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Slope path tracking control of agricultural wheel-legged robot based on
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Abstract: The continuous development of smart agriculture puts forward the requirement of high accuracy slope path tracking
for the agricultural wheel-legged robot. Compared to flat terrain, path tracking control on sloped terrain faces the obstacle of
motion instability of the wheel-legged robot induced by the slope gravitational force component, which causes instantaneous
steering center to offset. To address this problem, this study proposed a slope path tracking control algorithm by combining the
methods of virtual sensing radar and two-level neural network. Firstly, the kinematic and dynamic models of the wheel-legged
robot are deduced, from which the crucial factors affecting control accuracy of slope path tracking are recognized. Secondly,
this study constructs the slope path tracking control algorithm, in which the virtual sensing radar is utilized to realize route
perception, and the two-level neural network is employed to provide drive motors’ speeds to adapt to path tracking on different
slopes. Furthermore, the corresponding compensation methods of the identified impacting factors are embedded in the proposed
algorithm, including the lateral tracking deviation factor, heading angle deviation factor, slope change factor, and slip rate
factor. Finally, the co-simulation model of slope path tracking control is constructed, including the multi-body dynamic model
of the wheel-legged robot in RecurDyn and the proposed slope path tracking algorithm complied by Python. Subsequently, the
simulation tests of the wheel-legged robot are carried out under various slope angles and velocities. The results reveal that the
proposed algorithm’s effectiveness and accuracy are superior, with tracking errors reduced by more than 47.2% compared to an

optimized pure pursuit algorithm.
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1 Introduction

With the continuous development of smart agriculture, the
scope of application for agricultural robots in various working
environments is gradually expanding. Path tracking control is a key
factor of automatic navigation technology for agricultural robots
under flat terrains. Nevertheless, there is currently a scarcity of
automatic navigation systems suitable for hilly and mountainous
terrains. The varying gradients of sloped terrains will bring new
challenges in path tracking control since the navigation equipment
relies on obtaining position information from an earth plane
coordinate system. Under these circumstances, direct utilization of
position information without proper conversion will lead to
unexpected tracking errors. Moreover, the unstructured slopes will
have significant impact on the unmanned agricultural robot in two
main aspects. On the one hand, the steep road slope will disrupt the
motion stability of the agricultural robot, resulting in reduced
perception with the target path. On the other hand, the unstable
lateral tire slippage and sinking of agricultural robots resulting from
various road surface hardnesses and gravity components along the
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slope will also lead to unexpected lateral error and heading error in
the path tracking implementation. The commonly used control
methods typically focus solely on the planar motion of the robot,
neglecting or directly disregarding the influence of gravity. Such
oversights can result in a significant decline in the robot’s tracking
progress when navigating sloped paths. Therefore, it is in urgent
demand to verify the crucial disturbance factors affecting the
tracking accuracy of agricultural robots under sloped terrains and
improve the adaptation of the control algorithm.

With regards to slope path tracking control, there is little
related research. Auria et al.!" performed real agricultural robot tests
in sloped terrain conditions to investigate the potential control
issues in the path tracking process. The fundamental control
elements for slope path tracking control are discussed in their study.
Dogan et al.” proposed a robust adaptive model and position
control method with adaptive state variables, consisting of the robot’
s dynamic model, the slope angle, and other related parameters to
establish the longitudinal force and lateral force models of the robot.
Additionally, the relationship between slip and friction was
established by using a magic formula wheel model, as well as the
relationship between body speed and wheel speed by using a slip
system. Jeong® presented a path tracking control algorithm for
slope autonomous navigation robots with four-wheel steering, in
which the direct yaw moment control was employed to achieve
accurate path tracking performance considering the various
influencing factors such as control forces, actuator limits, ride
comfort, and body slip when determining steering inputs for front
and rear wheels, respectively. Qi et al.*) proposed a model
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predictive control-based path tracking method for a car-like mobile
robot on slopes, considering the effects of gravity and internal load
changes. The method enables accurate path tracking on slopes by
addressing the complex relationship between the wheel and road
surface due to the influence of gravity, as well as accounting for
slope variations. Hu et al.” proposed a cascaded navigation control
method for straight path tracking. The navigation control task was
decomposed into two cascaded control tasks, namely, the path
tracking control task and the steering control task. Then the
controller is obtained by establishing a kinematic model, and its
feasibility is verified by experiments.

Yue et al.l highlighted that during slope path tracking, the
interaction between the robot’s wheel and the road surface becomes
increasingly intricate due to gravitational effects, thereby rendering
tracking control more challenging amidst varying slopes. Therefore,
they proposed a model predictive control method combined with a
fuzzy system that effectively incorporates both the dynamic
characteristics of the body and wheels on sloped roads. By
enhancing the two-dimensional kinematics and dynamics model of
the robot, their approach enables it to adapt to varying slopes and
road conditions while accommodating curvature mutations.
However, the approach does not fully consider the body slip
phenomenon in hilly and mountainous areas, resulting in poor
portability of the control algorithm.

Given the intricate and dynamic control environment, neural
networks have been increasingly employed by scholars to optimize
the control process, making machine learning with neural networks
the primary prominent research area in agricultural machinery
identification and control. Yang et al.” proposed an asymmetric
dual-priority polling control system model and utilized a neural
network algorithm for performance prediction and analysis. The
mathematical model of the continuous-time state system was
established using the embedded Markov chain theory and
probability generating function. Furthermore, accurate analysis and
verification of system characteristics such as average queue length
and average cycle were conducted through simulation experiments.
The results demonstrate that the model not only distinguishes multi-
service tasks effectively but also ensures minimal system delay,
thereby highlighting the advantages of hierarchical neural networks.
Zhou et al.™ introduced a multi-level attention network combined
with policy reinforcement learning for image captioning to address
limitations observed in existing methods that solely focus on global
representation at the image level or specific concepts alone. This
model comprises a multi-level attention network module aiming to
capture both global and local object details, along with a region
attention network module targeting local features within regions of
interest. The learning task is graded in this model, simplifying each
learning module’s content while facilitating communication
between both modules. Experimental results indicate superior
learning capabilities compared to other existing image captioning
methods. Li et al.”! proposed a prediction model, namely the two-
level resolution deep neural network, which addresses the limitation
of traditional GCN’s small receptive field that hampers referencing
traffic characteristics from remote sensors and consequently leads to
inaccurate long-term predictions. This model comprises two
resolution blocks: low-resolution blocks for macroscopic scale
traffic prediction, such as regional traffic changes; and high-
resolution blocks that utilize GCN to extract spatial correlation and
reference regional variations generated by the low-resolution block
for microscopic scale flow prediction. Experimental results
demonstrate that hierarchical processing in neural networks refines

