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Growth prediction of tomato seedlings based on causal LSTM and GAN

Hongduo Zhang, Yutaka Kaizu", Kenichi Furuhashi, Heming Hu, Kenji Imou
(Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan)

Abstract: The stable production of seedlings is very important for seedling growers. Predicting the growth of seedlings helps
growers promptly adjust management strategies and production expectations. Traditional methods rely on historical growth
data or assess current plant physiological parameters to estimate future growth. This study aims to predict future images directly
from historical growth images of tomato seedlings. Specifically, a dataset of 10-d image sequences of tomato seedlings was
collected. Then, an algorithm based on several neural networks was applied to predict the images of the next 5 d based on the
images of the first 5 d. The algorithm was composed of a causal long short-term memory (LSTM) unit, a gradient highway unit
(GHU), and a pix2pix unit. The experimental results showed that the introduction of a Generative Adversarial Network (GAN)
further enhanced the clarity and realism of the predicted images, ensuring higher quality and more accurate visual results. From
the perspective of image similarity, the average mean squared error (MSE) reached 394.97 and the average structural similarity
(SSIM) reached 0.90 over 5 d. From the perspective of biological information, the average prediction errors of the plant area
were 1.7, 1.4, 1.5, 0.9, and 3.2 cm® over the 5 d, and the average prediction errors of plant height were 1.7, 1.9, 4.6, 6.9, and
4.5 mm, respectively. The extracted biological information such as plant area and height showed good following performance
compared with the real growth information. The research results show that predicting future plant images from historical
images has the potential to become a useful tool for nursery growers to adjust management strategies and production

expectations.
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1 Introduction

Tomatoes are one of the most important varieties of vegetable
in Japan!!, and many tomato seedlings are produced by seedling
growers and supplied to farmers for cultivation. Tomato seedlings
play a critical role in ensuring successful cultivation, as they are
produced by specialized seedling growers and then supplied to
farmers. However, the growth and quality of these seedlings are
highly influenced by various environmental factors, such as light,
temperature, humidity, and fertilizer concentration. Ensuring
production stability for seedling growers remains a key challenge,
requiring effective solutions to optimize management strategies'.
For instance, adjusting nutrient solution formulas based on growth
stages has been shown to promote yield and quality in greenhouse
strawberry production, a practice that could similarly benefit tomato
seedling cultivation”. To ensure the stability of production,
researchers have proposed various methods for seedling growers to
adjust management strategies. There are two main types of
methods: one is to use nonimage data to predict the final yield
through artificial neural networks, and the other is to use
nondestructive measurement methods, mainly image data, to obtain
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real-time plant growth and disease statuses.

Methods that use nonimage data to predict seedling growth
mainly make use of an artificial neural network. Using the SVM
method, the apparent photosynthetic rate of the tomato canopy can
be predicted. Moriyuki and Fukuda®™ used leaf size and circadian
rhythms to predict early seedling fresh weight gain. Temperature,
solar irradiance, and vapor pressure parameters can be used to
predict the leaf area index and daily dry weight through a Bayesian
network®. The field canopy coverage index can be predicted by
combining image monitoring data and climate environment through
neural networks”. The real-time acquisition of biological
information and health status by nondestructive measurement is
realized mainly through image processing technology. For example,
the image processing method was used to detect the nodes of tomato
seedlings and estimate the lengths between nodes. This method
provided a basis for the evaluation of the growth and vitality of
tomato seedlings™®. Relying on long-term collected public datasets,
researchers have proposed deep learning-based methods to classify
tomato leaves with different diseases'?. With the introduction of a
real-time detection framework, it is possible to locate pests and
diseased parts of tomato seedlings growing in a greenhouse!"*'*.
Based on the greenhouse monitoring platform™' combined with the
convolutional neural network!"®, the detection accuracy of tomato
leaf diseases can be improved. However, methods that rely on static
data do not take into account real-time environmental changes,
which makes it difficult to apply to complex and dynamic
agricultural environments. Methods that rely on images are usually
used to assess the current status and have no predictive ability.
Addressing these limitations requires combining the advantages of
both methods to achieve dynamic and predictive modeling of
seedling growth.

One of the achievements of machine vision tasks in recent
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years is to predict future image frames from past image frames in
video footage based on long short-term memory (LSTM)
technology. It has been successfully applied to automatic
navigation”, human behavior prediction!, and weather
forecasting'”. Likewise, if it is possible to predict future images
from past images of tomato seedlings, LSTM will help seedling
growers adjust management strategies and production expectations
to maintain seedling production stability. Based on public datasets
such as Komanatsuna® and Arabidopsis®, researchers have
proposed methods to predict seedling growth images at an early
stage from the top view of plants®?!. However, due to the short
sampling time interval of these datasets, these studies achieved
image prediction after a few hours and were only evaluated using
image similarity metrics. However, image growth prediction over a
longer time needs to be implemented, and the accuracy of the
method needs to be measured with biological information.

