236

August, 2024 Int J Agric & Biol Eng Open Access at https://www.ijabe.org

(1.

2.

Non-destructive method of small sample sets for the maize moisture
content measurement during filling based on NIRS

Tiemin Ma?, Guangyue Zhang, Xue Wang“?3, Shujuan Yi**", Changyuan Wang?"

College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China;
Daging Center of Inspection and Testing for Agricultural Products and Processed Products Ministry of Agriculture, Daqing 163319,

Heilongjiang, China;
3. Heilongjiang Province Research Center of Ecological Rice Seedling Raising Device and Whole Course Mechanized Engineering
Technology, Daging 163319, Heilongjiang, China;
4. College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China)

Abstract: In maize breeding, limitations on sampling quantity and associated costs for measuring maize grain moisture during
filling are imposed by factors like the planting area of new varieties, maize plant density, effective experimental spikes, and
other conditions. However, the conventional method of detecting moisture content in maize grains is slow, damages seeds, and
necessitates many sample sets, particularly for high moisture content determination. Thus, a strong demand exists for a non-
destructive quantitative analysis model of maize moisture content using a small sample set during grain filling. The Bayes-
Merged-Bootstrap (BMB) sample optimization method, which built upon the Bayes-Bootstrap sampling method and the
concept of merging, was proposed. A critical concern in dealing with small samples is the relationship between data
distribution, minimum sample value, and sample size, which has been thoroughly analyzed. Compared to the Bayes-Bootstrap
sample selection method, the BMB method offers distinct advantages in the optimized selection of small samples for non-
destructive detection. The quantitative analysis model for maize grain moisture content was established based on the support
vector machine regression. Results demonstrate that when the optimal resampling size is 1000 times or more than the original
sample size using the BMB method, the model exhibits strong predictive capabilities, with a determination coefficient
(R*>0.989 and a relative prediction determination (RPD)>2.47. The results of the 3 varieties experiment demonstrate the
generality of the model. Therefore, it can be applied effectively in practical maize breeding and determining grain moisture
content during maize machine harvesting.
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1 Introduction

The significance of smart agriculture lies in utilizing
information technology to enhance the intelligence of every link in
agricultural production. An essential aspect of smart agriculture
involves establishing an agricultural big data processing system and
implementing intelligent field crop monitoring. The key
components of smart agriculture include non-destructive detection!",
rapid detection”, and even in-situ detection”. Therefore, near-
infrared spectral (NIRS) detection technology is crucial for realizing

water monitoring in intelligent field crop monitoring and
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management“*.
With the advancement of NIRS technology,
attention has been directed towards the real-time reliability of

increasing

detection technology. The model’s accuracy is directly linked to
its real-time reliability. However, the model’s accuracy relies more
on the quality and quantity of the data, which conflicts with the
sample size available for breeding purposes.

