obtain the virtual path boundary.
The virtual target path segment with a total width of 1 m is obtained
by  combining  the  two  virtual  path  boundaries  for  virtual  sensing
radar detection.

The operation principle of the virtual sensing radar is to imitate
the  work  of  the  real  radar.  The  wheel-legged  robot  itself  is  the
virtual  radar  beam  launching  center,  and  the  detection  beam  is
uniformly transmitted to the fixed range of the fuselage.  When the
detection beam contacts the boundary of the virtual path or reaches
the  limit  of  the  transmission  distance,  it  stops  and  records  the
length.  All  the  detection  beams  emitted  uniformly  are  used  as  the
virtual  sensing  radar  map  of  the  wheel-legged  robot  at  a  certain
time, and the virtual sensing radar map generated at a certain time in
the  operation  of  the  hilly  mountainous  wheel-legged  robot  with
respect  to  the  virtual  path  segment  is  shown  in  the  shaded  part  of
Figure 4.

S P(xs,ys)
EP(xe,ye)

C(x,y)
d

In  Figure  4,    is  the  starting  point  of  the  target  path
segment currently, and   is the end point of the target path
segment.  The  virtual  sensing  radar  scanning  center  is  .  The
virtual  path  width  is  ;  the  heading  angle  of  the  current  wheel-

θ

lmax

legged  robot  is  .  The  maximum  detection  range  of  the  virtual
sensing radar is  .

The target path line equation can be expressed as follows:

A0 x+B0y+C0 = 0 (14)
  

Target path

Virtual path boundary

Virtual radar map

Y

θ

O X

Ep(xe,ye)
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d

Figure 4    Schematic of a virtual sensing radar map generated
at a certain time

 

The boundary line equation of the virtual path on both sides is
denoted by:

A1 x+B1y+C1 = 0 (15)

A2 x+B2y+C2 = 0 (16)
The  following  relationship  is  obtained  by  mathematical

derivation:

A0 = A1 = A2 = ys − ye (17)

B0 = B1 = B2 = xe − xs (18)

C0 = xsye − xeys (19)

C1 =C0 +
d
√

A2
1 +B2

1

2
(20)

C2 =C0 −
d
√

A2
2 +B2

2

2
(21)

A0 B0 C0 A1 B1 C1 A2 B2 C2

d
where,  ,  ,  ,  ,  ,  ,  ,  ,   are constant parameters,
and   is virtual path width, m.

1◦

i

The  virtual  sensing  radar  map  is  calculated  by  the  existing
mathematical  relationship.  If  the  virtual  scanning  resolution  is  ,
the virtual sensing radar sends 360 detection beams uniformly to the
surroundings  at  a  certain  time,  and  the  distance  between  the
detection beam of the  th virtual sensing radar and the boundary of
the virtual path on a certain side is:

li
j = −

A j x+B jy+C j√
A2

j +B2
jsin(θ+ i)

(22)

i jwhere  ,   are the detection beam sequence number transmitted by
the virtual sensing radar, and the boundary label of the virtual path,
respectively.

j

√
A2

j +B2
j × sin(θ+ i)

lmax li
1 < 0

li
1 > lmax li

1 = lmax li
2 < 0 li

2 > lmax li
2 = lmax

The  value  of    is  1  or  2,  which  represents  that  the  virtual
sensing radar scanning center transmits a detection beam to the left
or  right  virtual  path  boundary.  When  the  virtual  sensing  radar
detection  range  is  calculated  through  the  above  equation,  if  the
square root   is 0, it specifies that the detection
range at this time is the maximum value, namely for  ; if   or

, let  ; if   or  , let  . Each time the
virtual  sensing  radar  map  is  calculated,  the  virtual  sensing  radar
center  will  send  virtual  detection  beams  to  the  virtual  path
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boundaries  on  both  sides  at  the  same  time,  and  only  one  of  the
detection  distances  is  taken  as  the  effective  virtual  sensing  radar
detection  distance  at  the  moment.  Therefore,  the  distance
comparison  between  the  transmitting  center  and  the  virtual  path
boundaries  on  both  sides  is  involved:  Every  time,  the  algorithm
takes  the  virtual  sensing  radar  center  detection  to  virtual  path
boundary distance minimum value as the effective detection range,

li =min(li
1, l

i
2)namely  . The detection distances of all virtual sensing

radars are normalized to form the final virtual sensing radar map for
the subsequent use of the neural network.

In  actual  path  tracking on the  slopes,  only  the  following eight
conditions will appear in the virtual sensing radar map, as shown in
Figure  5,  and  the  other  conditions  can  be  attributed  to  one  of  the
following eight virtual sensing radar maps.

 
 

Target path Virtual path boundary Virtual radar map

Case 1 Case 2 Case 3 Case 4

Case 5 Case 6 Case 7 Case 8

Figure 5    All the shapes that the virtual sensing radar map will appear during the actual tracking process
 

60◦ 0◦
In the eight  virtual  sensing radar maps,  the maximum heading

deviation angle is set to  , the positive direction of the path is  ,
the  counterclockwise  deflection  of  the  wheel-legged  robot  is
positive, and the clockwise deflection is negative.

