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Abstract: Over the past 30 years, there has been continuous progress in global science and technology. However, many
agricultural products still heavily rely on traditional methods of manual and mechanical harvesting, facing challenges such as
high costs and low efficiency. To address these challenges, researchers have developed various harvesting robots to handle
diverse tasks in complex farm environments. This study analyzed pertinent papers on harvesting robots retrieved from the Web
of Science (WOS) core database and the China National Knowledge Infrastructure (CNKI) database, spanning the years 1993
to 2022. Using specialized software such as CiteSpace and VOSviewer, a bibliometric analysis was conducted to examine the
research progress and hotspots in the field of harvesting robots. The analysis of 517 English papers indicated a continuous
expansion in the research scale of harvesting robots. Furthermore, the research history can be divided into three distinct periods.
Currently, research on harvesting robots is experiencing a rapid growth phase, with the number of related papers steadily
increasing each year. In the year 2022 alone, 151 English papers were published. This growth is attributed to close
collaborations among different countries/regions, institutions, and authors. China, the United States, and Japan play crucial
roles in the research of harvesting robots. Notably, China has published 326 English papers, ranking first globally. Through
analysis, it was also found that Chinese papers focused on harvesting robots earlier, thereby promoting the development of
agricultural robots. Additionally, bibliometric analysis revealed that the research hotspots of harvesting robots mainly include
system and structure design, object recognition and localization, and multi-robot coordination, among others. In the future,
development trends of harvesting robots will focus on: 1) diversifying robot types, 2) expanding application scenarios,
3) enhancing overall performance to reduce losses, and 4) reducing manufacturing costs. In conclusion, through a

Research hotspots and development trends of harvesting robots based on

comprehensive bibliometric analysis, this study has provided valuable insights to advance the automation of harvesting.
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1 Introduction

As global science and technology advance, the planting area
and yield of agricultural products continue to expand, leading to an
increasing demand for efficient harvesting!'. After the mechanical
harvesting problems of staple crops such as wheat and corn were
basically solved, research and application hotspots shifted to
economic crops such as vegetables, flowers, and fruits. However,
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due to the complex growth environment of these economic crops,
traditional large-scale machines are no longer feasible. As a
consequence, many fruits and vegetables still rely heavily on
manual harvesting. However, manual harvesting faces multiple
challenges such as high labor costs and low work efficiency™.
Furthermore, with the increasing trends of population aging and
young people migrating, the agricultural workforce continues to
decrease'”. To address this situation, there is an urgent need for
research in automated harvesting, with robotic harvesting proving to
be more adaptable and viable.

For a considerable duration, researchers have been dedicated to
developing technology related to harvesting robots, achieving
significant progress in this field**. The application scenarios for
harvesting  robots are expanding, including
greenhouses™'", hilly
orchards!"*'%, tea gardens!”", and other complex environments.

constantly
standardized farmlands""', areas!*'",
Moreover, the variety of harvesting objects is continuously
increasing, including cucumbers!*, tomatoes™ -, eggplants®*,
peppers>, kiwifruitt*2,
apples™*, and other agricultural products. As for the harvesting

sweet strawberries?’?,  citrus®",

methods, they are also constantly evolving, including pulling?**,
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suctioning””*, twisting™*", cutting"'*’, and other forms. Therefore,
the research on harvesting robots is gaining much more attention.

Analyzing identified topics using bibliometric methods can aid
in uncovering research trends and frontier areas*. Moreover,
bibliometric analysis has been widely employed across diverse
research fields, encompassing agriculture, industry, education, and
medical treatment. For instance, Bertoglio et al.*'summarized the
current state of the digital agriculture using bibliometric methods,
and predicted that the Internet of Things (IoT) and Artificial
Intelligence (AI) will constitute development trends in the future.
Jiang et al.*? conducted a bibliometric analysis on the research
progress of Unmanned Aerial Vehicles (UAVs), summarizing the
current research hotspots and technological challenges. Through a
bibliometric analysis, Ni et al.*”? found that research on non-
destructive testing of fruit quality is highly active and that the
technology is progressively maturing.