Small sample sizes can introduce a number of statistical
problems and the model’s accuracy cannot be guaranteed with
Insufficient data”. The core objective of small-sample research is to
enhance information processing by augmenting analytical training
samples from the small-sample dataset. Cao et al.’ proposed a joint
probability  distribution = modeling  method based on
multidimensional Gaussian copula for the small sample case, with
the best fitting ability for coal mine geotechnical strength
parameters in the positive and negative correlation cases. Ma et al.”
employed a transductive support vector machine (TSVM) for
assessing forest fire susceptibility with small samples, a prediction
accuracy of 0.9583 was achieved with a sample size of 28. Li et
al.' proposed an integrated Transformer meta-learning (ETML)
method for fault identification of bearings with few samples, with a
test accuracy of 96.1%. Aydi et al.""’ proposed an approach based
on the ordinary least squares and the multilayer perceptron (MLP)
neural network, the proposed methods produced a good estimate
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even for small sample sizes and are faster than maximum likelihood
estimator (MLE), and bayesian least general entropy (BLGE).
Bayesian and Bootstrap methods were commonly employed to
handle small sample data, addressing equipment evaluation and
failure prediction issues, resulting in robust parameter estimation
and predictive performance!™™. Xu et al."! proposed a novel
Bayesian stochastic approximation method to enhance the
efficiency of sequential designs with limited sample sizes. Luo et
al.' proposed a small sample sentiment analysis model based on
causal analysis theory and naive Bayes, which reduced the sample
size requirements of traditional machine learning while achieving
strong classification results. Zhang et al.!'” developed a non-
parametric Bootstrap (NBP) estimation method to construct a
reliability model under small-sample conditions, which improves
the failure time prediction accuracy by 58.3%-91.1% compared
with the original model. Heikkinen et al."® raised a Bayesian stable
isotope mixing model that allows the application of different and
specific TDF's for each isotope and each trophic step, which can be
useful even with small sample sizes. Qi et al.'"” proposed a double-
convergence predictive analysis model based on the combination of
Bayesian theory and the deep learning algorithm Cascade-PSPNET
for the small-sample problem in tomato yield statistics, and the
point estimate of the rate of change of tomato yield from the test
sample was the same as the expected value. Bootstrap confidence
intervals and approximate confidence intervals were also calculated.
Canepa®™ employed nonparametric bootstrap techniques to
approximate a Bartlett-type correction for addressing fat-tailed data
and relaxing assumptions in small sample scenarios. Numerous
studies have affirmed the reliability of Bayes estimation and
Bootstrap methods in handling small samples, underscoring the
critical relationship between distribution, minimum sample values,
and sample size®' >,

Researchers have recently applied small data analysis
techniques to process spectral data in NIRS analysis. Liu et al.*
combined near-infrared spectroscopy with a discriminative non-
negative representation classifier (DNRC) model, which showed
better performance in Diarrhetic shellfish poisoning (DSP) toxin
detection, with a classification accuracy of 99.44% for a smaller
sample dataset. Zheng et al.” introduced the minimum sample size
for load spectrum measurement and its statistical extrapolation
based on GPD parameter estimation and z-distribution. James et
al.” proposed the Bootstrap-based method to equally and
adequately represent the confidence intervals for points close to or
far away from the latent space to match the performance of well-
established methods for spectroscopy data. Wang et al.*” proposed
the Bootstrap-SPXY sample selection method and developed a
destructive analysis model for moisture content during the maize
grain filling period, building upon the previous research findings.
Although the study yielded positive results, it was limited to the
destructive analysis of samples.

During the filling period, it is impractical to collect multiple
samples, especially in maize breeding and seed production,
particularly for parental seeds. And, the consequence of insufficient
samples is reduced real-time detection model reliability and
accuracy. Therefore, the objective of this study is to propose a non-
destructive moisture content analysis with small sample sets during
the maize grain filling stages based on NIRS. It is based on the
concept of merging and involves calculating cumulative ratios using
a modified Bayes Bootstrap (BB) sampling approach. This study
introduced the sample optimization method Bayes-Merged-
Bootstrap (BMB) to ensure that the imperfect original sample data

aligns with the Bayes sample parameter estimation strategy. By
optimizing the range of eigenvalues of the samples, the method
enhances the quality of the modeled samples. This rapidly develops
a non-destructive moisture content testing model for maize kernels
during filling. The model’s reliability is assessed through a multi-
variety sample analysis.

2 Materials and methods

2.1 Materials

The moisture content detection process for maize breeding met
the required steps and criteria. It involved four stages: corn removal,
threshing, spectral acquisition, and chemical value determination.
Samples were obtained from the maize testing base at Heilongjiang
Bayi Agricultural University, including three common varieties.

A Bruke Tango-R Fourier transform near-infrared spectrometer
with a wavelength range of 4000-10 000 cm ™ was used for spectral
analysis. Each sample pool contained 50-80 grains. During
detection, a cover accessory was placed over the sample pool to
shield it from natural light, and the rotary table made one revolution
per measurement. Moisture content was calculated using the weight
method®.

Sample-optimized method and modeling are implemented
using RStudio 4.3.2 and Matlab 2022, respectively.