perceptual content, thereby yielding more accurate prediction
outcomes. Based on these studies, hierarchical neural networks
exhibit promising development potential across various fields due to
their efficient and accurate information processing capabilities
along with their unique ability to decompose complex tasks and
fuse network correlations. Bai et al.' proposed a neural network
control method with NMPC as the learning sample. The design
process of this control method includes establishing the NMPC
controller based on the time-varying local model, generating
learning samples based on this NMPC controller, and training to
obtain the neural network controller. But this method considers
fewer control factors, resulting in lower control accuracy.

In order to improve the tracking accuracy of agricultural robot
under sloped terrains, the present study proposes a slope path
tracking control algorithm based on virtual sensing radar and two-
level deep neural network. The algorithm aims to address the
control instability caused by slopes in hilly and mountainous
terrains, as well as active steering control. The research content is
mainly divided into the following aspects: 1) The kinematic and
dynamic models of the agricultural robot under sloped terrain were
established, and the critical factors affecting motion stability were
identified. 2) The slope path tracking control algorithm was
constructed based on virtual sensing radar and two-level deep neural
network. 3) The co-simulation model was accomplished to verify
the proposed algorithm under various tracking conditions.

2 Materials and methods

In this part, the necessary control parameters are obtained by
building the kinematic and dynamic models of the wheel-legged
robot in the hills and mountains, and the final control value is
obtained by sorting out the control logic and building the deep
neural network framework, combining the virtual sensing radar map
and various control influence factors.

2.1 Kinematic and dynamic models of the wheel-legged robot
on the slope
2.1.1 Kinematic model of the wheel-legged robot on the slope

The kinematic model of the wheel-legged robot is established
based on the following assumptions:

a) The wheel-legged robot is regarded as a rigid body at all
times;

b) The physical properties of the four wheels of the wheel-
legged robot are the same;

c¢) The mass center of the whole robot coincides with its
geometric center.

The kinematic model of the wheel-legged robot, as shown in
Figure 1, is built in the spatial coordinate system.

Figure 1

Kinematic model of the agricultural wheel-legged
robot on the slope
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Through the geometric relationship, the angular velocity of the
wheel-legged robot at a certain time can be derived as follows:

V. v, \%
w=—= L = IL (l)

where, w, V., V,, V,, r., and L are the angular velocity, rad/s; the
centroid velocity, m/s; the converted speed of the right wheel, m/s;
the converted speed of the left wheel, m/s; the steering radius, m;
and the width of the wheel-legged robot, m, respectively.

When v, =v, # 0, the wheel-legged robot will go straight at a
uniform speed; when v, >v,, w>0, the wheel-legged robot will
turn right; when v, <v,, w < 0, the wheel-legged robot will turn left;
when v, =v, =0, the wheel-legged robot will be parking. Among
them, the speed of turning right or left depends on the speed
differential of the drive motors on both sides.

The forward kinematic model can be obtained based on the
velocities of the left and right wheels:
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Based on the velocity decomposition of the geometric center
point, the inverse kinematic model can be obtained:

L L
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In which [V. w]" can be set according to the inverse kinematic
model to obtain [V, V,], to precisely control the rotation of the
driving wheel; the above formula is not affected by gravity.

However, the position and heading information obtained by the
navigation equipment are based on the coordinate system values of
the earth plane, while the value used in the actual tracking process is
its projection on the slopes. Therefore, coordinate conversion is
necessary in slope path tracking, as shown in Figure 2.
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Figure 2 Navigation and positioning data conversion of the wheel-
legged robot on the slope

Figure 2 illustrates how the wheel-legged robot’s relative
coordinates (a,b) on the global plane are derived. The navigation
system provides the robot’s absolute position (x.,y.) and heading
angle 7y, which are then combined with the reference path
coordinates [x,,y,]" to compute (a,b).

The slope angle is set as @. Then the projection of coordinate

Y ]T
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The other parameter settings are shown in Figure 2, where the solid

points on the reference slope path can be expressed as [x,.,

line is on the slope road surface and the dotted line is on the earth

plane. Then:
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where, a, b, b, a, B are the horizontal coordinate value of the
wheel-legged robot earth plane absolute coordinate system, m; the
vertical coordinate value of the wheel-legged robot earth plane
absolute coordinate system, m; the vertical coordinate value of the
wheel-legged robot slope projection coordinate system, m; the slope
angle and the heading angle in the wheel-legged robot slope
projection coordinate system, respectively.