At the same time, researchers have conducted summarization
and analysis of the research progress in agricultural robots***!. For
instance, Bechar and Vigneault®™” conducted an analysis of recent
progress and limitations in agricultural robot research. They
emphasized the necessity to improve the design of intelligent
systems for robots and enhance capabilities to operate in complex
environments. In addition, Liu et al.®" presented a summary of the
research status of various agricultural robots, categorizing them
based on different application scenarios and operation links. They
also conducted a detailed analysis of key technologies and
development trends. Furthermore, Wang et al.®” analyzed the
structures and functions of harvesting robots designed for different
crops, such as apples, tomatoes, kiwifruits, and cucumbers.
Nevertheless, currently, there are few papers conducting
bibliometric analyses on harvesting robots. Therefore, this study is
considered both necessary and innovative, contributing to the
current understanding of harvesting robots.

In summary, this study utilizes bibliometric methods to analyze
the current research status and identify frontier hotspots in the field
of global harvesting robots. Research hotspots such as robot design,
object recognition, and collaborative work have garnered significant
attention. Additionally, this study forecasts future development
trends, providing a valuable reference for subsequent research.

2 Materials and methods

2.1 Bibliometric materials and search process

This study aims to explore the current global development
status of harvesting robots. Over the past three decades, numerous
researchers have predominantly published papers on harvesting
robots in English. Consequently, this study selected the Web of
Science (WOS) core database as the source for bibliometric
materials®*,

To ensure sufficiency, accuracy, reliability, and credibility of
the analysis results, this study utilized the advanced function of the
database to search for English papers. According to WOS search
rules, the search subject was set as: ALL = (“harvest* robot*”)
OR = (“pick* robot*”) OR = (“robot* harvest*’) OR = (“robot*
pick*”). The time range was set from January Ist, 1993, to
December 31st, 2022. The paper type was restricted to articles and
reviews. Initially, 728 English papers were retrieved, and after
screening, 517 English papers were identified as relevant to
harvesting robots. Each paper record included essential information,
such as title, publication time, journal, country/region, institution,
author, and keywords. All this information was used in the
bibliometric analysis.

To gain a deeper understanding of the development status of
harvesting robots in China, this study also conducted searches for
relevant Chinese papers in the China National Knowledge
Infrastructure (CNKI) database. Using identical search settings and
filtering procedures, 227 Chinese papers related to harvesting robots
were obtained.

2.2 Bibliometric methods and analysis software

This study used several bibliometric analysis software,
including MS Excel, CiteSpace, and VOSviewer. As traditional data
analysis software, MS Excel possesses powerful functionalities and
can conduct accurate statistical analysis of research progress. In
contrast, CiteSpace and VOSviewer are comprehensive bibliometric
analysis software™*". In particular, CiteSpace is highly suitable for
keyword clustering, while VOSviewer is good at visually
representing research collaborations.

Consequently, this study conducted a comprehensive and multi-
level bibliometric analysis based on the above retrieval results and
software tools. These analyses aimed to reveal research hotspots
and development trends of harvesting robots. MS Excel was used to
analyze the distribution of papers in terms of time, journals,
countries/regions, institutions, and authors. Based on the temporal
and spatial distribution of these papers, the analysis revealed the
evolution of research on harvesting robots. In addition, CiteSpace
and VOSviewer were employed to
collaborations, keyword clustering, as well as highly cited papers.
Specifically, the analyses also reflected the level of attention

investigate research

dedicated to harvesting robots in various countries/regions.

3 Results and discussion

3.1 Time distribution of English papers

Examining the time distribution of published papers reflects the
prevalence of research on harvesting robots. As illustrated in
Figure 1, the number of papers in this field has markedly increased
over the past three decades, reaching a total of 517. Notably, in
2022 alone, the number of published papers accounted for 29.21%
of the total. The consistent increase in the number of papers aligns
with the growing demand for harvesting robots®™**. Furthermore, it
is anticipated that this growth trend will persist.