Case 1: The wheel-legged robot is tracked outside the left side
of the virtual path boundary, and the heading angle is positive. The
main  control  strategy  corresponding  to  this  type  of  virtual  sensing
radar map is to turn sharply to the right.

Case 2: The wheel-legged robot is tracked to the left side of the
target path, inside the virtual path boundary, and the heading angle
is positive. The main control strategy corresponding to this type of
virtual sensing radar chart is a small turn to the right.

Case  3:  The  wheel-legged  robot  is  tracked  to  the  right  of  the
target path, inside the boundary of the virtual path, and the heading
angle  is  positive.  The  main  control  strategy  corresponding  to  this
type of virtual sensing radar map is to go straight.

Case 4: The wheel-legged robot is tracked outside the right side
of the virtual path boundary, and the heading angle is positive. The
main  control  strategy  corresponding  to  this  type  of  virtual  sensing
radar map is to go straight.

Case 5: The wheel-legged robot is tracked outside the left side
of the virtual path boundary, and the heading angle is negative. The
main  control  strategy  corresponding  to  this  type  of  virtual  sensing
radar map is to go straight.

Case 6: The wheel-legged robot is tracked to the left side of the
target path, inside the boundary of the virtual path, and the heading
angle  is  negative.  The  main  control  strategy  corresponding  to  this
type of virtual sensing radar map is to go straight.

Case  7:  The  wheel-legged  robot  is  tracked  to  the  right  of  the
target path, inside the boundary of the virtual path, and the heading
angle  is  negative.  The  main  control  strategy  corresponding  to  this
type of virtual sensing radar map is a small turn to the left.

Case 8: The wheel-legged robot is tracked outside the right side
of the virtual path boundary, and the heading angle is negative. The
main  control  strategy  corresponding  to  this  type  of  virtual  sensing
radar chart is a large turn to the left. 

2.2.2    Architecture of the slope path tracking control algorithm
The essence of path tracking control for the wheel-legged robot

in  hilly  and  mountainous  areas  is  to  calculate  the  corresponding
driving  instructions  according  to  the  relative  position  relationship
between the robot and the target path. Based on the analysis of the
functions  and  operating  characteristics  of  the  wheel-legged  robot,
the basic actions can be simplified into four conditions: go straight,
turn left, turn right, and stop, and the rest of the driving actions can
also be composed of these four basic actions.  However,  due to the
weak adaptive ability of a single fixed control command to the road,
especially the wheel-legged robot which is affected by gravity when
moving on the slope, the wheels are easy to slip and be affected by
external  interference,  resulting  in  poor  control  accuracy  or  failure.
Therefore,  the  purpose  of  building  the  first-level  deep  neural
network  in  this  algorithm  is  to  describe  the  position  relationship
between  the  wheel-legged  robot  with  respect  to  the  virtual  path
boundary through the generated virtual sensing radar map. Then the
second-level  deep  neural  network  is  used  to  calculate  multiple
control influence parameters to obtain real-time and accurate control
speeds of the drive motor.

Figure  6  shows  the  architecture  of  the  proposed  slope  path
tracking algorithm by fusing virtual sensing radar and the two-level
deep neural network.

Firstly,  the  real-time  wheel-legged  robot  position  coordinates
and  heading  angle  information  are  obtained  by  RTK-GNSS
positioning  base  station  and  mobile  station,  then  converted  to  the
sloped  road.  The  virtual  sensing  radar  algorithm is  combined  with
the existing reference path and the current wheel-legged robot slope
position to calculate the virtual sensing radar map in real time, and
the current robot-road position relationship is preliminarily obtained
through the first-level  deep neural  network calculation.  The output
results of the first-level deep neural network, the current road slope,
and the wheel slip rate are included in the calculation of the second-
level  deep  neural  network.  Finally,  the  control  value  of  the  drive
motor speeds is obtained, which is sent to the motor drivers through
the lower computer for execution. 

2.2.3    Neural networks’ structure and influencing factors
1) Structure and role of first-level deep neural network
The structure of the first-level deep neural network is shown in

Figure  7.  The  input  is  the  virtual  sensing  radar  map  after  batch
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normalization,  and  the  output  is  the  position  relationship  between
the  wheel-legged  robot  and  target  path  segment,  which  is  used  to
represent  various  situations  on  the  target  path  in  real  work.  The
relative  position  relationship  can  be  described  by  the  different
deviation.  When  the  wheel-legged  robot  is  on  the  target  path  left,
the  deviation  relationship  obtained  by  the  virtual  sensing  radar
which  is  between  the  wheel-legged  robot  and  target  path  segment
may occur in the following four conditions:

(1)  There  is  a  lateral  deviation,  the  wheel-legged  robot  is
located inside of the target path segment, and the heading deviation
is greater than 0.

(2)  There  is  a  lateral  deviation,  the  wheel-legged  robot  is
located outside the target path segment, and the heading deviation is

greater than 0.
(3)  There  is  a  lateral  deviation,  the  wheel-legged  robot  is

located inside of the target path segment, and the heading deviation
is less than 0.