In this research, this study aims to predict future 5-day images
of tomato seedlings using images from the previous 5 d. This can
allow seedling growers to perform forecasting and adjust
management strategies and production expectations. The objectives

of this study are to be presented as follows: (1) To build an efficient
neural network for image prediction of tomato seedling growth from
5 d into the future; and (2) to judge whether the prediction is
image similarity and biological

effective from two aspects:
information.

a. Simple greenhouse b. Photo platform

Figure 1

a. Taken from 0° b. Taken from 45°

Figure 2 Photo examples

For 10 consecutive days, the seedlings were photographed
sequentially starting at 10:00 am and 10:00 pm each day, and the
photographing of the 24 plants, in all eight directions, was
completed at approximately 12:00 am and 12:00 pm each day. A
total of 3840 images were collected.

2.1.2  Preprocessing

To reduce the amount of computation and the interference of

noise, the obtained images were preprocessed as shown in Figure 3.

2 Materials and methods

2.1 Materials
2.1.1 Data collection

Materials used were provided by a seedling grower (Evergreen
Fujimi K. K., Gunma, Japan) and included a total of 24 fresh tomato
grafting seedlings (grafting is performed in the early stages of
tomato seedlings, when they have 2.5-3 leaves) with the root stock
of Cady 1 and the scion of Momotaro 8. The front of each pot was
labeled from 1 to 24. To obtain image sequences of seedling
growth, a simple greenhouse and photographic platform were built.
As shown in Figure la, the simple greenhouse had three levels, and
each level could hold six tomato seedlings. There were LED lights
at the top of each level to maintain 12 h of light per day. Each
tomato seedling was supplied with 100 mL of water per day. The
temperature was maintained at 25°C during the day and 15°C at
night by air conditioning. As shown in Figure 1b, the photo
platform consists of a turntable, a camera (RealSense D435, Intel,
Santa Clara, CA), and a circular LED lamp. As shown in Figure lIc,
the turntable angle was labeled from 0° to 315°. When collecting
data, this study placed the seedling pot at the center of the turntable
to align the front label of the pot with the 0° label. Then, the
turntable was rotated to the next labels in turn, and images were taken
from each angle. Figure 2 shows examples of images taken from 0°
and 45°.

180°

Lamp 225°

Turntable 270°

90° )Rotate

315°
Camera 0°
I Shooting direction

¢. Photo method

Process of collecting data

First, each image was cropped from 720x1080 pixels to
720x720 pixels. The selection of the region of interest (ROI) was
based on the principle of ensuring that the growth of the seedling
was always within the image. The cropped image was then
processed with the excess green (ExG) index, which removed the
background and retained only the seedlings. This index is generally
used for background segmentation when the target is green plants.
Then, the images were resized to a size of 256x256. After
preprocessing, 1 pixel corresponded to 0.94 mm, and the entire
image area corresponded to 576 cm’ in reality.

Because of the nyctinastic movement of plants™!, leaves of
tomato seedlings closed at night and opened in the morning, and the
dataset was divided into Night and Day groups. Taking every 10
images as a sequence, there were 24 seedlings, each seedling
contained eight angles, and a total of 192 image sequences could be
obtained for both Night and Day. Three seedlings were randomly
selected from 24 seedlings as the test set, and the remaining 21
seedlings were used as the training set. Thus, in each group, a total
of 168 sequences were used for training, and 24 sequences were
used for testing. Figures 4a and 4b show examples of growth
sequences of the same plant during the day and at night.
Specifically, this study aims to predict the images of the next 5 d
(¢t = 6\sim 10) based on the images of the first 5 d (# = 1\sim 5).
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Figure 3 Schematic diagram of image preprocessing flow

=1-5

t=6-10

=6-10

b. Images collected from the same seedling for 10 consecutive days

Figure 4 Sequence examples

2.2 Method of prediction
2.2.1 Causal LSTM

LSTM is a recurrent neural network (RNN) architecture that is
usually composed of forget gates, memory gates, and output gates
and can be used to process time-series data”. It has been applied to
radar echo prediction™, traffic flow prediction™, and video
prediction™. The causal LSTM unit®” shown in Figure 5 is
connected in a cascaded way through gate operations and contains
the spatial memory M* and the temporal memory Cf. This design
incorporates a deeper network structure compared to a standard
LSTM network, thereby enhancing its capacity to extract
spatiotemporal features more effectively. The formulas can be
written as follows:

g tanh
i = o W [Xth:il’Cf—l] (1)
f, o

C'=foC:, +iog, 2
g tanh
l; = o W, * [X”C:{,MFI} (3)
A o

M! = f ©tanh (W3 * Mf") +i0g 4)