It can be deduced that the coordinates of the wheel-legged
robot on the sloped road at any time can be expressed as

(a, cosa)’ and the heading angle can be expressed as arcsin
a
b2 , which can be used directly by the navigation

2

cos’a
system.
2.1.2  Dynamic model of the wheel-legged robot on the slope
Figure 3 shows the dynamic relationship between the forces on
each wheel and the robot body.
According to the geometric relationship in Figure 3, the
dynamic model of the wheel-legged robot can be deduced:

m(it—wv) = F + F,+ F 5+ F,, —mgsinacosd ®)
m(V—owu) =F,, +F,+F;+F,,—mgsinasing 9)

. L
Jo= 5(_Fvl +Fp—Fa+Fu)+ Li(Fy +Fp)—L(Fys+Fy) (10)

where, m is the mass, kg; J is the moment of inertia, kgm?*; « is the
slope of the simulated road surface, °; F, is the longitudinal static
ground friction force applied to each wheel, N; F); is the transverse
static ground friction force applied to each wheel, N; L, and L,
are the front and rear wheelbases, respectively, m; and L is the
width, m.
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Figure 3 Dynamic model of wheel-legged robot in hilly
mountainous areas
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It is difficult to control the lateral force of the wheel-legged
robot tire in the tracking control process. When wheel slip occurs,
the control consideration can be taken into account after conversion,
and the remaining robot body tracking parameters can be
transformed into the following formula:

= Ll — gsinacosd + wv (1)
m
. _F N
V= — —gsinasing — wu (12)
m
M
M 1
=" (13)

According to the formula, the course deviation, slopes, and
related wheel slip problems should be fully considered in the
determination of wheel-legged robot control quantity.

2.2 The construction of slope path tracking control algorithm
2.2.1 The functioning principles of virtual sensing radar

Liu et al."" proposed a virtual sensing radar model for path
tracking control of tractors in orchards. Instead of using lateral
deviation and heading deviation as the perception input of the path
navigation algorithm, the scanned virtual sensing radar map
information was used as the perception input. The virtual sensing
radar map can not only establish the relative position relationship
between the hilly and mountainous wheel-legged robot and the
target path, but also predict the direction of the target path by pre-
perception of the failed path segment to a certain extent, to reduce
the possible overshoot and collision, and provide convenience for
further accurate control of the hilly and mountainous wheel-legged
robot tracking operation. At the same time, the virtual sensing radar
avoids the problem of the real radar sensor, which is easily
disturbed by the environment. It is not sensitive to the real working
environment and has high stability.

The use of virtual sensing radar needs to obtain the target path
segment first, and the target path segment should include the
coordinates of the starting and ending positions and other necessary
parameters. However, the target path lines connected by the target
waypoints directly obtained by the navigation equipment do not
have the property of road width, so the target path needs to be
widened manually. In the algorithm, the discrete target path points
are connected to the target path line segment, and because the robot’s
width is 1 m, the target path line segment is translated to the left and
right sides by 0.5 m equidistant to obtain the virtual path boundary.
The virtual target path segment with a total width of 1 m is obtained
by combining the two virtual path boundaries for virtual sensing
radar detection.

The operation principle of the virtual sensing radar is to imitate
the work of the real radar. The wheel-legged robot itself is the
virtual radar beam launching center, and the detection beam is
uniformly transmitted to the fixed range of the fuselage. When the
detection beam contacts the boundary of the virtual path or reaches
the limit of the transmission distance, it stops and records the
length. All the detection beams emitted uniformly are used as the
virtual sensing radar map of the wheel-legged robot at a certain
time, and the virtual sensing radar map generated at a certain time in
the operation of the hilly mountainous wheel-legged robot with
respect to the virtual path segment is shown in the shaded part of
Figure 4.

In Figure 4, Sp(x,,y,) is the starting point of the target path
segment currently, and Er(x,,y.) is the end point of the target path
segment. The virtual sensing radar scanning center is C(x,y). The
virtual path width is d; the heading angle of the current wheel-

legged robot is #. The maximum detection range of the virtual
sensing radar is [y .
The target path line equation can be expressed as follows:

Ayx+By+Cy=0 (14)

Target path

Y

10} X

Figure 4 Schematic of a virtual sensing radar map generated
at a certain time

The boundary line equation of the virtual path on both sides is
denoted by:

Ax+By+C =0 (15)

Ayx+B,y+C, =0 (16)

The following relationship is obtained by mathematical
derivation:

A0=A1=A2=y;_ye (17)

B, =B, =B, =x,—x, (18)

Co = Xy, — XY, (19)
d\/A+B

¢ :Qﬁ% (20)
d\/A2+ B

e @1

where, A,, By, Co, Ay, By, C,, A, B,, C, are constant parameters,
and d is virtual path width, m.

The virtual sensing radar map is calculated by the existing
mathematical relationship. If the virtual scanning resolution is 1°,
the virtual sensing radar sends 360 detection beams uniformly to the
surroundings at a certain time, and the distance between the
detection beam of the ith virtual sensing radar and the boundary of
the virtual path on a certain side is:

Feo Ax+By+C;

T /A2+Bsin(0+1)

where i, j are the detection beam sequence number transmitted by

(22)

the virtual sensing radar, and the boundary label of the virtual path,
respectively.

The value of j is 1 or 2, which represents that the virtual
sensing radar scanning center transmits a detection beam to the left
or right virtual path boundary. When the virtual sensing radar
detection range is calculated through the above equation, if the
square root /A7 + B xsin(@+1) is 0, it specifies that the detection
range at this time is the maximum value, namely for [,,,; if ; <0 or
o>, let B=1,; if <0 or I, > 1, let I, =1,,,. Each time the
virtual sensing radar map is calculated, the virtual sensing radar
center will send virtual detection beams to the virtual path
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boundaries on both sides at the same time, and only one of the
detection distances is taken as the effective virtual sensing radar
detection distance at the moment. Therefore, the distance
comparison between the transmitting center and the virtual path
boundaries on both sides is involved: Every time, the algorithm
takes the virtual sensing radar center detection to virtual path

boundary distance minimum value as the effective detection range,

Target path  Virtual path boundary

namely /' = min(Z, ;). The detection distances of all virtual sensing
radars are normalized to form the final virtual sensing radar map for
the subsequent use of the neural network.

In actual path tracking on the slopes, only the following eight
conditions will appear in the virtual sensing radar map, as shown in
Figure 5, and the other conditions can be attributed to one of the
following eight virtual sensing radar maps.