2.2 Methods
2.2.1 Bayes Bootstrap Sampling Method

The Bayes Bootstrap (BB) sampling method, also known as the
random weighting method, is a Monte Carlo data simulation
method™. It estimates distribution parameters and intervals after
applying random weights to each trial sample® Unlike traditional
non-parametric Bootstrap algorithms, BB does not rely on
understanding the overall data distribution without hypothetical
assumptions. It yields small root-mean-square errors, making it
suitable for small sample analysis, and it can be extended to larger
datasets®"**\.

0, x<xg

F,(x)= , Xy S X< X (D

In general, using the BB method to resample, the sample data
set is sorted from small to large. The sorted data set is indicated as
X=(X(1), X2p X@)s ++0 X(n)> X(1y<X@)<...<X(»- Under the condition of
the sampling hypothesis test, the empirical cumulative ratio F of x;
can be obtained, as shown in Equation (1). Where, F,(x) is the
empirical accumulation function of the original sample, n is the
number of original samples, x is the random variable in the
accumulation function, and x, is the i-th original sample.

Furthermore, data set X is randomly sampled according to the
cumulative ratio formula. However, when resampling, the random
number generates a uniform random number in the interval [0, 1].
The overall sampling factor and the sample generating function are
constructed based on this random number interval.

In BB resampling, new samples are generated randomly within
the range of the original sample values. Although this expands the
dataset, it confines the generated samples to the value range of the
existing data. However, the expanded data sample does not have the
practical information of the centralized data to generate the
resampling samples. This has two possible implications: 1) it may
weaken or even lose effective data information from the central
data; 2) it does not effectively extend the samples beyond the
original range. This study aimed to maximize the data range in
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actual detection, which the BB algorithm could not achieve alone.
Consequently, the merged ideas were added to the BB method in
the later study to improve the reliability of the resampled data.
2.2.2  Sample-optimized method based on merging and the Bayes-
Bootstrap

According to the previous BB algorithm analysis, the
resampling data was mostly unreliable and had invalid or
incomplete information. The modified cumulative ratio formula was
considered since the resampling principle is mainly based on the
cumulative ratio formula of the original sample in the BB algorithm.
The improved cumulative ratio formula is shown in Equation (2).

F,(x)=

i (x-x) .
-+ ——" X <x<x,,,(i=0,1,...,n-k-1)
no n(x;, —x)

m xX—x 1| x :
1-= _I ey <y = — | Zmmy X
nexp[ 5 } X, <xp= e Yok,
(2)

where, n is the number of original samples, m is the number of

i=n—m—1

removed samples from the original samples, and x; is the i-th new
sample. The subtraction of the m samples from the original data
resulted in the new set of samples containing n-m samples, with the
empirical distribution mean replacing the sample mean. Usually, m
is less than or equal to 5.

The idea of merging the Bootstrap algorithm, namely the BMB
algorithm, has been further added to enhance the effectiveness of
resampling samples and reduce the sample generation randomness.
The steps to implement the algorithm are as follows:

Step 1: The original sample set was entered and recorded as the
set N to calculate the cumulative ratio according to Equation (1).
The repumping scale was set as Sample count.

Step 2: The number of samples in this set was set to be 2 times
the number of original samples, i.e., n'=2n, the i-sampling was
completed, and the initial value of i was 1.

Step 3: The mean empirical distribution of the sample set

Small

Sample Set BMB Resample set

formed by Step 2 was calculated. A uniform random number ; was
generated in the interval [0, 1], and the sequence of »n random
numbers, U is expressed as U, U,, U,, ..., U,;, U,, where U,=0,
U,=1. The sequence U follows the Dirichlet distribution rule, if
V=U~U, (=1, 2, ..., n), then V+V+ Vst +V,=1.

Step 4: The general Bayes sampling factor a was calculated, if

n>1- %, Xp = Xge_my —BIn [(1 -1) %} , otherwise x=x;H(a—it1)
(x(i+1y7%@)- Where a is the sampling factor, a=(n—1)y, i=[a]+1.