H' = tanh (W4* [X,,Cf,Mf])@tanh (M* [Cf,Mf]) (5)

where, ¢ represents the timestamp and k represents the &" causal
LSTM module in the ¢ timestamp. New temporal memory and
spatial memory are generated by an input gate i,, forget gate f;, and
input modulation gate g,. The symbol * represents convolution, ©
represents elementwise multiplication, and W,.s represents the
convolutional filter. The output of this timestamp H is determined
jointly by M* and C*.

M W. —
- 2 tanh
ct, —

Hy, o
X,

Figure 5 Architecture of causal LSTM

2.2.2  Gradient highway unit

In the traditional RNN structure, when the network is deep, the
gradient is difficult to transmit, so the features of the raw input are
casily forgotten. The gradient highway unit (GHU), as shown in
Figure 6, is designed to enhance the raw input features at each
timestamp®". It is connected between the first and second causal
LSTM modules and traverses the entire network, which allows it to
effectively transfer long-term skip-frame relationships.

w P
" ltanh x
/L
X, W, — S, ]
L~ — o - 1-S,
Z Z,
x +

Figure 6 Architecture of gradient highway unit

The formulas of GHU can be written as follows:

Z,=S,0P,+(1-S,)0Z_, (6)
P, = tanh (pr # X, + W, % _,) @)
Sz = O-(va *Xr + W\'z * rfl) (8)

where, §,, called the switch gate, can adaptively learn the
transformed input P, and the hidden states Z,.
2.2.3 Pix2pix GAN

The pix2pix module as shown in Figure 7 is a kind of
generative adversarial network (GAN) that can transfer one kind of
image style to another®™. It is made up of a generator and
discriminator. The generator is used to generate a new image, while
the discriminator is used to determine the gap between the
generated image and the target image. The generator is trained by
the discriminator to improve its performance. The original intention
of using the pix2pix module was as follows: When the input image
is processed multiple times by the causal LSTM module, the final
output result might be blurred, which is difficult for a human to
recognize as a seedling. The pix2pix module can convert blurred
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images into more realistic and detailed images. Therefore, it can
improve the image quality of the final prediction.

Generator :
. ||:|| . Discriminator | . Discriminator
j|—|:||:||:|—Fakc: |:||:|‘Rczll

1

Figure 7 Schematic diagram of pix2pix GAN

2.2.4 Structure of the whole network

Figure 8 shows the structure of the entire network, which is
mainly composed of three modules: causal LSTM, gradient
highway unit (GHU), and pix2pix. d at the bottom represents the
timestamp; in chronological order, images are input from the

position of each timestamp. For example, the image of the first day
is input from the position of /=1. Each image is processed by four
superimposed causal LSTM modules to update spatial memory M*
and temporal memory C/. The k" causal LSTM modules of adjacent
timestamps are connected, and the output at the previous timestamp
is connected to the first causal LSTM module at the next timestamp.
The GHU module traverses the entire network and accepts the
output of the first causal LSTM at each timestamp. The pix2pix
module is set in the output stage, accepts the output of the causal
LSTM, and outputs the final predicted image. The output of each
timestamp can be regarded as a prediction for the next day. For
example, the output at /=7 is used as the predicted image on the
eighth day. After the training is completed, in actual use, the
pictures of the seedlings in the first 5 d are input, and through this
network, the images of the next 5 d can be obtained.

Output images:

=8th =9th t=10th
| pix2pix ‘ pix2pix ‘ pix2pix ‘
: : - r r
- I
et Causal Hi Causal H; Causal | | | | Causal Causal Causal
3 LSTM LSTM LSTM | LSTM LSTM LSTM
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Figure 8 Network structure diagram of the proposed method

3 Results and discussion

3.1 Image similarity

This study's process is to input the image sequence of the first
5 d of the test dataset, and output the image sequence of the last 5 d
through the proposed method. Figure 9 shows the predicted
images obtained when inputting daytime images and nighttime
images. Obvious nyctinastic movement can be seen from the
comparison between the two sets of images. The first row contains

the first 5-d images of this tomato seedling, which were used as

7=6-10
(Without Pix2pix)

7=6-10
(With Pix2pix)

input. The second row is the real growth image of this tomato
seedling. The third row is the prediction result without using the
pix2pix unit, and the fourth row is the final images predicted by the
method proposed in this paper. Although the image without the
pix2pix unit resulted in the gradual growth of the seedling, the
generated images were relatively blurry, and biological information
could not be clearly obtained from them. However, the method
presented in this paper could significantly improve the quality of the
generated images, and each image could be recognized as a seedling
by a human.