(4)  There  is  a  lateral  deviation,  the  wheel-legged  robot  is
located outside the target path segment, and the heading deviation is
less than 0.

The  relative  position  relationship  corresponding  to  the  above
four  deviation  cases  also  exists  symmetrically  on  the  right  side  of
the target path segment, so the first-level deep neural network sets a
total of eight outputs, corresponding to all possible conditions of the
virtual sensing radar.

[0,7]

The  first-level  deep  neural  network  establishes  the  relative
position relationship between the wheel-legged robot and the target
path  segment,  and  the  mapping  relationship  between  the  virtual
sensing  radar  map  through  deep  learning,  and  converts  it  into  the
corresponding  numerical  label  value  of    as  the  input  of  the
second-level deep neural network.

2) Structure and role of second-level deep neural network
The structure of the second-level  deep neural  network collects

the  label  values  of  the  relative  position  relationship  between  the
wheel-legged  robot  and  the  target  path  generated  by  the  first-level
deep neural  network,  as  well  as  the parameter  values of  the lateral
tracking deviation impact factor, the heading deviation, the slope of
the wheel-legged robot,  and the slip rate influence factor.  Through
deep learning, the mapping relationship between the precise control
speed  of  the  driving  motors  on  both  sides  of  the  current  wheel-
legged  robot  and  the  above  multiple  parameters  is  established.  A
schematic  representation  of  the  working  role  of  the  second-level
deep neural network is shown in Figure 8.

3) Compensation methods of various influencing factors
e(1) Lateral tracking deviation factor 

There  will  be  lateral  tracking  deviation  in  the  process  of  path
tracking for  the  wheel-legged robot  on  the  slope.  When the  lateral
deviation  is  too  large,  it  easily  leads  to  insufficient  control,  and
when  the  lateral  deviation  is  small,  it  easily  leads  to  control
overshoot.

Figure 9 enumerates the control speed of the drive motor of the
wheel-legged  robot  on  both  sides  under  different  lateral  tracking
deviations when the heading deviation is 0. When the wheel-legged
robot is located on the left side of the path, the control speed of the
drive motor of the wheel-legged robot on the left side is greater than
that  on  the  right  side.  Similarly,  when  the  wheel-legged  robot  is
located on the right side of the path, the control speed of the drive
motor of the wheel-legged robot on the right side is greater than that
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on the left side, in which way the tracking of the wheel-legged robot
close to the target path is realized.

e

0◦

e

e

e [0.2,0.4,0.6,
0.8,1]

According  to  the  above  analysis,  under  the  same  heading
deviation,  the  lateral  tracking  deviation  plays  an  important  role  in
the  path  tracking  control  of  the  wheel-legged  robot  in  hills  and
mountains.  If  the  influence  of  different  lateral  tracking  deviations
on the speed control of the drive motor is not considered, the control
value will be single and cannot be well-adapted to the environment.
Therefore,  the  lateral  deviation  distance  factor    is  introduced  to
linearly adjust the control speed, so that the wheel-legged robot can
obtain  the  current  best  control  speed  under  different  lateral
deviations. As shown in Figure 9, when the deviation of the heading
angle is  ,  the method used in this paper is  to measure the lateral
deviation, and the setting method of the wheel-legged robot on the
left and right of the target path is the same. The maximum value of
the lateral tracking deviation factor   is taken at the point 1 m away
from the target path, which is set to 1, and the corresponding wheel
speed difference is 1 m/s. The minimum value of the lateral tracking
deviation factor   at 0 m deviation from the target path is set to 0,
and the corresponding wheel speed difference is 0 m/s at this time.
Taking 0.2 m as the degree, the lateral tracking deviation influence
factor    is  linearly  divided  and  set  as  an  array  of 

,  corresponding  to  the  wheel  speed  difference  of  0.2  m/s,
0.4  m/s,  0.6  m/s,  0.8  m/s,  and  1.0  m/s,  respectively,  which  is
convenient for subsequent access.
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Figure 9    Control speeds under different lateral deviations and the
same course deviation

θ(2) Heading angle deviation factor 
Figure  10  shows  the  heading  angle  deviations  of  the  wheel-

legged robot under the same lateral tracking deviation d. When the
wheel-legged robot is located on the left side of the target path, the
larger  the  heading  angle  deviation  value  is,  the  larger  the  speed
difference  of  the  driving  motor  on  both  sides  is  set,  so  the  wheel-
legged  robot  can  quickly  return  to  the  positive  direction  when  the
heading deviation is large. The smaller the heading angle deviation
value is, the smaller the speed difference between the drive motors
on both sides will be. At this time, the speed difference between the
driving motors on both sides will  gradually approach 0. Therefore,
when the heading angle deviation of the wheel-legged robot is small
on the slope, it can approach the target path line with the help of its
current  travel  trend  to  avoid  overshoot.  When  the  wheel-legged
robot  is  located  on  the  right  side  of  the  target  path,  the  speed
difference of the motors on both sides of the wheel-legged robot is
opposite to that when it is on the left side.