Virtual radar map

‘‘‘‘‘ Case 1 | | Ca_se 4
(& 2 [l e
----- ] Case 5 ) >Case6 ) -Ea;e7 Ca-se:8

Figure 5 All the shapes that the virtual sensing radar map will appear during the actual tracking process

In the eight virtual sensing radar maps, the maximum heading
deviation angle is set to 60°, the positive direction of the path is 0°,
the counterclockwise deflection of the wheel-legged robot is
positive, and the clockwise deflection is negative.

Case 1: The wheel-legged robot is tracked outside the left side
of the virtual path boundary, and the heading angle is positive. The
main control strategy corresponding to this type of virtual sensing
radar map is to turn sharply to the right.

Case 2: The wheel-legged robot is tracked to the left side of the
target path, inside the virtual path boundary, and the heading angle
is positive. The main control strategy corresponding to this type of
virtual sensing radar chart is a small turn to the right.

Case 3: The wheel-legged robot is tracked to the right of the
target path, inside the boundary of the virtual path, and the heading
angle is positive. The main control strategy corresponding to this
type of virtual sensing radar map is to go straight.

Case 4: The wheel-legged robot is tracked outside the right side
of the virtual path boundary, and the heading angle is positive. The
main control strategy corresponding to this type of virtual sensing
radar map is to go straight.

Case 5: The wheel-legged robot is tracked outside the left side
of the virtual path boundary, and the heading angle is negative. The
main control strategy corresponding to this type of virtual sensing
radar map is to go straight.

Case 6: The wheel-legged robot is tracked to the left side of the
target path, inside the boundary of the virtual path, and the heading
angle is negative. The main control strategy corresponding to this
type of virtual sensing radar map is to go straight.

Case 7: The wheel-legged robot is tracked to the right of the
target path, inside the boundary of the virtual path, and the heading
angle is negative. The main control strategy corresponding to this
type of virtual sensing radar map is a small turn to the left.

Case 8: The wheel-legged robot is tracked outside the right side
of the virtual path boundary, and the heading angle is negative. The
main control strategy corresponding to this type of virtual sensing
radar chart is a large turn to the left.

2.2.2  Architecture of the slope path tracking control algorithm

The essence of path tracking control for the wheel-legged robot

in hilly and mountainous areas is to calculate the corresponding
driving instructions according to the relative position relationship
between the robot and the target path. Based on the analysis of the
functions and operating characteristics of the wheel-legged robot,
the basic actions can be simplified into four conditions: go straight,
turn left, turn right, and stop, and the rest of the driving actions can
also be composed of these four basic actions. However, due to the
weak adaptive ability of a single fixed control command to the road,
especially the wheel-legged robot which is affected by gravity when
moving on the slope, the wheels are easy to slip and be affected by
external interference, resulting in poor control accuracy or failure.
Therefore, the purpose of building the first-level deep neural
network in this algorithm is to describe the position relationship
between the wheel-legged robot with respect to the virtual path
boundary through the generated virtual sensing radar map. Then the
second-level deep neural network is used to calculate multiple
control influence parameters to obtain real-time and accurate control
speeds of the drive motor.

Figure 6 shows the architecture of the proposed slope path
tracking algorithm by fusing virtual sensing radar and the two-level
deep neural network.

Firstly, the real-time wheel-legged robot position coordinates
and heading angle information are obtained by RTK-GNSS
positioning base station and mobile station, then converted to the
sloped road. The virtual sensing radar algorithm is combined with
the existing reference path and the current wheel-legged robot slope
position to calculate the virtual sensing radar map in real time, and
the current robot-road position relationship is preliminarily obtained
through the first-level deep neural network calculation. The output
results of the first-level deep neural network, the current road slope,
and the wheel slip rate are included in the calculation of the second-
level deep neural network. Finally, the control value of the drive
motor speeds is obtained, which is sent to the motor drivers through
the lower computer for execution.

2.2.3 Neural networks’ structure and influencing factors

1) Structure and role of first-level deep neural network

The structure of the first-level deep neural network is shown in
Figure 7. The input is the virtual sensing radar map after batch
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Figure 6  Architecture of the proposed slope path tracking

algorithm fusing virtual radar and two-level deep neural network

normalization, and the output is the position relationship between
the wheel-legged robot and target path segment, which is used to
represent various situations on the target path in real work. The
relative position relationship can be described by the different
deviation. When the wheel-legged robot is on the target path left,
the deviation relationship obtained by the virtual sensing radar
which is between the wheel-legged robot and target path segment
may occur in the following four conditions:

(1) There is a lateral deviation, the wheel-legged robot is
located inside of the target path segment, and the heading deviation
is greater than 0.

(2) There is a lateral deviation, the wheel-legged robot is
located outside the target path segment, and the heading deviation is

greater than 0.

(3) There is a lateral deviation, the wheel-legged robot is
located inside of the target path segment, and the heading deviation
is less than 0.

(4) There is a lateral deviation, the wheel-legged robot is
located outside the target path segment, and the heading deviation is
less than 0.

The relative position relationship corresponding to the above
four deviation cases also exists symmetrically on the right side of
the target path segment, so the first-level deep neural network sets a
total of eight outputs, corresponding to all possible conditions of the
virtual sensing radar.

The first-level deep neural network establishes the relative
position relationship between the wheel-legged robot and the target
path segment, and the mapping relationship between the virtual
sensing radar map through deep learning, and converts it into the
corresponding numerical label value of [0,7] as the input of the
second-level deep neural network.

2) Structure and role of second-level deep neural network

The structure of the second-level deep neural network collects
the label values of the relative position relationship between the
wheel-legged robot and the target path generated by the first-level
deep neural network, as well as the parameter values of the lateral
tracking deviation impact factor, the heading deviation, the slope of
the wheel-legged robot, and the slip rate influence factor. Through
deep learning, the mapping relationship between the precise control
speed of the driving motors on both sides of the current wheel-
legged robot and the above multiple parameters is established. A
schematic representation of the working role of the second-level
deep neural network is shown in Figure 8.