160
140
120
”
§ 100
g
= 80
e}
&
60
40
20
4312332
0 NIV~ — AN OO — NN OT~0NDO—
DA NNNOOOOOOODDD — i i it = — A
AN NOOOOOOOOOOODOOOOOOOOOOoO
ek e Al e\ [eN [N IeN (oS [N (oS [ [N [ [N [N} AN
Years
Figure 1 English papers on harvesting robots published from

1993 to 2022

Based on these findings, the research history of harvesting
robots from 1993 to 2022 can be divided into three distinct periods.
The first period, from 1993 to 2007, was characterized by a slow
exploration period. As the research was in its nascent stages,
technological developments progressed slowly™. Consequently,
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the number of published papers remained consistently low during
this period. The second period was a fluctuating rising period
between 2008 and 2016. This period was characterized by the
maturation of robot technology**”, leading to a steady increase in
the number of papers published within this timeframe. Finally, the
period from 2017 to 2022 can be defined as a period of rapid
growth, during which harvesting robots have emerged as a research
hotspot. With new technologies and methods constantly
evolving!®*l, the number of published papers in this field has been
increasing exponentially every year.
3.2 Space distribution of English papers

Analyzing the spatial distribution of papers helps in
comprehending the research scale of harvesting robots across
various countries/regions. Simultaneously, it is possible to identify
key institutions and essential authors in this field. Furthermore, this
analysis can establish international cooperation networks among
countries/regions, institutions, and authors. It is noteworthy that a
higher number of connections in the network indicates a closer level
of collaborative relationships.
3.2.1 Country/region distribution and cooperation networks

Papers on harvesting robots have been published by a total of
45 countries/regions. As observed in Figure 2, the three countries
with the highest number of papers are China, the United States, and
Japan. Specifically, China exhibits the most extensive research
efforts, dominating paper publications with a share of 63.06%.
Moreover, the United States and Japan also demonstrate a notable
interest in harvesting robots and display impressive levels of
technological advancement®. Meanwhile, England and Germany
conduct research on harvesting robots and have published several
papers', significantly enhancing agricultural technology.
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Figure 2  English papers on harvesting robots published by the top
twenty countries

As illustrated in Figure 3, the degree of collaboration among
China, the United States, and Japan is the highest. This cooperation
aligns with the number of papers published by these three countries.
In addition to the trilateral cooperation among these three countries,
there are also substantial collaborations involving China, England,
and Australia®®, as well as among the United States, Israel, and the
Netherlands™ ", and among Japan, Kazakhstan, and South Korea!”>"!.
Furthermore, collaborative efforts are frequent among Spain, Italy,
and Canada™™! as well as among the Netherlands, Germany, and
France. The substantial progress in harvesting robots can be
attributed to extensive collaborations among these countries.

3.2.2 Institution distribution and cooperation networks
A total of 421 institutions have published papers related to

harvesting robots. According to Table 1, the top ten institutions in
terms of publication volume collectively have contributed to 266
papers, accounting for 51.45%. Among them, the top three
institutions are Jiangsu University, South China Agricultural
University, and Northwest A&F University, all situated in China.
This data indicates that Chinese institutions place significant
emphasis on harvesting robots”’\. It is noteworthy that average cited
times of papers related to Wageningen University, Ben-Gurion
University, and Washington State University are significantly
higher than those of Chinese institutions. The average cited times
are obtained by dividing the total number of cited times by the total
number of papers. This data implies that research outcomes from
these institutions carry greater credibility.
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Figure 3 Cooperation networks among different countries/regions

Table 1 English papers on harvesting robots published by the
top ten institutions

Cited Average
Ranks Institutions Countries Publications . cited
times .
times
1 Jiangsu University China 49 877 17.90
2 Sogth Chma Agricultural China 48 1634 34.04
University
3 Northwest A&F University China 37 627 1695
Ministry of Agriculture and .
4 Rural Affairs of China China 22 3241473
Zhongkai University of .
4 Agriculture and Engineering China 2 13595
6  China Agricultural University China 19 404 21.26
7 Wageningen University Netherlands 17 1088  64.00
8 Ben Gurion University Israel 16 795  49.69
9 Nanjing Agricultural University =~ China 14 233 16.64
10  Shandong Normal University China 11 204 18.55
10 Washington State University USA 11 692 6291