Heading angle change range is  set  as  [–60°,  0°]  or  [0°,  +60°],
and  the  degree  value  is  1°.  When  the  wheel-legged  robot  heading
angle  is  0°,  the  corresponding  wheel  differential  speed  is  0  m/s;
when the heading angle of the wheel-legged robot is –60° or +60°,
the  corresponding  wheel  differential  speed  is  1  m/s;  then  the
specific  numerical  control  of  the  driving  motor  combined with  the
heading angle is realized.
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2. θ>0°

3. θ<0°
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Figure 10    Heading angle deviations of wheel-legged robot under
the same lateral deviation and different heading deviations

 

A model for accurate numerical operations

Linear regression

Second-

level

input

5

1
2
0

2

Fully connected layer

Drive motors

on both sides

control speed

vl、vr

Position

relation

e

θ

α

δ

Figure 8    Structure and role of second-level deep neural network
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α(3) Slope change factor 
The typical working environment of the wheel-legged robot in

hilly  and  mountainous  areas  is  set  as  the  slope  road,  so  it  is
necessary  to  comprehensively  consider  the  road  characteristics
under the slope road and incorporate the control logic. The slope of
the  path  will  produce  the  component  force  of  gravity.  Combined
with the previous dynamic analysis, the wheel-legged robot in hilly
and mountainous areas needs to overcome the influence of gravity.
The  greater  the  slope  is,  the  greater  the  influence  of  gravity  that
needs to be overcome. If the steering process is affected by gravity,
it will lead to steering overshoot or understeering.

α

(0,30]

Generally,  the ratio   of the vertical  height and the horizontal
distance  of  the  slope  is  called  slope.  The  road  slope  used  in  this
paper directly takes the slope angle value, which is normalized and
divided into integers  ,  and the degree is set to 1 to represent
different road slopes, facilitating the learning of the neural network.
When the wheel-legged robot is simulating the tracking of hilly and
mountainous  roads,  the  real-time  slope  is  obtained  through  the
virtual  sensor  installed  on  the  robot  body by  the  software,  and  the
actual use is obtained by adding the inclination sensor.

δ(4) Slip rate factor 
Hilly mountainous agricultural machinery is always affected by

the gravity component force during tracking. When the agricultural
machinery  is  greatly  deflected,  the  gravity  component  force  can
easily  cause  the  wheel  to  slip,  which  will  lead  to  the  deviation
between the instantaneous center of the wheel-legged robot and the
target  path.  However,  in  the  actual  work,  it  is  difficult  to  measure
the slip rate of the wheel in real time. At the same time, in order to
reduce  the  cost  and  use  of  sensors,  this  paper  converted  the  real-
time slip rate of the road surface, obtained the heading angle of the
agricultural  wheel-legged  robot  at  each  time  through  a  fixed  time
interval, combined with the content of the control command and the
control  time  interval,  and  deduced  through  the  mathematical
relationship.  In  this  paper,  the  agricultural  wheel-legged  robot
adopts differential steering scheme control; that is, the wheel speed
on  the  same  side  is  the  same  at  the  same  time,  so  no  matter  how
many wheels slip at a certain time, it will lead to a deviation of the
body that does not meet the expected instructions. The slope factor
is calculated and derived based on the idea of the deviation degree
of  the  whole  vehicle.  The  various  states  that  may  occur  when  the
wheel-legged robot is tracking are shown in Figure 11.

0◦

S l

It is assumed that the heading angle of the wheel-legged robot
is    before  the  first  control  command  is  issued;  that  is,  it  is
assumed  that  there  is  no  heading  deviation  at  this  time.    is  the
distance  traveled  by  the  left  wheel  in  a  control  command  cycle
when the wheel-legged robot on the slope does not slip under ideal
conditions:

S l = vl∆t (23)

∆t vlwhere,  ,    are  the  time  interval  between  two  wheels’  speed
control  commands  sent  by  the  host  computer,  s;  and  the  desired
control speed of the left wheel at a certain time, m/s, respectively.

Similarly,  the  distance  traveled  in  one  instruction  cycle  when
the right wheel does not slip can be obtained:

S r = vr∆t (24)

θ1

According  to  the  geometric  relationship  in  Figure  11  and
Equations  (23)  and  (24),  the  heading  angle  change  of  the  wheel-
legged robot after a certain control command can be obtained as 
in the ideal state:

θ1 = arctan
(S l −S r

L

)
= arctan

( (Vl −Vr)∆t
L

)
(25)

θ2

However,  when  the  slip  occurs  as  the  wheel-legged  robot  is
running on hilly and mountainous slopes, the wheels on both sides
cannot  travel  to  the  desired  position.  Thus  the  wheel-legged  robot
can only go to the position shown in the dotted line in Figure 11 in a
control command cycle, and the current real heading angle   can be
directly obtained by the navigation equipment.