Step 5: The formula for the cumulative ratio Fi,(x) was
updated according to Equation (2), and the i-time extracted sample
was combined with the original sample to form the set of samples NN.

Step 6: The sample set was checked to see if it met the
resampling scale. Step 2 must be reverted to if not, and the sample
set N was updated to NN. Otherwise, it ends.

The previous sample was combined with the original sample to
enhance model variability and robustness. The resampling sample
size is typically denoted as ‘n*’, and a sample set>10 000 samples is
considered statistically significant.

The sample set size after repumping has exceeded the
requirements of the number of samples for spectral modeling. If
used directly for modeling, the sample set would significantly
impact model time complexity and stability. Therefore, sample
optimization is necessary. The SPXY sample selection method was
considered for optimizing resampled samples, leveraging
concentration and spectral feature correlations. After optimization,
the sample set size is denoted as ‘nn’. These datasets will undergo
individual validation for normal distribution. The initial sample
optimization step is completed, if one dataset meets the criteria.

The samples resulting from the initial optimization step will
then be randomly grouped, each group containing ‘nn*’ samples,
and subjected to cross-validation testing. If normal distribution
criteria are met, sample optimization is finalized, and the modelling
sample set is established. Otherwise, a subset will be reselected.
Figure 1 illustrates the BMB algorithm-based sample optimization

method.

Data optimization
selection

Modeling
Dataset

Empirical distribution
mean value

Resample size ‘

N Cumulative ratio NN

Optimization of the
dataset

Data filtering based
on the SPXY

Randomly selected
nn"samples

Is it a norma
distribution?

Yes

Modeling set to be
selected

Cross-validation

Secondary validation
and data filtering

*
nn

!

RMSEC vs. RMSEP optimal

Note: BMB: Bayes-Merged-Bootstrap. Same below.

Figure 1

2.3 Model prediction and evaluation index

To assess the model’s predictive power, R*> and RPD were
employed. The root-mean-square error of cross-validation
(RMSECV) and root-mean-square error of prediction (RMSEP)
were selected as additional evaluation indices since this experiment
primarily involves modeling data. Close values for these two
indices indicate the effectiveness of the modeling dataset generated
using the proposed method in this article. If RMSECYV significantly
exceeds RMSEP, it suggests poor representativeness of the

Process of the sample set optimization method based on merging and Bayes-Bootstrap sampling

validation sample. Conversely, if RMSEP greatly exceeds
RMSECYV, it indicates inadequate or overly tight information fitting
in the modeling sample.

3 Results and discussion

3.1 Near-infrared spectroscopy data and chemical reference
value

The grains underwent spectral data collection without any
treatment, preserving the characteristics of the original components.
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This approach qualifies as non-destructive testing. Figure 2 displays
the average absorption spectral curves of the average Fourier NIR
of the three maize varieties (‘Demeiya’, ‘Xianyu 335°, and
‘Zhengdan 958’) at seven stages of the filling period. By observing
the spectral curve in the Figure, the absorption peak of the

spectral wavelength around 6900 cm™ varies in different grouting
stages, with the difference in maize grain water content
corresponding to the difference and change of the spectral curve.
Higher moisture content results in an increased absorbance value
within this band.
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Figure 2 Average Fourier NIR absorption spectra of the three maize varieties during filling stage

Figure 3 shows the actual measurements and error analysis for
the 3 varieties. Each breed yielded 100 effective spectral samples at
seven stages of the filling period, with 50 samples designated for
small-scale data modeling trials and 50 for prediction sets. Given
the scarcity of breeding samples and limited collection time, it is
assumed that constraints on sample availability resulted in a few
spectra obtained during the experiment. To demonstrate the method’s
ability to handle different sample numbers, the number of
constructed samples is divided into three subsets, denoted as the set
X, and X_fifty=50, X twenty=20, X ten=10.

ec-\ eo"\' %e?’ eo") eclr’ eo’b eo"\
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45+ 4783 s K P ) 45.08 3788 .
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Zhengdan95§
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The grain-filling stages
Figure 3  Practical measured values of three varieties during the
filling stage