T=6-10
Night
T=6-10
(Without Pix2pix)

7=6-10
(With Pix2pix)

The 1st row is the input, which is the image of the previous 5 d. The 2nd row is the real growth image. The 3rd row is the prediction without pix2pix. The 4th row is the

prediction result combined with pix2pix.

Figure 9 Growth prediction example

To measure the similarity of the predicted image and ground
truth, the mean square error (MSE) and structural similarity (SSIM)

were used. MSE aims to evaluate the squared difference between
pixels® and is an objectively quantified error. The formula for MSE


https://www.ijabe.org

June, 2025 Zhang HD, et al.

Growth prediction of tomato seedlings based on causal LSTM and GAN

Vol. 18 No.3 55

is as follows:

M-1 N-1

1 2
MSE= o> 0 16~ KG0.))]

=0 j=0

9

where, I represents the ground truth image; K represents the
predicted image; M is the pixel size of the image height; N is the
pixel size of the image width; i and j represent the position of the
pixel along the x- and y-axes in the image coordinate system,
respectively; and (i, j) and K (i, j) represent the binary number of
pixels at (i,j) in the ground truth image and predicted image,
respectively. If the image size is 256, the MSE ranges from 0 to
65536. When the MSE is equal to 0, the two images can be
considered the same.

Unlike MSE, SSIM considers the brightness, contrast, and
overall structure of images to evaluate the similarity between
images®”. The formula for SSIM is as follows:
Cup+Ch)- Qo +Cy)

SSIM = . il
W +ux+C)- (o +0y +C,)

(10)

where, I represents the ground truth image; K represents the
predicted image; and p represents the luminance information
calculated by averaging all pixel values; o, and o represent the

600 .
-+ GAN
| --No GAN L

93
(=3
(=}

IS
=3
S

[5=]
[=3
(=}

Mean squared error
(9%
(=3
(=]

100

9th

8th 10th

a. MSE

0 1 1
6th 7th

Structural similarity

standard deviations of the luminance in / and K, respectively,
quantifying the contrast of an image; o« represents the covariance
of pixel values between I and K, reflecting the structural similarity
and correlation; C is a constant used to prevent division by zero,
C, =KLy, C,=(K,L)’; K, and K, are traditionally set to 0.01
and 0.03, respectively; and L represents the dynamic range of the
pixel values (for grayscale images, L =255). SSIM ranges from 0
to 1, while when SSIM is equal to 1, two images can be considered
the same.

Figure 10 shows the MSE and SSIM values at each time stamp.
As with other forecasting tasks, errors accumulate over time. Within
the predicted 5 d, the MSE increases from 148.27 to 396.69 without
GAN and from 252.11 to 582.53 with GAN. The SSIM decreases
from 0.93 to 0.87 without using GAN, while after using GAN, the
value decreases from 0.93 to 0.85. When GAN was used, the
generated image was closer to the real image. To display the
similarity more vividly, two sets of image examples with different
similarity values were selected in Figure 11, where the left side of
each group is a real image and the right side is a predicted image.
The left picture is a group with higher similarity, an MSE of 173.79
and an SSIM of 0.94, and the right picture is a group with lower
similarity, an MSE of 532.72 and an SSIM of 0.88.

1.000
0.975
0.950 -
0.925 F
0.900 -
0.875 1
0.850 -
0.825
0.800

- GAN
-»-No GAN

7th

9th

8th 10th

b. SSIM

6th

Figure 10  Similarity index between predicted images and real images in the next 5 d

MSE=173.79, SSIM=0.94
a. High similarity, better matching
of branch direction and leaf area

MSE=532.72, SSIM=0.88
b. Low similarity, branch direction and
leafarea are difficult to match with
those of the real image