δ

Currently,  the  following  formula  is  used  to  replace  the
expression of the wheel slip rate   of the wheel-legged robot in hills
and mountains:

δ =
θ1 − θ2

θ1
= 1− θ2

arctan
( (Vl −Vr)∆t

L

) (26)

Because  the  converted  wheel  slip  rate  needs  to  be  used as  the
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Figure 11    Heading angle changes of the wheel-legged robot in
hilly and mountainous areas when slip occurs
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input data of the second-level deep neural network, and the slip rate
is a decimal between  , which is not convenient for subsequent
calculation,  it  is  necessary  to  process  the  slip  rate  value.  The
calculated converted wheel slip rate is multiplied by 10 to a decimal
whose  value  range  is  .  Then  the  integer  part  is  taken  as  the
valid data; that is, the converted wheel slip rate factor value range is
an integer between  , and the degree is set to 1. 

2.2.4    Construction of deep neural networks
Deep  learning  has  been  widely  used  in  fields  such  as  image

recognition, unmanned driving, natural language processing, and so
on.  In  this  study,  Python  3.9  and  MXnet  deep  learning  libraries
were used to build the neural network framework, and the operating
environment was macOS Monterey system.

1) First-level deep neural network construction

1◦

The  number  of  input  neurons  of  the  first-level  deep  neural
network is determined by the number of input virtual sensing radar
detection beams. Since   is taken as the minimum angle of virtual
sensing radar scanning per unit time, the input is set to 360 neurons
for circular scanning. The two hidden layers are set to 720 and 540
neurons, respectively, through empirical formula and actual training
results.  The  activation  function  is  linear  rectifier  function  (Relu),
which is expressed as follows:

Relu (x) =

®
x(x > 0)

0(x ≤ 0)
(27)

Because  the  positive  and  negative  heading  angles  are  set,  the
control strategy of the wheel-legged robot on the left and right sides
of the target  path is  symmetric about the target  path,  and there are
eight  in  total.  The  deep  learning  model  is  set  as  the  classification
model, so the number of neurons in the output layer is set as eight.
The  output  layer  uses SoftMax  function  as  the  activation  function,
and the expression is as follows:

S o f tMax(o)k =
eok

n∑
j=1

eok

(28)

ok o j S o f tmax(o)kwhere,  ,  ,   are the value of the kth unit before input
to SoftMax; the value of each unit before input to SoftMax; and the
probability  distribution  of  the  kth  unit  after  processing  by  the
SoftMax function, respectively.

The  significance  of  SoftMax  regression  is  to  integrate  the
calculation results of the neural network in the output layer to obtain
the probability distribution result with sum of 1. The result with the
largest  probability  can  be  directly  selected  as  the  classification
result,  which  is  convenient  for  subsequent  program  processing.
Figure 12 shows the structure of the first-level deep neural network.

2) First-level deep neural network training data

[−60◦,+60◦] [−60◦,0◦]
[0◦,+60◦]

[−1 m,+1 m]

[0,7]

All neural network training data of the proposed algorithm are
generated  by  the  Python  program,  and  the  process  principle  is  to
generate all virtual sensing radar maps under a certain label as a set
of  training  data.  Values  are  as  follows:  the  total  heading  angle
deviation  range  ,  each  group  takes    or

,  and  the  degree  is  1°.  The  deviation  range  of  lateral
position  distance  is  .  The  maximum  lateral
displacement  span  of  single  group  training  set  is  0.5  m.  The
dividing value of lateral distance in each group is 0.005 m. Each set
of  training  data  is  assigned  the  same  label  with  a  label  value  of

 and a scale of 1.
Through  the  above  division  method,  the  2  m  lateral  deviation

variation  range  of  the  wheel-legged  robot  is  divided  equally  into

[−60◦,0◦] [0◦,+60◦]
four  parts,  and  each  part  covers  the  heading  angle  deviation  of

  and  .  Therefore,  a  total  of  eight  groups  of
training data are generated, and a total of 48 000 data are generated
after the integration of the eight groups of training data generated by
the  program.  Considering  that  various  unexpected  situations  may
occur  in  actual  tracking,  this  study  added  2000  training  data
corresponding  to  parking  instruction  labels,  and  finally  formed  a
dataset  of  50  000  for  the  training  of  the  first-level  deep  neural
network.  This  dataset  is  divided  into  training,  validation,  and  test
sets at a ratio of 8:1:1.
  

Input
layer Hidden layer

Output
layer

360 720 540 8

Figure 12    First-level deep neural network structure
 

3) Training first-level deep neural network
The weight parameters of the neural network were obtained by

training  the  first-level  deep  neural  network.  The  selected  training
mode  was  mini-batch  Stochastic  Gradient  Descent  (sgd),  the
training learning rate was 0.05, the batch size was 100, the number
of iterations was 10, and the loss rate of the two hidden layers was
0.02.  The  loss  function  takes  the  cross-entropy  loss  function;  the
reason is that after the operation of the cross-entropy loss function,
the  output  result  only  cares  about  the  prediction  probability  of  the
correct  class.  If  its  value  is  large  enough,  it  can  ensure  the  correct
classification result. The formula is as follows:

l (Θ) = −1
n

n
∑̂(i)

j∑
i=1

q
∑∑
j=1

y(i)
j log (29)

Θ n q i j y(i)
j

ŷ(i)
jwhere,  ,  ,  ,  ,  ,  ,   are the model parameters of the first-

level  deep  neural  network;  the  number  of  samples  in  the  training
dataset;  the  output  category  of  the  neural  network;  the  sample
sequence number; the output category sequence number; the 0 or 1
elements in the real label probability distribution; and the predicted
label probability distribution value, respectively.