3) Compensation methods of various influencing factors

(1) Lateral tracking deviation factor e

There will be lateral tracking deviation in the process of path
tracking for the wheel-legged robot on the slope. When the lateral
deviation is too large, it easily leads to insufficient control, and
when the lateral deviation is small, it easily leads to control
overshoot.

Figure 9 enumerates the control speed of the drive motor of the
wheel-legged robot on both sides under different lateral tracking
deviations when the heading deviation is 0. When the wheel-legged
robot is located on the left side of the path, the control speed of the
drive motor of the wheel-legged robot on the left side is greater than
that on the right side. Similarly, when the wheel-legged robot is
located on the right side of the path, the control speed of the drive
motor of the wheel-legged robot on the right side is greater than that
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Figure 7 Structure and role of first-level deep neural network
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Figure 8 Structure and role of second-level deep neural network

on the left side, in which way the tracking of the wheel-legged robot
close to the target path is realized.

According to the above analysis, under the same heading
deviation, the lateral tracking deviation plays an important role in
the path tracking control of the wheel-legged robot in hills and
mountains. If the influence of different lateral tracking deviations
on the speed control of the drive motor is not considered, the control
value will be single and cannot be well-adapted to the environment.
Therefore, the lateral deviation distance factor e is introduced to
linearly adjust the control speed, so that the wheel-legged robot can
obtain the current best control speed under different lateral
deviations. As shown in Figure 9, when the deviation of the heading
angle is 0°, the method used in this paper is to measure the lateral
deviation, and the setting method of the wheel-legged robot on the
left and right of the target path is the same. The maximum value of
the lateral tracking deviation factor e is taken at the point 1 m away
from the target path, which is set to 1, and the corresponding wheel
speed difference is 1 m/s. The minimum value of the lateral tracking
deviation factor e at 0 m deviation from the target path is set to 0,
and the corresponding wheel speed difference is 0 m/s at this time.
Taking 0.2 m as the degree, the lateral tracking deviation influence
factor e is linearly divided and set as an array of [0.2,0.4,0.6,
0.8,1], corresponding to the wheel speed difference of 0.2 my/s,
0.4 m/s, 0.6 m/s, 0.8 m/s, and 1.0 m/s, respectively, which is
convenient for subsequent access.

Virtual path
boundary

Target path

Vi

d

Figure 9 Control speeds under different lateral deviations and the
same course deviation

(2) Heading angle deviation factor 6

Figure 10 shows the heading angle deviations of the wheel-
legged robot under the same lateral tracking deviation d. When the
wheel-legged robot is located on the left side of the target path, the
larger the heading angle deviation value is, the larger the speed
difference of the driving motor on both sides is set, so the wheel-
legged robot can quickly return to the positive direction when the
heading deviation is large. The smaller the heading angle deviation
value is, the smaller the speed difference between the drive motors
on both sides will be. At this time, the speed difference between the
driving motors on both sides will gradually approach 0. Therefore,
when the heading angle deviation of the wheel-legged robot is small
on the slope, it can approach the target path line with the help of its
current travel trend to avoid overshoot. When the wheel-legged
robot is located on the right side of the target path, the speed
difference of the motors on both sides of the wheel-legged robot is
opposite to that when it is on the left side.

Heading angle change range is set as [-60°, 0°] or [0°, +60°],
and the degree value is 1°. When the wheel-legged robot heading
angle is 0°, the corresponding wheel differential speed is 0 m/s;
when the heading angle of the wheel-legged robot is —60° or +60°,
the corresponding wheel differential speed is 1 m/s; then the
specific numerical control of the driving motor combined with the
heading angle is realized.
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| boundary |
B I
| |
| Y |
| |
| |
Vi I 1. 6=0° :
| |
| |
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Figure 10 Heading angle deviations of wheel-legged robot under
the same lateral deviation and different heading deviations
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(3) Slope change factor a

The typical working environment of the wheel-legged robot in
hilly and mountainous areas is set as the slope road, so it is
necessary to comprehensively consider the road characteristics
under the slope road and incorporate the control logic. The slope of
the path will produce the component force of gravity. Combined
with the previous dynamic analysis, the wheel-legged robot in hilly
and mountainous areas needs to overcome the influence of gravity.
The greater the slope is, the greater the influence of gravity that
needs to be overcome. If the steering process is affected by gravity,
it will lead to steering overshoot or understeering.

Generally, the ratio @ of the vertical height and the horizontal
distance of the slope is called slope. The road slope used in this
paper directly takes the slope angle value, which is normalized and
divided into integers (0,30], and the degree is set to 1 to represent
different road slopes, facilitating the learning of the neural network.
When the wheel-legged robot is simulating the tracking of hilly and
mountainous roads, the real-time slope is obtained through the
virtual sensor installed on the robot body by the software, and the
actual use is obtained by adding the inclination sensor.

(4) Slip rate factor 6

Hilly mountainous agricultural machinery is always affected by
the gravity component force during tracking. When the agricultural
machinery is greatly deflected, the gravity component force can
easily cause the wheel to slip, which will lead to the deviation
between the instantaneous center of the wheel-legged robot and the
target path. However, in the actual work, it is difficult to measure
the slip rate of the wheel in real time. At the same time, in order to
reduce the cost and use of sensors, this paper converted the real-
time slip rate of the road surface, obtained the heading angle of the
agricultural wheel-legged robot at each time through a fixed time
interval, combined with the content of the control command and the
control time interval, and deduced through the mathematical
relationship. In this paper, the agricultural wheel-legged robot
adopts differential steering scheme control; that is, the wheel speed
on the same side is the same at the same time, so no matter how
many wheels slip at a certain time, it will lead to a deviation of the
body that does not meet the expected instructions. The slope factor
is calculated and derived based on the idea of the deviation degree
of the whole vehicle. The various states that may occur when the
wheel-legged robot is tracking are shown in Figure 11.