3.2 Analysis of non-destructive maize moisture content
measurement modeling based on BMB

In order to create an effective moisture content detection model
based on BMB, a set of optimized and raw sample data is selected
as the modeling sample set, and nine moisture content detection
models are created respectively, including the BMB-PLS model and
BMB-nu-SVR and BMB-Epsilon-SVR model with four kernel
functions. The performance and usability of the above model are
evaluated through R, RMSECV, and RPD values. The values of
these models of re-sample sizes 50, 20, or 10 are shown in Figure 4.
Due to the unsatisfactory performance of the models based on the
raw samples, it is not shown in the figure. It can be seen that the
models in the first region where R> and RMSECV coordinate axes
intersect are relatively better. Among these models, model-1 is
based on PLS, Model-2 is based on nu-SVR using an RBF kernel
function, and Model-6 is based on Epsilon-SVR using an RBF
kernel function. Comparing the RPD value, model-2 is the best. So,
the most effective non-destructive maize moisture content
measurement with small is the BMB

sample sets model

optimization selection method and nu-SVR with an RBF kernel

function, penalty coefficient C=5, Nu=0.5, and Gama=
0.000 685 871 1.
e T T
20
%2
15 Y
=) (%)
[~
& 10
N |
5 » @ T @(0.992,0.223, 9‘23?
@ (0.9982, 0.0216,5.98)
- 9982, 0.0216,-5.98)

1.00 0

Note: Model-1 (BMB-nu-SVR-Linear), Model-2 (BMB-nu-SVR-RBF), Model-3
(BMB-nu-SVR-Polynomial), Model-4 (BMB-nu-SVR-Sigmoid), Model-5 (BMB-
Epsilon-SVR-Linear), Model-6 (BMB-Epsilon-SVR-RBF), Model-7 (BMB-
Epsilon-SVR-Polynomial), Model-8 (BMB-Epsilon-SVR-Sigmoid), Model-9
(BMB-PLS). Big, medium, and small spheres represent the original sample sizes
of 50, 20, and 10, respectively.

Figure 4 Evaluation comparison of different models

3.3 Analysis and evaluation of Sample Resampling

Resampling was conducted on the three original sample sets,
namely X fifty, X twenty, and X ten, using the BB and BMB
algorithms. A resampling size of 10 000 was applied for both
algorithms, and the eigenvalues were derived from the interval 6,
mean m, and standard deviation u of the resampled samples.
Spectral band selection was set at 6900 cm™ specifically focusing
on the ‘Demeiya’ band. The resampling analysis results are
presented in Figures 5 and 6.

Figure 5 illustrates the sampling process of the BMB and BB
algorithms. The BMB algorithm consistently maintains resampling
samples around the sampling experience threshold. As the number
of samples decreases from 50 to 20 and further to 10, the sampling
interval expands, likely due to the incorporation of the sampling
experience threshold. Additionally, the BB algorithm exhibits larger
sampling intervals than the BMB algorithm, but the variation
among the resampled data points is smaller than that of the BMB.
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Notably, with an original sample size of 50 and a resampling size>
4000, the sample interval experiences a sharp change. Overall, the

—X ten —X twenty

Absorbance/%

4000 6000 8000 10000

Number of sampling

0 2000

a. Sampling analysis diagram of BMB algorithm

BMB algorithm demonstrates superior sampling performance across
different original sample sets compared with the BB algorithm.
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b. Sampling analysis diagram of BB algorithm

Note: BB: Bayes Bootstrap. Same below.