4) Second-level deep neural network construction
The  second-level  deep  neural  network  control  system  will

further  give  specific  control  information by combining the  relative
position  relationship  between  the  wheel-legged  robot  and  target
path  segments  output  by  the  first-level  deep  neural  network.  The
control quantity of the robot is determined by the motor speeds on
the left and right sides. Thus in this algorithm, a second-level deep
neural  network  is  employed  to  directly  output  the  continuous
control quantity using linear regression.

In  this  algorithm,  the  input  of  the  second-level  deep  neural
network  includes  the  output  of  the  first-level  deep  neural  network
and  the  heading  angle  of  the  current  robot.  At  the  same  time,  the
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slope,  the  converted  slip  rate,  and  the  lateral  deviation  distance
factor obtained by the simulation sensor are also used as input data.
The  output  is  the  control  speed  of  the  right  (left)  motor,  and  the
control  wheel  speed  of  the  same  side  is  the  same  at  any  time.  A
schematic  diagram  of  the  second-level  deep  neural  network
structure is shown in Figure 13.
  

Input
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Hidden
layer

Output
layer

5 120 2

Figure 13    Second-level deep neural network structure
 

5) Second-level deep neural network training data
The  training  data  of  the  second-level  deep  neural  network  is

also directly generated by the program, and the output of the neural
network  is  the  speed  control  value  of  the  motor.  This  includes  the
PWM value of the voltage of the drive motor,  which is sent to the
lower  computer  for  processing  and  execution.  The  parameter
settings for generating the training data are as follows: The heading
angle  variation  range  under  the  same  lateral  deviation  is  [–60°,0°]
or  [0°,+60°],  and  the  degree  is  1°.  The  range  of  slope  influence
factor α  is (0°,30°], and the degree is 5°. Converted slip rate index
range  is  [0,9],  and  degree  is  1.  The  influence  factor  of  lateral
deviation distance is [0.2 m,1 m], and the degree is 0.2 m. The input
one-level deep neural network label value is [0,7], and the degree is
1.  The  neural  network  outputs  label  values  are  set  in  the  range
[0,50]  with  a  degree  of  1.  The  output  of  the  neural  network  is  the
left and right motor speed control values of [0,100].

α δ

Considering the heading angle deviation at any position, 60 sets
of the determined drive motor’s control speed data will be obtained.
The full  range of  slope angle  factors  and slip  rate  factors   and 
are  introduced  to  participate  in  data  generation,  and  3600  sets  of
data will be obtained. Finally, since the output label values of each
first-level  deep  neural  network  correspond  to  a  set  of  full-range
data,  a  total  of  144  000  arrays  are  used  as  the  training  data  of  the
second-level deep neural network. It is also divided into training set,
validation set, and test set at a ratio of 8:1:1.

6) Training second-level deep neural network
The  network  parameter  training  iteration  of  the  second-level

deep  neural  network  is  still  using  mini-batch  stochastic  gradient
descent,  and  the  batch  size  is  set  to  10.  The  learning  rate  is  set  to
0.001,  and  the  number  of  iterations  is  set  to  100.  The  activation
function is still  using linear rectifier function. Since there is only a
fully  connected  layer  and  the  result  is  relatively  simple,  the  loss
function is chosen as the square function, and its expression is:

l(i) (Θ) =
1
2

(ŷ(i) − y(i))2 (30)

l(i) (Θ) Θ ŷ(i) y(i)where,  ,    ,  ,    are  the  ith  sample  error,  the  model
parameters of the second-level deep neural network, the ith predicted

value  at  the  output  of  the  neural  network,  and  the  standard  label
value corresponding to the ith predicted value, respectively.

In this study, the general average method is used to evaluate the
quality  of  the  neural  network  training  parameters;  that  is,  the
average  of  all  sample  errors  in  the  training  dataset  is  used  to
measure  the  quality  of  the  model  prediction,  and  the  formula  is
expressed as:

l (Θ) =
1
n

n∑
i=1

1
2

(ŷ(i) − y(i))2 (31)

(Θ) nwhere,  ,    are  the  average  loss  value  of  all  samples,  and  the
number of all samples in the training set, respectively. 

3    Results and discussion
In  order  to  verify  the  effectiveness  and  accuracy  of  the

proposed  control  algorithm,  simulation  tests  under  U-shaped  paths
were carried out by the Python-RecurDyn co-simulation model. The
size  of  the  target  path  was  limited  within  a  standard  rectangle  of
100  m×50  m,  and  the  road  condition  was  hilly  and  mountainous
with  a  low adhesion coefficient,  in  which the  wheels  were  easy  to
slip. Figure 14 shows the dynamic model of the agricultural robot in
RecurDyn  and  the  established  uneven  road  surface  generated  by
Matlab. The proposed slope path tracking algorithms were all run in
PyCharm  to  complete  the  simulation  tests  in  the  form  of  co-
simulation with RecurDyn, as shown in Figure 15.