With reference to Figure 4, the top three institutions that exhibit
the highest level of collaboration in the research on harvesting
robots are South China Agricultural University, Northwest A&F
University, and Jiangsu University. This finding is in line with the
number of papers published by these three institutions. Moreover,
widespread internal collaborations among Chinese institutions are
observed. In contrast, Pennsylvania State
Washington State University have established close partnerships
with numerous international institutions. This indicates that the
research capabilities of these institutions have been widely

recognized. Therefore, Chinese institutions need to strengthen

University and

international cooperation to expand their influence™”.
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Figure 4 Cooperation networks among different institutions

3.2.3 Author distribution and cooperation networks

A total of 1435 authors have published papers on harvesting
robots. As shown in Figure 5, 16 authors have published more than
ten papers, with 11 of these authors coming from China. This
indicates that Chinese authors have made significant contributions
to this field. Moreover, Edan Y from Ben-Gurion University and
Chen C from Monash University rank fourth and fifth in terms of
publication quantity. Dividing the total number of cited times by the
total number of papers yields the average cited times for papers
published by these authors. Apparently, Van Henten EJ and
Hemming J from Wageningen University have produced widely
cited works. In particular, Kondo N from Kyoto University is
recognized as an early pioneer in harvesting robots®*"*!, accelerating
the development of related technologies. Overall, the research
outcomes of these authors have significant practical implications
and reference value.
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Figure 5 Authors who have published more than ten
English papers

With reference to Figure 6, the collaborative relationships
among authors are very active and close. In particular, Chinese
authors have exhibited a high level of internal cooperation, forming
several research groups. Examples include the team led by Zou X J
and Xiong J T'** from South China Agricultural University, the
team led by Ji W and Zhao D AP**! from Jiangsu University, and
the team led by Cui Y J°" from Northwest A&F University.
Furthermore, the team led by Chen C*! from Monash University
and the team led by Zhang Q™ from Washington State University
have established robust collaborations with international authors.
This indicates that these teams have a significant impact in the field
of harvesting robots™ ..

3.3 Analysis of sources and citations in English papers
3.3.1 Journal distribution of English papers

An analysis of journal distribution can aid in identifying
popular journals. 517 papers on harvesting robots have been
published in a total of 107 journals. Referring to Figure 7, the top
ten journals collectively published 302 papers, accounting for
58.41% of all published papers. These journals receive widespread
attention and wield considerable influence®®. Remarkably, the
journals “Computers and Electronics in Agriculture” (Comput
Electron Agr), “Biosystems Engineering” (Biosyst Eng), and
“Sensors” are ranked among the top three in both the number of
published papers and the number of citations. Furthermore, the
journal “International Journal of Agricultural and Biological
Engineering” (IJABE) has placed significant emphasis on research
related to harvesting robots, bearing important implications for
future work™®.
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Figure 7 English papers on harvesting robots published by the top
ten journals

3.3.2 Highly cited English papers

Examining citations is a useful method for identifying the most
important research papers on harvesting robots. Referring to Table 2,
the top ten English papers were cited between 161 to 486 times,
with an average of 180. As for the research topics, these papers
comprise four reviews and six articles. Specifically, one review
paper summarized the key technologies and development trends of
harvesting robots*®. Moreover, three articles respectively discussed
the structure design and actual testing of harvesting robots for
cucumbers, apples, and strawberries'”"**. The remaining three
reviews and three articles all focused on the theme of detecting,
recognizing, and localizing harvestable objects'®***’.. The themes of
these papers highlight the current research hotspots in the field of
harvesting robots, providing significant reference value.
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Table 2 Top ten English papers with the most citations
Paper Cited

Rank Title Journal

type times
1 DeepFruits: a fruit detection sygs}em using Sensors  Article 486
deep neural networks ™"

Harvesting robots for high-value crops: state- J Field .

2 of-the-art review and challenges ahead™ Robot Review 293
Sensors and systems for fruit detectionand ~ Comput .