It is assumed that the heading angle of the wheel-legged robot
is 0° before the first control command is issued; that is, it is
assumed that there is no heading deviation at this time. S, is the
distance traveled by the left wheel in a control command cycle
when the wheel-legged robot on the slope does not slip under ideal
conditions:

S, = vt (23)

where, At, v, are the time interval between two wheels’ speed
control commands sent by the host computer, s; and the desired
control speed of the left wheel at a certain time, m/s, respectively.

Similarly, the distance traveled in one instruction cycle when
the right wheel does not slip can be obtained:

S, =v,Ar (24)

According to the geometric relationship in Figure 11 and
Equations (23) and (24), the heading angle change of the wheel-
legged robot after a certain control command can be obtained as 6,
in the ideal state:

c. Downslope scenery of the wheel-legged robot

Figure 11 Heading angle changes of the wheel-legged robot in

hilly and mountainous areas when slip occurs

_S'> = arctan (7(‘// _LV')A[) (25)

S
6, = arctan (

However, when the slip occurs as the wheel-legged robot is
running on hilly and mountainous slopes, the wheels on both sides
cannot travel to the desired position. Thus the wheel-legged robot
can only go to the position shown in the dotted line in Figure 11 in a
control command cycle, and the current real heading angle 6, can be
directly obtained by the navigation equipment.

Currently, the following formula is used to replace the
expression of the wheel slip rate ¢ of the wheel-legged robot in hills
and mountains:

s=0=% _y_ 0, (26)

, ((v, = vaAr)
arctan T

Because the converted wheel slip rate needs to be used as the
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input data of the second-level deep neural network, and the slip rate
is a decimal between [0, 1), which is not convenient for subsequent
calculation, it is necessary to process the slip rate value. The
calculated converted wheel slip rate is multiplied by 10 to a decimal
whose value range is [0,10). Then the integer part is taken as the
valid data; that is, the converted wheel slip rate factor value range is
an integer between [0,9], and the degree is set to 1.
2.2.4 Construction of deep neural networks

Deep learning has been widely used in fields such as image
recognition, unmanned driving, natural language processing, and so
on. In this study, Python 3.9 and MXnet deep learning libraries
were used to build the neural network framework, and the operating
environment was macOS Monterey system.

1) First-level deep neural network construction

The number of input neurons of the first-level deep neural
network is determined by the number of input virtual sensing radar
detection beams. Since 1° is taken as the minimum angle of virtual
sensing radar scanning per unit time, the input is set to 360 neurons
for circular scanning. The two hidden layers are set to 720 and 540
neurons, respectively, through empirical formula and actual training
results. The activation function is linear rectifier function (Relu),
which is expressed as follows:

{x(x >0)
Relu(x) = 27)
0(x<0)

Because the positive and negative heading angles are set, the
control strategy of the wheel-legged robot on the left and right sides
of the target path is symmetric about the target path, and there are
eight in total. The deep learning model is set as the classification
model, so the number of neurons in the output layer is set as eight.
The output layer uses SoftMax function as the activation function,
and the expression is as follows:

SoftMax(o), = (28)

E eok

j=1

where, o, 0,, S oftmax(o), are the value of the £" unit before input
to SoftMax; the value of each unit before input to SoftMax; and the
probability distribution of the A" unit after processing by the
SoftMax function, respectively.

The significance of SofiMax regression is to integrate the
calculation results of the neural network in the output layer to obtain
the probability distribution result with sum of 1. The result with the
largest probability can be directly selected as the classification
result, which is convenient for subsequent program processing.
Figure 12 shows the structure of the first-level deep neural network.

2) First-level deep neural network training data

All neural network training data of the proposed algorithm are
generated by the Python program, and the process principle is to
generate all virtual sensing radar maps under a certain label as a set
of training data. Values are as follows: the total heading angle
deviation range [-60°,+60°], each group takes [—60°,0°] or
[0°,4+60°], and the degree is 1°. The deviation range of lateral
position distance is [-1m,+1m]. The
displacement span of single group training set is 0.5 m. The

maximum lateral
dividing value of lateral distance in each group is 0.005 m. Each set
of training data is assigned the same label with a label value of
[0,7] and a scale of 1.

Through the above division method, the 2 m lateral deviation
variation range of the wheel-legged robot is divided equally into

four parts, and each part covers the heading angle deviation of
[-60°,0°] and [0°,+60°]. Therefore, a total of eight groups of
training data are generated, and a total of 48 000 data are generated
after the integration of the eight groups of training data generated by
the program. Considering that various unexpected situations may
occur in actual tracking, this study added 2000 training data
corresponding to parking instruction labels, and finally formed a
dataset of 50 000 for the training of the first-level deep neural
network. This dataset is divided into training, validation, and test
sets at a ratio of 8:1:1.

Input
layer

: [ Output
layer

3) Training first-level deep neural network

The weight parameters of the neural network were obtained by
training the first-level deep neural network. The selected training
mode was mini-batch Stochastic Gradient Descent (sgd), the
training learning rate was 0.05, the batch size was 100, the number
of iterations was 10, and the loss rate of the two hidden layers was
0.02. The loss function takes the cross-entropy loss function; the
reason is that after the operation of the cross-entropy loss function,
the output result only cares about the prediction probability of the
correct class. If its value is large enough, it can ensure the correct
classification result. The formula is as follows:

OV
1 ;
(@)= - Z Zy‘i"log (29)

where, 0, n, q, i, j, Y7, 37 are the model parameters of the first-
level deep neural network; the number of samples in the training
dataset; the output category of the neural network; the sample
sequence number; the output category sequence number; the 0 or 1
elements in the real label probability distribution; and the predicted
label probability distribution value, respectively.

4) Second-level deep neural network construction

The second-level deep neural network control system will
further give specific control information by combining the relative
position relationship between the wheel-legged robot and target
path segments output by the first-level deep neural network. The
control quantity of the robot is determined by the motor speeds on
the left and right sides. Thus in this algorithm, a second-level deep
neural network is employed to directly output the continuous
control quantity using linear regression.