Firstly,  the  frictional  contact  relationship  between  the  wheels
and  the  ground  was  established  in  RecurDyn  software.  Then  the
input and output of the FMU file in RecurDyn was set. The output
of the FMU file used in the co-simulation is the relative coordinates,
heading angle, slope, simulation time step, and other information of
the  current  wheel-legged  robot  in  the  RecurDyn  simulation
environment. The input is the motor control speed value calculated
through  the  path  tracking  control  Python  program.  The  generated
FMU file would be imported into Python, and a virtual radar map is
obtained through the proposed slope path tracking control algorithm
to  obtain  the  current  robot-road  relative  position  relationship.
Combining  the  parameter  values  of  the  affecting  factors  obtained
from  FMU,  the  Python  program  continued  to  calculate  the  speed
control value of the robot’s driving motor and sent it to RecurDyn.
The  two  softwares  collaborated  in  the  same  time  step  to  complete
joint simulation testing.

5◦ 10◦ 15◦

10◦

In  order  to  further  verify  the  stability  and  accuracy  of  the
proposed  algorithm,  the  path  tracking  algorithm  based  on  an
optimized pure pursuit model (Yang et al.[12]) was also tested under
the  same  simulated  conditions  as  a  comparison.  Considering  the
influence of different slopes on the stability of the algorithm, three
groups  of  comparative  tests  were  carried  out  under  the  speed  of
1  m/s,  and  the  simulation  road  slope  was  set  as  ,  ,  and  ,
respectively[13-17]. Considering the influence of different robot speeds
on  the  stability  of  the  algorithm,  three  groups  of  comparative
experiments  were  carried out  under  the  road slope of   with  the
simulation robot speed of 0.5 m/s, 1 m/s, and 1.5 m/s, respectively.
The benchmark target path of the test is formed by fitting a standard
arc  and  a  straight  line[18-22].  The  deviations  of  the  test  results  were
taken  as  absolute  deviations.  The  path  tracking  results  referring  to
different slope angles and tracking speeds are shown in Figures 16
and 17, separately. Tables 1 and 2 show the path tracking errors on
slopes with different angles and speeds, separately[23-27].

It  can  be  seen  from Figure  16  that  the  tracking  results  of  the
wheel-legged robot controlled by the proposed algorithm are better
compared with the optimized pure pursuit algorithm under different
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slope  angles.  Furthermore,  under  different  slope  angles,  the
maximum path tracking lateral deviation of the proposed algorithm
is 0.367 m, whereas the corresponding value of the optimized pure

pursuit algorithm is 0.907 m. The optimized pure pursuit algorithm
has a large tracking error at path turns and a slow control response

 

a. Main view of the wheel-legged robot b. Side view of the wheel-legged robot

c. Uneven road surface generated by Matlab d. Robot on the simulated road surface
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Figure 14    Multi-dynamic model of the agricultural wheel-legged robot
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Figure 15    Principle of co-simulation model
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Figure 16    Simulation results under U-shaped slope paths of the
proposed algorithm and the optimized pure pursuit model under

slope angles of  ,  , and  , respectively
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Table 1    Path-following test data under different slopes
Experimental
algorithm

Test
slope/(°)

Maximum lateral
deviation/m

Mean lateral
deviation/m

Standard
deviation/m

Algorithm proposed
in this paper

5 0.249 0.226 0.024
10 0.255 0.230 0.022
15 0.367 0.235 0.023

Optimized pure
pursuit algorithm

5 0.584 0.132 0.034
10 0.673 0.326 0.035
15 0.907 0.445 0.037

 

Table 2    Path-following test data at different speeds
Experimental
algorithm

Test robot
speed/m∙s–1

Maximum lateral
deviation/m

Mean lateral
deviation/m

Standard
deviation/m

Algorithm proposed
in this paper

0.5 0.246 0.227 0.023
1.0 0.255 0.230 0.022
1.5 0.364 0.236 0.022

Optimized pure
pursuit algorithm

0.5 0.664 0.231 0.036
1.0 0.673 0.326 0.035
1.5 0.879 0.334 0.036
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on the slope path[28-32]. As can be seen from Table 1, the agricultural
robot  can track the  reference path  accurately  and stably,  no matter
whether  the  slope  angle  is  ,  ,  or  .  Even if  there  are  some
abrupt  curvature  changes  on  the  slope  path,  the  agricultural  robot
moves  without  large  fluctuations  and  shocks.  In  conclusion,  with
the increase of the slope angle, the tracking errors change very little
when  using  the  proposed  algorithm,  which  indicates  good  self-
adaptability to the change of slope angles.