3 localization: A review!*! Electron Agr Review 260

4 An autonomous robot for harvesting Auton Robot Article 237

cucumbers in greenhouses!”!
Fruit detection for strawberry harvesting

5 robot in non-structural environment based Comput Article 220
on Mask-RCNN® Electron Agr

6 Design and control of agl apple harvesting Biosyst Article 181
robot™ Eng

7 Evaluation of a strawberry—tgnrvestmg robot  Biosyst Article 178
in a field test!"” Eng

3 Recognition and localization methods for ~ Front Plant Review 176
vision-based fruit picking robots: A review™ Sci

9 Faster R—.CNN for rr'lult%—glass fruit dgtectlon Comput Article 169

using a robotic vision system'” Netw
A review of key techniques of vision-based ~ Comput .
10 control for harvesting robot”™” Electron Agr Review 161

3.4 Bibliometric analysis of Chinese papers
3.4.1 Time distribution of Chinese papers

Through rigorous retrieval and screening, this study has
obtained 227 Chinese papers related to harvesting robots. As shown
in Figure 8, the number of Chinese papers has been steadily
increasing since 2003, reaching its peak in 2015. Especially since
2008, the number of Chinese papers on harvesting robots has
significantly increased, averaging 13 papers per year. The growth
trend is primarily due to the rapid development of robotics
technology and the policy support from government agencies. It is
evident that, despite China initiating its research on harvesting
robots relatively late, the gap with agriculturally developed
countries has progressively narrowed in recent years. China’s
research interest in the field of harvesting robots has been
continuously strengthening, leading to significant progress and
fostering international collaborations.
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Figure 8 Chinese papers on harvesting robots published from
1993 to 2022

3.4.2 Journal distribution of Chinese papers

A total of 15 journals have published 227 Chinese papers on
harvesting robots. As shown in Table 3, the top five journals in
terms of paper count collectively published 217 papers, accounting
for over 95.60% of the total. Notably, the journals “Transactions of
the Chinese Society for Agricultural Machinery” (Transactions of
the CSAM) and “Transactions of the Chinese Society of

Agricultural Engineering” (Transactions of the CSAE) collectively
published 206 papers, constituting over 90.74%. These two journals
hold significant influence and expertise in the field of agricultural
engineering in China, demonstrating comprehensive attention and
support for research on harvesting robots.

Table 3 Chinese papers on harvesting robots published by the
top five journals

Rank Journals Publications Percentage
1 Transactions of the CSAM 116 51.10%
2 Transactions of the CSAE 90 39.64%
3 JE(Q;E:il)of Jiangsu University (Natural Science 4 1.76%
4 Journal of Huazhong quversity of Science and 3 1.32%
Technology (Natural Science Edition)
5 ROBOT 2 0.88%
5 Journal of Mechanical Engineering 2 0.88%

3.4.3 Highly cited Chinese papers

Table 4 displays the top ten Chinese papers based on the
number of citations, ranging from the highest count of 376 to the
lowest of 162, with an average of 233. These papers comprise four
reviews and six articles. Among them, the four reviews discussed
the research progress of harvesting robots” ¥, two articles covered
the system design of harvesting robots®**", three articles focused on
the recognition and positioning of harvesting objects””), and one
article presented the optimization of end-effectors!'®. These topics
reflect the research hotspots in the field of harvesting robots.

Table 4 Top ten Chinese papers with the most citations

Rank Title Journal Paper C.lted
type times

Research actuality and prospect of picking Transactions .

! robot for fruits and vegetables! of the CSAM Review 376
Research progress and problems of Transactions .

2 agricultural robot!””! of the CSAE Review 324
Apple positioning based on YOLO‘ defep Transactions )

3 convolutional neural network for picking Article 257

. o8 of the CSAE

robot in complex background”®
Design and experiment of intelligent mobile =~ Transactions .

4 fruit picking robot™” of the CSAM Article 230

5 Present situation and development of mobile ~ Transactions Review 222
harvesting robot” of the CSAE

6 Robot.lcs 1:]or fruit and vegetable harvesting: ROBOT Review 197
A review™"
Development and performance analysis on

7 cucumber harvesting robot system in ROBOT Article 192
greenhouse!™!
Recognition of mature oranges in natural Transactions .

8 scene based on machine vision” of the CSAE Article 190
Identification and location system of multi- .

9 operation apple robot based on vision Transactions Article 180

ST of the CSAM

combination®”’
Hardware design of the end-effector for Transactions .