In this algorithm, the input of the second-level deep neural
network includes the output of the first-level deep neural network
and the heading angle of the current robot. At the same time, the
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slope, the converted slip rate, and the lateral deviation distance
factor obtained by the simulation sensor are also used as input data.
The output is the control speed of the right (left) motor, and the
control wheel speed of the same side is the same at any time. A
schematic diagram of the second-level deep neural network
structure is shown in Figure 13.

pommmmmmmmme P ittty
Hidden
layer

layer

Figure 13 Second-level deep neural network structure

5) Second-level deep neural network training data

The training data of the second-level deep neural network is
also directly generated by the program, and the output of the neural
network is the speed control value of the motor. This includes the
PWM value of the voltage of the drive motor, which is sent to the
lower computer for processing and execution. The parameter
settings for generating the training data are as follows: The heading
angle variation range under the same lateral deviation is [-60°,0°]
or [0°,+60°], and the degree is 1°. The range of slope influence
factor a is (0°,30°], and the degree is 5°. Converted slip rate index
range is [0,9], and degree is 1. The influence factor of lateral
deviation distance is [0.2 m,1 m], and the degree is 0.2 m. The input
one-level deep neural network label value is [0,7], and the degree is
1. The neural network outputs label values are set in the range
[0,50] with a degree of 1. The output of the neural network is the
left and right motor speed control values of [0,100].

Considering the heading angle deviation at any position, 60 sets
of the determined drive motor’s control speed data will be obtained.
The full range of slope angle factors and slip rate factors @ and ¢
are introduced to participate in data generation, and 3600 sets of
data will be obtained. Finally, since the output label values of each
first-level deep neural network correspond to a set of full-range
data, a total of 144 000 arrays are used as the training data of the
second-level deep neural network. It is also divided into training set,
validation set, and test set at a ratio of 8:1:1.

6) Training second-level deep neural network

The network parameter training iteration of the second-level
deep neural network is still using mini-batch stochastic gradient
descent, and the batch size is set to 10. The learning rate is set to
0.001, and the number of iterations is set to 100. The activation
function is still using linear rectifier function. Since there is only a
fully connected layer and the result is relatively simple, the loss
function is chosen as the square function, and its expression is:

1 (@) — %(j}(l’) _y(I))Z (30)

where, 17(0), @ , 3, y? are the " sample error, the model
parameters of the second-level deep neural network, the i* predicted

value at the output of the neural network, and the standard label
value corresponding to the i predicted value, respectively.

In this study, the general average method is used to evaluate the
quality of the neural network training parameters; that is, the
average of all sample errors in the training dataset is used to
measure the quality of the model prediction, and the formula is
expressed as:

In~1_. .
1(O)= - — (G =y 0y 31
@=-% 6"~ (31)
i=1
where, (@), n are the average loss value of all samples, and the
number of all samples in the training set, respectively.

3 Results and discussion

In order to verify the effectiveness and accuracy of the
proposed control algorithm, simulation tests under U-shaped paths
were carried out by the Python-RecurDyn co-simulation model. The
size of the target path was limited within a standard rectangle of
100 mx50 m, and the road condition was hilly and mountainous
with a low adhesion coefficient, in which the wheels were easy to
slip. Figure 14 shows the dynamic model of the agricultural robot in
RecurDyn and the established uneven road surface generated by
Matlab. The proposed slope path tracking algorithms were all run in
PyCharm to complete the simulation tests in the form of co-
simulation with RecurDyn, as shown in Figure 15.

Firstly, the frictional contact relationship between the wheels
and the ground was established in RecurDyn software. Then the
input and output of the FMU file in RecurDyn was set. The output
of the FMU file used in the co-simulation is the relative coordinates,
heading angle, slope, simulation time step, and other information of
the current wheel-legged robot in the RecurDyn simulation
environment. The input is the motor control speed value calculated
through the path tracking control Python program. The generated
FMU file would be imported into Python, and a virtual radar map is
obtained through the proposed slope path tracking control algorithm
to obtain the current robot-road relative position relationship.
Combining the parameter values of the affecting factors obtained
from FMU, the Python program continued to calculate the speed
control value of the robot’s driving motor and sent it to RecurDyn.
The two softwares collaborated in the same time step to complete
joint simulation testing.

In order to further verify the stability and accuracy of the
proposed algorithm, the path tracking algorithm based on an
optimized pure pursuit model (Yang et al.l'”!) was also tested under
the same simulated conditions as a comparison. Considering the
influence of different slopes on the stability of the algorithm, three
groups of comparative tests were carried out under the speed of
1 m/s, and the simulation road slope was set as 5°, 10°, and 15°,
respectively!”'". Considering the influence of different robot speeds
on the stability of the algorithm, three groups of comparative
experiments were carried out under the road slope of 10° with the
simulation robot speed of 0.5 m/s, 1 m/s, and 1.5 m/s, respectively.
The benchmark target path of the test is formed by fitting a standard
arc and a straight line"**?. The deviations of the test results were
taken as absolute deviations. The path tracking results referring to
different slope angles and tracking speeds are shown in Figures 16
and 17, separately. Tables 1 and 2 show the path tracking errors on
slopes with different angles and speeds, separately®".