With  respect  to  the  tracking  speed,  as  in  the  results  shown  in
Figure  17 and Table  2,  it  can  be  seen  that  the  proposed  algorithm
still  maintains  a  relatively  stable  tracking  error  growth  rate  with
increasing speeds.  The maximum deviation of  path  tracking of  the
proposed  algorithm  is  0.364  m,  whereas  the  maximum  tracking
deviation  of  the  optimized  pure  pursuit  algorithm is  0.879  m.  The
simulation results reveal that the proposed algorithm’s effectiveness
and  accuracy  are  superior,  with  tracking  errors  reduced  by  more
than  47.2%  compared  to  the  optimized  pure  pursuit  algorithm.
Therefore,  compared  with  the  general  planar  tracking  control
algorithm,  the  control  system  proposed  in  this  study  has  better
control ability for the agricultural robot’s motion on the slope[33-37].

In Yang’s study in which the optimized pure pursuit algorithm
was proposed, the results of planar field tracking tests showed that
the average value of the lateral error of the straight path is 0.012 m
and the average value of the lateral error for curved paths is 0.07 m
(Yang et  al.[12]).  However,  when tracking on a slope path,  the error
of  this  optimized  pure  pursuit  algorithm  increases  by  two  to  six
times,  as  shown  in Tables  1  and 2,  which  can  be  attributed  to  the
neglect or direct disregard of the influence of gravity in slope path
tracking.  On  the  contrary,  the  path  tracking  control  algorithm
proposed in this paper pays special attention to this issue and takes
some consideration and compensation control. The accuracy of path
tracking  has  been  significantly  improved  compared  to  the
aforementioned  algorithm,  although  there  is  still  room  for  further
improvement in the absolute value of the tracking errors[38].

To  further  validate  the  effectiveness  and  practicality  of  the
proposed  algorithm,  this  study  constructed  a  physical  robot  test
platform  and  conducted  relevant  performance  tests  to  adapt  to  the
slope conditions mentioned in the algorithm. The physical platform
is illustrated below.

Figure  18  depicts  the  constructed  physical  test  platform.  The
main  body  of  the  platform  is  assembled  from  steel,  with  four
independently controlled support legs. The robot’s slope climbing is
achieved through the extension and retraction of electric cylinders,
while  steering  is  controlled  by  a  steering  motor.  The  propulsion
power  is  provided  by  four  hub  motors,  and  the  entire  system  is
powered  by  an  onboard  48V  battery.  The  integrated  controller
consists  of  an  upper  computer  and  a  microcontroller.  After
completing  the  robot  assembly,  performance  tests  were  conducted
on  the  wheel-legged  robot,  and  the  results  are  presented  in  the
Table 3 below.
  

a. Side view of the robot

test platform

b. Schematic of the robot test

platform climbing a slope

Figure 18    Constructed physical robot test platform

 

Table 3    Performance test results of physical
robot test platform

Item Design parameters Actual parameters

Vehicle
parameters

Full-load mass/kg ≤400 356

Dimensions/mm Length ≤2100, Width ≤
1000, Height ≤700

Length 1900, Width
850, Height 585

Drive type Four-wheel drive Four-wheel drive
Endurance/h ≥5 5.2

Dynamic
performance

Maximum
speed/km∙h–1 ≥30 30

Maximum climb
angle/(°) ≥30 30

Mobility
Body leveling range Pitch angle ≥20°, Roll

angle ≥10°
Pitch angle 20°, Roll

angle 10°
Obstacle clearance

height/mm ≥500 550

 

The data in the table demonstrate that the constructed physical
robot  platform  is  capable  of  adapting  to  the  slope  conditions
addressed  by  the  proposed  algorithm,  providing  a  solid
experimental foundation for further algorithmic improvements. 

4    Conclusions and future work
In  this  study,  the  slope  path  tracking  control  problem  of

agricultural  robot  was  studied.  Firstly,  the  kinematic  and  dynamic
models  of  the  wheel-legged  robot  on  the  hilly  terrain  were
established,  from  which  the  crucial  factors  affecting  slope  path
tracking  control  accuracy  were  recognized.  Secondly,  a  path
tracking control  algorithm based on virtual  sensing radar  and two-
level  deep  neural  network  was  proposed.  The  algorithm  used  the
virtual  sensing  radar  to  detect  the  path  boundary  as  the  perception
input  of  the  agricultural  robot,  and  combined  the  first-level  deep
neural  network to  analyze the  virtual  radar  map to  obtain  the  real-
time robot-road position relationship, as well as to predict the road
direction.  Furthermore,  by  analyzing  the  identified  crucial  factors
affecting  slope  path  tracking  control  accuracy,  the  second-level
deep  neural  network  obtained  the  accurate  real-time  drive  motor
speed values. Finally, the slope path tracking control simulations of
the  wheel-legged  robot  were  carried  out  under  various  angles  and
velocities.  Compared  with  the  traditional  planar  tracking  control
algorithm,  the  simulation  results  show that  the  proposed algorithm
has better performance.

However,  in  this  study,  the  unexpected  deviation  of  the
agricultural  robot  caused  by  slipping  between  wheels  and  road
surfaces may not be well considered in the tracking process, so the
stability of the algorithm under bad working conditions needs to be
verified.  In  the  future,  more  slope  control  parameters  will  be
introduced to achieve more accurate and stable path tracking control
of  the  agricultural  wheel-legged  robot  in  hilly  and  mountainous
areas. 
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