0 tomato-harvesting robot"""” of the CSAM Article 162

3.5 Discussion of keywords clustering and research hotspots
The analysis of keywords distribution can provide insights into
the research hotspots. As shown in Figure 9, the frequency of
keywords is depicted by the intensity of color, where darker hues
correspond to a higher occurrence frequency. The data analysis
indicates that the most frequently used keywords are: (1) harvesting
robot, (2) design, (3) recognition, (4) machine vision, (5) system,
(6) fruit, (7) positioning, (8) deep learning, (9) detection, and
(10) color. This signifies that the associated keywords garner a
heightened level of attention. Over time, “deep learning” is
becoming the latest research hotspot for harvesting robots.
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Figure 9 Keyword appearance popularity

Furthermore, clustering analysis of keywords can reveal the
interrelationships among research hotspots. As shown in Figure 10,
this study obtained the following clustering results. The analysis
indicates that the research hotspots of harvesting robots are
primarily centered around the following themes.
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Figure 10 Keyword clustering results

(1) System design of harvesting robots

Owing to the expansion of the agricultural cultivation areas and
rising labor costs, the adoption of robots for crops harvesting has
become an increasingly popular approach. Consequently, the system
design of harvesting robots has emerged as a prominent research
hotspot in recent years®**'"!. A standard harvesting robot comprises
components such as a locomotion device, a decision-making
module, a visual recognition unit, a robotic arm, and an end
effector. Researchers are focusing on optimizing structural design of

robots to enhance performance during the harvesting process. For
instance, in addition to the traditional fixed-sliding structure as a
locomotion device, wheeled and tracked self-propelled designs have
also gained prevalence for robots. Furthermore, high-performance
computers are commonly used in the decision-making module to
improve planning and control capabilities. Visual recognition units
primarily rely on a variety of sensors and depth cameras. Lastly, the
robotic arm manifests in various forms, including single-arm,
double-arm, and multi-arm designs.

(2) Recognition and localization of objects

Precise recognition and localization of objects are crucial for
the efficient operation of harvesting robots. Researchers have
dedicated significant efforts to the development of recognition
methods. These methods include traditional digital image
processing, machine learning-based image recognition, and deep
learning-based neural network recognition"'™. In the realm of
localization, certain researchers obtain 2D localization information
by analyzing object centroids, contours, and symmetry axes.
Meanwhile, other researchers utilize tools such as multi-eye
cameras, depth cameras, and ranging sensors to acquire 3D
localization information. In addition, various influencing factors,
such as lighting conditions, occlusion, overlap, and vibrations have
been considered by researchers. Considering the complexity and
diversity of application scenarios for harvesting robots, it is
expected that research on object recognition and localization will
continue.

(3) Navigation and path planning of robotic arms

The research hotspot in this field mainly focuses on robot
navigation and the path planning of robotic arms!"®'""., In terms of
robot navigation, researchers aim to achieve efficient obstacle
avoidance and motion path planning. Accurate motion navigation
enhances the safety and stability of robot operations. The global
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navigation satellite system (GNSS) and various advanced sensors,
such as lidar, and industrial cameras, are extensively used to
achieve this objective. As for the path planning of robotic arms,
researchers primarily emphasize structural design with varying
degrees of freedom, to enable effective obstacle avoidance and
sequence planning for harvesting. A well-planned harvesting
sequence is crucial for improving work efficiency. Researchers have
meticulously compared the advantages and limitations of various
path planning algorithms.

(4) Design and optimization of end effectors

The end effector establishes direct contact with the harvested
object, and its reliability influences the harvesting efficiency and the
quality of agricultural products. Researchers have designed various
types of end effectorst '], Researchers also utilize theoretical
analysis, simulations, and practical experiments to optimize
processes. Claw-type end effectors, including three-fingered, four-
fingered, and multi-fingered, all demonstrate excellent gripping
performance. Furthermore, cutting end effectors are suitable for
agricultural products that cannot be directly grasped. In addition,
suction end effectors operate in a faster way, and the accuracy and
stability of airflow are crucial.