It can be seen from Figure 16 that the tracking results of the
wheel-legged robot controlled by the proposed algorithm are better
compared with the optimized pure pursuit algorithm under different
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b. Side view of the wheel-legged robot

d. Robot on the simulated road surface

Figure 14 Multi-dynamic model of the agricultural wheel-legged robot
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Figure 16 Simulation results under U-shaped slope paths of the
proposed algorithm and the optimized pure pursuit model under
slope angles of 5°, 10°, and 15°, respectively

slope angles. Furthermore, under different slope angles, the
maximum path tracking lateral deviation of the proposed algorithm
is 0.367 m, whereas the corresponding value of the optimized pure
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e
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Figure 17  Simulation results under U-shaped slope paths of the
proposed algorithm and the optimized pure pursuit model under
robot speeds of 0.5 m/s, 1 m/s, and 1.5 m/s, respectively

Table 1 Path-following test data under different slopes

Experimental Test ~ Maximum lateral Mean lateral  Standard
algorithm slope/(°) deviation/m deviation/m  deviation/m
] 5 0.249 0.226 0.024
Algorithm proposed 0.255 0.230 0.022
in this paper
15 0.367 0.235 0.023
o 5 0.584 0.132 0.034
Optimized pure 10 0.673 0326 0.035
pursuit algorithm
15 0.907 0.445 0.037

Table 2 Path-following test data at different speeds

Experimental Test robot Maximum lateral Mean lateral ~ Standard
algorithm speed/m-s™ deviation/m deviation/m deviation/m
) 0.5 0.246 0.227 0.023
Algorithm proposed - 0.255 0.230 0.022
in this paper
1.5 0.364 0.236 0.022
0.5 0.664 0.231 0.036
Optimized pure

pursuit algorithm 1.0 0.673 0.326 0.035
1.5 0.879 0.334 0.036

pursuit algorithm is 0.907 m. The optimized pure pursuit algorithm
has a large tracking error at path turns and a slow control response
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on the slope path®??. As can be seen from Table 1, the agricultural
robot can track the reference path accurately and stably, no matter
whether the slope angle is 5°, 10°, or 15°. Even if there are some
abrupt curvature changes on the slope path, the agricultural robot
moves without large fluctuations and shocks. In conclusion, with
the increase of the slope angle, the tracking errors change very little
when using the proposed algorithm, which indicates good self-
adaptability to the change of slope angles.

With respect to the tracking speed, as in the results shown in
Figure 17 and Table 2, it can be seen that the proposed algorithm
still maintains a relatively stable tracking error growth rate with
increasing speeds. The maximum deviation of path tracking of the
proposed algorithm is 0.364 m, whereas the maximum tracking
deviation of the optimized pure pursuit algorithm is 0.879 m. The
simulation results reveal that the proposed algorithm’s effectiveness
and accuracy are superior, with tracking errors reduced by more
than 47.2% compared to the optimized pure pursuit algorithm.
Therefore, compared with the general planar tracking control
algorithm, the control system proposed in this study has better
control ability for the agricultural robot’s motion on the slope™®~".

In Yang’s study in which the optimized pure pursuit algorithm
was proposed, the results of planar field tracking tests showed that
the average value of the lateral error of the straight path is 0.012 m
and the average value of the lateral error for curved paths is 0.07 m
(Yang et al."”). However, when tracking on a slope path, the error
of this optimized pure pursuit algorithm increases by two to six
times, as shown in Tables 1 and 2, which can be attributed to the
neglect or direct disregard of the influence of gravity in slope path
tracking. On the contrary, the path tracking control algorithm
proposed in this paper pays special attention to this issue and takes
some consideration and compensation control. The accuracy of path
tracking has been significantly improved compared to the
aforementioned algorithm, although there is still room for further
improvement in the absolute value of the tracking errors™.

To further validate the effectiveness and practicality of the
proposed algorithm, this study constructed a physical robot test
platform and conducted relevant performance tests to adapt to the
slope conditions mentioned in the algorithm. The physical platform
is illustrated below.

Figure 18 depicts the constructed physical test platform. The
main body of the platform is assembled from steel, with four
independently controlled support legs. The robot’s slope climbing is
achieved through the extension and retraction of electric cylinders,
while steering is controlled by a steering motor. The propulsion
power is provided by four hub motors, and the entire system is
powered by an onboard 48V battery. The integrated controller
consists of an upper computer and a microcontroller. After
completing the robot assembly, performance tests were conducted
on the wheel-legged robot, and the results are presented in the
Table 3 below.

b. Schematic of the robot test
platform climbing a slope

a. Side view of the robot
test platform

Figure 18 Constructed physical robot test platform

Table 3 Performance test results of physical
robot test platform

Item Design parameters Actual parameters
Full-load mass/kg <400 356
Length <2100, Width <  Length 1900, Width

Vehictle Dimensions/mm 506 “eioht <700 850, Height 585
parameters Drive type Four-wheel drive Four-wheel drive
Endurance/h >5 5.2
Maximum
Dynamic speed/kmh" 230 30
performance Maximum ghmb 30 30
angle/(°)

Pitch angle >20°, Roll  Pitch angle 20°, Roll

Body leveling range angle >10° angle 10°

Mobilit
obtity Obstacle clearance

height/mm 2300 330

The data in the table demonstrate that the constructed physical
robot platform is capable of adapting to the slope conditions
addressed by the proposed algorithm, providing a solid
experimental foundation for further algorithmic improvements.

4 Conclusions and future work

In this study, the slope path tracking control problem of
agricultural robot was studied. Firstly, the kinematic and dynamic
models of the wheel-legged robot on the hilly terrain were
established, from which the crucial factors affecting slope path
tracking control accuracy were recognized. Secondly, a path
tracking control algorithm based on virtual sensing radar and two-
level deep neural network was proposed. The algorithm used the
virtual sensing radar to detect the path boundary as the perception
input of the agricultural robot, and combined the first-level deep
neural network to analyze the virtual radar map to obtain the real-
time robot-road position relationship, as well as to predict the road
direction. Furthermore, by analyzing the identified crucial factors
affecting slope path tracking control accuracy, the second-level
deep neural network obtained the accurate real-time drive motor
speed values. Finally, the slope path tracking control simulations of
the wheel-legged robot were carried out under various angles and
velocities. Compared with the traditional planar tracking control
algorithm, the simulation results show that the proposed algorithm
has better performance.

However, in this study, the unexpected deviation of the
agricultural robot caused by slipping between wheels and road
surfaces may not be well considered in the tracking process, so the
stability of the algorithm under bad working conditions needs to be
verified. In the future, more slope control parameters will be
introduced to achieve more accurate and stable path tracking control
of the agricultural wheel-legged robot in hilly and mountainous
areas.
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