Figure 5 Comparison diagram of sampling
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Figure 6 Comparison diagram of the cumulative sampling ratio

The results of the two algorithms were analyzed using a
cumulative ratio plot shown in Figure 6. A gradual, steady decrease
in the number of resamples by the BMB algorithm was observed in
segments with different absorption rates, indicating improved
sample coverage within the resampled value interval. In contrast,
the BB algorithm exhibited a phased and unbalanced change in the
sampling accumulation ratio. For the original sample size of 50,
there were 1165 samples within the segmented absorbance values
[0.9533, 0.9703], twice the number of samples within the second-
highest segmented absorbance values [0.9193, 0.9363]. The
cumulative sample ratio demonstrated that a decrease in the original
in the
absorption rate values. This significant, trend resulted in low sample

samples directly impacted the resampling coverage
coverage within each absorbance value segment When the original
sample size was reduced to twenty, seven absorbance values out of
twenty-one had no corresponding resampled samples, resulting in a
coverage ratio of 14:21. For an original sample size of 10, the
coverage ratio dropped to 11:21. However, with an original sample
number of 50, the coverage ratio improved to 23:24.

Table 1 lists the resample eigenvalues. It is observed that when
the raw sample size is 50, 20, or 10, the mean (m) of the two
algorithms is nearly identical, differing by only 0.0001. However,

the standard deviation of the BB algorithm exceeds that of the BMB
algorithm, with the highest difference being 8.61%. Analyzing the
sample intervals, the resampling value range of the BB algorithm
remains constant. In contrast, when the raw sample size is 50, the
BMB algorithm’s sample interval is only 22% of that of the BB
algorithm. With a raw sample size of 20, the resampling range
expands. Further, when the raw sample size is 10, the BMB algorithm’s
resampling range extends to 59.3% of that of the BB algorithm.

In summary, the BMB algorithm exhibits distinct advantages
over the BB algorithm in resampling sample effects. First, it
concerns the resampling set’s interval size. While the BMB
algorithm’s interval is smaller than the original sample range at 50,
20, and 10, it maintains significant sampling randomness within this
interval. In scenarios with a smaller sample size, an increased
number of resamplings occur on the same scale. This highlights the
significance of resampling in experiments, with the largest interval
range at 10. Second, it pertains to the coverage ratio of the
absorbance segment values within the resampled volume. The BMB
algorithm consistently demonstrates a significantly higher coverage
ratio at 50, 20, and 10 than the BB algorithm in absorbance segment
values. This indicates that the BMB algorithm can complement
bands not present in the original sample, thereby enhancing its
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validity. The empirical threshold of the BMB algorithm adapts to
the sample size changes during operation. As the original sample
size decreases, the number of times the threshold changes increases.

Consequently, the resampling set’s interval range expands as the
original sample size decreases, further emphasizing the merging
concept within the BMB algorithm.

Table 1 The re-sample eigenvalues

. Interval (6) Mean (m) standard deviation (u)/%
Algorithm
50 20 10 50 20 10 50 20 10
BMB (0.8084, 0.9598) (0.7551, 1.0348) (0.6896, 1.1379) 0.8819 0.8844 0.9256 1.98 3.66 5.85
BB (0.6813, 1.0864) (0.6849, 1.0913) (0.7561, 1.1508) 0.8818 0.8844 0.9257 10.46 12.27 12.35

Note: BMB: Bayes-Merged-Bootstrap; BB: Bayes Bootstrap.

3.4 Analysis of sample size in resampling
Samples in the 6900 cm™ band sensitive to water molecules,
were selected for the study. As shown in Figures 7-9, a histogram of

the set was plotted before and after optimized selection for
comparison and the effect of sampling size on the modeled set was
analyzed.

10 - 45 -
; y = i g ol S
a r a \ 2 35¢
g 5 2000 \l g 30 | 5‘ of samples
5 o 5 1500 o 25t
g > > 20 )
g 4t § 1000 - § sl '
E 2 : 2 soof g 10¢
E H B~ ’ = 5t J‘
0 N d L N N 0 L e . 3 . 0 . 1 A — ,
04 06 08 10 12 14 0.8 0.9 1.0 0.8 0.9 1.0
Absorbance/% Absorbance/% Absorbance/%

a. Raw samples

b. 10 000 sample

¢. 200 sample

Figure 7 Comparison of samples distributions before and after optimization selection of X fifty