Figure 11 Examples of images with different similarity values

For the growth of seedlings, from the perspective of image
sequences, the morphological changes of images not only depend
on the growth time of seedlings but also depend on the mutual
constraints between various parts. In reality, the variety of seedlings
and environmental factors also affects the morphological changes of
seedlings. The method proposed in this paper essentially realizes the
prediction of the overall morphological changes of seedlings, as
well as the prediction of height and plant area, but the generated
images still have some errors. In terms of image quality, if
predictions are made from only one angle, as the seedling grows,
some parts of the leaves will be revealed, and some parts will be
occluded. In addition, different parts of the seedling and different
leaf angles respond to different trends. These factors can cause
random and unexpected effects on forecast accuracy. Therefore, to
further improve the accuracy, the idea of image segmentation can be

combined to distinguish different parts and calculate the changes in
each part. Furthermore, the time interval of the image sequence in
the dataset can be appropriately shortened.
3.2 Biological information

In addition to calculating the image similarity, it is equally im-
portant to extract biological information from the predicted images.
The plant area and the height were selected as parameters and com-
pared the error between these parameters of the predicted image and
the real image to measure the effectiveness of the method proposed
in this paper. As shown in Figure 12, ImageJ software was used to
measure the pixel value of the canopy from the bottom as the
height, and counted the white pixel value of the image as the plant
area, and converted it into the actual height and area according to
the 1 pixel value = 0.94 mm calibrated in the preprocessing process.

Height

Height

a. True image b. Predicted image

Figure 12 Schematic diagram of biological information
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Figure 13 shows the daily changes in the area and height of the
seedlings, in which the red curves are the true value and contain the
data of 10 d. The predicted values start from the 6th day and are
represented by the blue curve. Table 1 shows the error between the

501

— Truth
-®- Prediction

%) w ~
[=} (=] (=)
T T T

Plant area/cm?

(=]
T

1th 2th 3th 4th 5th 6th 7th 8th 9th 10th
a. Plant area

true value and the value obtained from the predicted images for
each day. The relative errors of the plant area were 1.7, 1.4, 1.5, 0.9,
and 3.2 cm? and the relative prediction errors of the height were
1.7,1.9,4.6, 6.9, and 4.5 mm over the 5 d.

100 1
— Truth .
-®- Prediction -
80
g L
£ 60
=
.80
= 40
20

1th 2th 3th 4th 5th 6th 7th 8th 9th 10th
b. Height

Figure 13 Comparison of biological information extracted from predicted and real images

Table 1 Relative error of biological information extracted
from predicted and real images

6th 7th 8th 9th 10th
Plant area/cm’ 1.7 1.4 1.5 0.9 32
Height/mm 1.7 1.9 4.6 6.9 4.5

From Figure 13 and Table 1, it can be found that the predicted
values of plant area and height can follow the changes of the real
values well, but at the same time, it can be also observed that the
predicted plant area value is always smaller than the actual value,
while the predicted plant height value is larger than the actual
measurement value. These trends may be due to the limitations of
the model and data representation. For underestimation of plant
area, the main reason may be that the model mainly considers the
changes in image edge features and structural characteristics rather
than accurate area calculations, and as the plant grows, the leaves
will curl and extend, which is difficult to learn from images of a
single angle. Regarding the overestimation of plant height, the
model may be biased towards vertical structures, such as stems,
because they have strong and easily recognizable features in the
image. This may cause the model to overemphasize these structures
when predicting height. This leads to over-prediction.

To solve these problems, two aspects can be considered.
1) From the perspective of output values, after verification with
larger-scale data, introducing adjustment factors based on average
underestimation or overestimation can reduce errors. 2) From the
perspective of improving generative neural networks, combining,
for example, 3D structural data or multi-angle images to learn more
comprehensive plant growth characteristics can reduce errors.

4 Conclusions

In this study, a 10-d growth image sequence dataset of 24
tomato seedlings at eight angles was obtained, and a deep learning
approach based on causal LSTM, GHU, and pix2pix for predicting
future 5-day images from the previous 5 d was proposed. This
method of predicting future growth images based on historical
seedling image sequences has the potential to become a basis for
plant factories to adjust production expectations and management
strategies. From the evaluation of imaging quality, image similarity,
and biomass tracking performance, the following conclusions can
be drawn:

(1) Compared with the traditional method of using the LSTM

module to form the direct prediction of the recurrent neural
network, in the output stage, the use of the GAN module can
effectively improve the image quality.

(2) The image similarity gradually accumulates errors with the
increasing number of prediction days. The MSE changed from
148.27 on day 6 to 346.69 on day 10, while the SSIM went from
0.92 on day 6 to 0.857 on day 10.

(3) The plant area and plant height extracted from the predicted
image showed the same trend as the real values; the relative
prediction errors of the plant area were 1.7, 1.4, 1.5, 0.9, and
3.2 cm?; and the relative prediction errors of the height were 1.7,
1.9,4.6, 6.9, and 4.5 mm over the 5 d.
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