(5) Collaborative operation of multiple robots

Multi-robot coordination is also a crucial research hotspot in
the field of harvesting robots”™. A single robot working
independently cannot meet the practical harvesting demands. Multi-
robot collaborative operations not only fully unleash the potential of
robots but also significantly increase harvesting -efficiency.
Simultaneously, multi-robot coordination holds significant strategic
value for advancing sustainable development in agricultural
production. It contributes to reducing energy consumption and
maximally preserving ecological balance.

(6) Extensive application of deep learning

Deep learning and artificial intelligence have been extensively
employed in the research of harvesting robots, significantly
enhancing the autonomy of this field™'"". By applying deep
learning to process vast agricultural datasets, harvesting robots
receive more precise information for decision-making. Artificial
intelligence enables real-time perception of environmental
information, enabling harvesting robots to adapt to various planting
conditions and crop characteristics. The continual evolution of these
advanced technologies will further drive innovation in the field of
harvesting robots.
3.6 Discussion of development trends

Based on the above analysis, it is evident that the research on
harvesting robots has made some strides. However, the application
of harvesting robots is still constrained by various issues, requiring
further development in the following areas:

(1) Diversifying robot types to relieve labor shortages

Incorporating robotic technology into agricultural practices has
multiple benefits, including relieving labor shortages, reducing
reliance on seasonal labor, and easing the workload for farmers.
Looking ahead, the focus will be on developing various types of
harvesting robots™*, including those for mountain and hill terrains,
those with multi-arm capabilities, and all-encompassing harvesting
robots. This concerted effort aims to bring about a more sustainable
and innovative era in agricultural development.

(2) Expanding application scenarios to improve efficiency

With the ongoing expansion of agricultural production, the
demand for efficient harvesting is ever-increasing. In the future, it
will be imperative to plan the harvesting sequence!®*. Integrating
robot design with planting agronomy is crucial for enhancing

adaptability to complex environments. In the research on harvesting
robots, full integration of technologies, such as big data, deep
learning, and artificial intelligence, is imperative. These initiatives
aim to boost harvesting efficiency and expand operation area.

(3) Enhancing overall performance to reduce losses

Currently, precise control over the working process of
harvesting robots remains a challenge™'"". Specifically, it is
necessary to further enhance the recognition capabilities of
harvesting robots for accurate identification. Optimizing path
planning capabilities operational
efficiency. Moreover, it is also crucial to accelerate research of

contributes to improving
multi-arm collaborations and multi-robot collaborations. Further
diversifying the types of end effectors enables the harvesting of a
greater variety of agricultural products. Such endeavors are of
paramount importance for achieving low-loss harvesting.

(4) Reducing manufacturing costs to promote application

The current high manufacturing cost is impeding the
development of harvesting robots”>™. To address this issue, future
research should focus on exploring new technologies to enhance the
design of hardware and software systems at a lower cost.
Additionally, there should be efforts to develop new materials to
reduce the cost of essential components, such as vision cameras and
robotic arms. Moreover, new production methods should be studied
to balance the relationship between cost and precision. These efforts
would significantly contribute to the promotion and adoption of
harvesting robots.

4 Conclusions

Utilizing bibliometric methods and knowledge graphs, this
study has conducted an analysis of the developmental history and
research hotspots relative to harvesting robots. The primary findings
are summarized as follows:

(1) Research on harvesting robots has been receiving growing
attention. The developmental history can be divided into three
distinct periods: a slow exploration period from 1993 to 2007, a
fluctuating rising period from 2008 to 2016, and a rapid growth
period from 2017 to 2022. It is expected that this rapid development
trend will continue for a long time.

(2) Collaborations different
institutions, and authors are becoming increasingly close. In this

among countries/regions,
context, research institutions and authors in China mainly engage in
Washington State University and
Wageningen University maintain relatively frequent collaborations

domestic  collaborations.
with other international institutions.

(3) This study retrieved a significant number of English and
Chinese papers on harvesting robots. Bibliometric analysis reveals
that the current research hotspots on harvesting robots encompass
multiple aspects. It is particularly noteworthy that recognition
methods based on deep learning have become a frontier research
direction. Looking ahead, to promote the development of
agricultural automation, efforts should be made to increase the
variety of harvesting robots as much as possible.
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