3t - . - . 45| Atandard curve of
5 5 2500 2 40l 1% nornal distribution
[=9 (=% (=%
8 £ 2000 £ 35t of samples
g 2f 7T 5 5 301 i
> S 1500 5 as|
5 g \ 2 20t
1t g 1000F | S 15¢t
g g 500 g 10t
- I ) < I
5 " L L L s 0 L E L s L 0 L L = ,
02 04 06 08 10 12 14 0.7 0.8 0.9 1.0 1.1 0.7 0.8 0.9 1.0 1.1
Absorbance/% Absorbance/% Absorbance/%
a. Raw samples b. 10 000 sample ¢. 200 sample
Figure 8 Comparison of samples distributions before and after optimization selection of X twenty
2} mow 2500 35| Standard curve of
5 8 B 8 30l * nornal distribution
= ) L e of samples
g g 2000 Iy & o5t
1%} ] | 1%}
< ] 5 1500 B 20t
> 1+ > >
2 S 1000} - g 5t
E g * B 10}
g 2 s00 7 g
> 2 I - s .
0 i L ' 0 L 7 L= L 0 L L L L L ,
0.5 1.0 1.5 0.6 0.8 1.0 1.2 0.7 0.8 0.9 1.0 1.1 1.2

Absorbance/%

a. Raw samples

Absorbance/%
b. 10 000 sample

Absorbance/%
¢. 200 sample

Figure 9  Comparison of samples distributions before and after optimization selection of X ten

In comparing distribution frequencies before and after
optimized selection from the original sample set X _fifty, X twenty,
and X ten, it is observed that the absorption rate values of the three
original small sample sets exhibit an inclusive relationship within
the range [0.6, 1.25]. However, they do not conform to a normal
distribution.

The BMB algorithm is configured with 10 000 iterations to

create the resampling sets X*_fifty, X* twenty, and X* ten,

resulting in modeling subsets denoted as X fifty Subset,

X' _twenty Subset, and X' _ten Subset. The sample size was set at
200. It is evident that all these resampled and optimized sets,
X fifty, and X ten,

exhibiting significantly

X twenty, follow normal distributions,

improved distribution characteristics
compared to the original sample dataset. The frequency peaks and
absorption rate intervals differ slightly among the three sets.

X'_fifty Subset has a maximum frequency value of 0.88-0.92, with
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an absorption rate range of [0.83, 0.95]. X’ twenty Subset exhibits a
frequency value of 0.85-0.95 and an absorption rate range of [0.79,
1.03]. Finally, X' ten Subset’s maximum frequency value ranges
from 0.9 to 1.0, with an absorption rate range of [0.78, 1.09]. After
comparing these distributions to the original sample, it can be
concluded that when the original sample size is 10 and the
resampling size is 10 000, the absorption rate value interval and
peak location most closely resemble those of the original sample.
This correlation arises from the equal size of resampling samples; as
the original sample set size increases, the number of combined
resampling samples decreases. Thus, the number of resampling
samples is linked to the original sample size. When the resampling
sample size is a thousand times or greater than the original sample
size, the loss of absorption rate value is minimized.
3.5 Analysis of the model effect during filling periods
Following the BMB-based small sample processing method,
sample sets X fifty, X twenty, and X ten were resampled using the
BMB algorithm at a scale of 10 000, resulting in the formation of
X* fifty, X* twenty, and X* ten. Subsequently, employing the
SPXY selection method, the sample sizes were reduced to 2000,
creating X' fifty, X' twenty, and X ten. These sets were then

B RMSECV%

_ Number of original samples=10 _

B RMSEP-mean%

_ Number of original samples=20 _

randomized, with each cycle forming a corresponding subset of 200
samples. If the current subset showed normal and optimally
distributed distribution, it would be recorded as the subset to be
modeled. After cross-validation, one of the subsets was selected as
the modeling set of the respective sample set and was denoted as
X' _fifty Subset, X' twenty Subset, and X’ ten Subset.

Spectral data samples from seven different moisture content
periods during the “Demeiya” grouting process were analyzed using
the BMB-SVR for the full spectrum model. Figure 10 presents the
maize grain moisture content model evaluation results across

various small sample sizes during the

filling stages. The

determination coefficient R* can reach 0.99 in different filling stages
and for varying small sample sizes. The lowest determination
coefficient of the model is 0.9896, observed during the second
sampling stage with 50 samples. The RMSECV value ranged from
1.0% to 2.5%. By comparing the blue and orange columns in
Figure 10, it is evident that the RMSECV and RMSP values are
closely aligned, differing by <1%. Additionally, all RPD values for
the model exceeded 2.4, indicating that the predictive ability of the
model meets the general accuracy standards required for practical

applications.

W RPD
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Figure 10 Evaluation of the BMB-SPXY-SVR model in different sample sizes in grain filling

3.6 Analysis of model generality based on different varieties
To assess the model’s generality, spectral datasets from the
fourth sampling stage were collected for all three varieties. The
prediction results are presented in Figure 11, where different colors
correspond to various sample sizes. Blue, red, and green represent
the original sample sizes of 10, 20, and 50, respectively. Lines
depict the regression trends, and dots indicate predicted values. The
black line represents the reference value trend. It is evident that the

» Pricdicted value of ten samples

—— Regression line of ten samples

— Regression line of twenty samples

regression lines of models constructed with different sample sizes
closely align with the target line during the current filling period of
the three varieties. The models consistently achieved R*>0.99, with
RPD>3.0 for all three varieties. Notably, when sample sizes are 10
and 50, the regression line trends deviate slightly from the target
line. The most favorable outcome occurs when the sample size is
20, where the regression line almost perfectly coincides with the
target line. It is shown that when the small sample number is greater

e Pricdicted value of twenty samples

Pricdicted value of fifty samples

= Regression line of fifty samples

— Target line
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Figure 11 Prediction and analysis diagram of the full-spectrum model sampled during the fourth grain filing on different small sample sizes

of three varieties
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than 10, the model built by the method proposed in this paper can
meet practical applications across multiple varieties. Furthermore,
considering the RPD values ‘Zhengdan 958’ and ‘Demeiya’, it is
observed that these values increase with larger sample sizes,
reaching above 4 with a sample size of 20. Although ‘Xianyu’
exhibits different characteristics compared to the other two
varieties, it still achieves an RPD value of 3.87, with a sample size
of 20. Therefore, a sample size of at least 20 is recommended for
small samples.

4 Conclusions

1) The proposed Bayes-Merged-Bootstrap (BMB) small sample
optimization method replaces the sample mean with the empirical
distribution mean to extend the resampling data interval. This
enhances the completeness of data information obtained from
resampling, addressing issues of incomplete distribution and
missing data in small samples.

2) The BMB algorithm significantly outperforms the Bayes
Bootstrap (BB) algorithm in sample resampling effectiveness. The
coverage ratio of absorbance segmentation values in the optimized
dataset, based on the BMB algorithm, surpasses that of the BB
algorithm when the original small-sample data intervals are
comparatively smaller. Furthermore, the optimized dataset
supplements the absent bands in the original small sample set. The
BMB small-sample optimization method establishes the foundation
for further modeling experiments.

3) The BMB algorithm predefines the number of resampling
samples when resampling the sample. Smaller small sample sets
undergo comparatively more frequent resampling. Hence, the key
factors affecting small sample sampling effectiveness include the
original small sample size and resampling scale. Using the water-
molecule-sensitive band as an example, this paper showed that the
sample distribution works optimally when the resampled sample
size is at least a thousand times larger than the original sample.

4) Finally, a non-destructive quantitative analysis model for
maize grain moisture content during the filling period was
constructed based on the BMB small sample optimization method
and SVR. Three common maize varieties in Northeast China were
used as examples. The models achieved R>>0.989, and RPD>2.47.
These results demonstrate the model’s robustness across various
sample varieties, small sample sizes, and moisture content levels. It
meets the maize grain moisture content detection requirements in
breeding and production management for different maize varieties.
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