
  

Growth prediction of tomato seedlings based on causal LSTM and GAN
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Abstract: The stable production of seedlings is very important for seedling growers. Predicting the growth of seedlings helps
growers  promptly  adjust  management  strategies  and  production  expectations.  Traditional  methods  rely  on  historical  growth
data or assess current plant physiological parameters to estimate future growth. This study aims to predict future images directly
from historical  growth  images  of  tomato  seedlings.  Specifically,  a  dataset  of  10-d  image sequences  of  tomato  seedlings  was
collected. Then, an algorithm based on several neural networks was applied to predict the images of the next 5 d based on the
images of the first 5 d. The algorithm was composed of a causal long short-term memory (LSTM) unit, a gradient highway unit
(GHU), and a pix2pix unit. The experimental results showed that the introduction of a Generative Adversarial Network (GAN)
further enhanced the clarity and realism of the predicted images, ensuring higher quality and more accurate visual results. From
the perspective of image similarity, the average mean squared error (MSE) reached 394.97 and the average structural similarity
(SSIM) reached 0.90 over 5 d. From the perspective of biological information, the average prediction errors of the plant area
were 1.7, 1.4, 1.5, 0.9, and 3.2 cm2 over the 5 d, and the average prediction errors of plant height were 1.7, 1.9, 4.6, 6.9, and
4.5 mm, respectively. The extracted biological information such as plant area and height showed good following performance
compared  with  the  real  growth  information.  The  research  results  show  that  predicting  future  plant  images  from  historical
images  has  the  potential  to  become  a  useful  tool  for  nursery  growers  to  adjust  management  strategies  and  production
expectations.
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1    Introduction
Tomatoes are one of the most important  varieties of vegetable

in  Japan[1],  and  many  tomato  seedlings  are  produced  by  seedling
growers  and  supplied  to  farmers  for  cultivation.  Tomato  seedlings
play  a  critical  role  in  ensuring  successful  cultivation,  as  they  are
produced  by  specialized  seedling  growers  and  then  supplied  to
farmers.  However,  the  growth  and  quality  of  these  seedlings  are
highly  influenced  by  various  environmental  factors,  such  as  light,
temperature,  humidity,  and  fertilizer  concentration.  Ensuring
production  stability  for  seedling  growers  remains  a  key  challenge,
requiring  effective  solutions  to  optimize  management  strategies[2].
For  instance,  adjusting nutrient  solution formulas  based on growth
stages has been shown to promote yield and quality  in  greenhouse
strawberry production, a practice that could similarly benefit tomato
seedling  cultivation[3].  To  ensure  the  stability  of  production,
researchers have proposed various methods for seedling growers to
adjust  management  strategies.  There  are  two  main  types  of
methods:  one  is  to  use  nonimage  data  to  predict  the  final  yield
through  artificial  neural  networks,  and  the  other  is  to  use
nondestructive measurement methods, mainly image data, to obtain

real-time plant growth and disease statuses.
Methods  that  use  nonimage  data  to  predict  seedling  growth

mainly  make  use  of  an  artificial  neural  network.  Using  the  SVM
method, the apparent photosynthetic rate of the tomato canopy can
be predicted[4].  Moriyuki  and Fukuda[5] used leaf  size and circadian
rhythms  to  predict  early  seedling  fresh  weight  gain.  Temperature,
solar  irradiance,  and  vapor  pressure  parameters  can  be  used  to
predict the leaf area index and daily dry weight through a Bayesian
network[6].  The  field  canopy  coverage  index  can  be  predicted  by
combining image monitoring data and climate environment through
neural  networks[7].  The  real-time  acquisition  of  biological
information  and  health  status  by  nondestructive  measurement  is
realized mainly through image processing technology. For example,
the image processing method was used to detect the nodes of tomato
seedlings  and  estimate  the  lengths  between  nodes.  This  method
provided  a  basis  for  the  evaluation  of  the  growth  and  vitality  of
tomato seedlings[8].  Relying on long-term collected public  datasets,
researchers have proposed deep learning-based methods to classify
tomato leaves with different diseases[9-12]. With the introduction of a
real-time  detection  framework,  it  is  possible  to  locate  pests  and
diseased  parts  of  tomato  seedlings  growing  in  a  greenhouse[13,14].
Based on the greenhouse monitoring platform[15] combined with the
convolutional  neural  network[16],  the  detection  accuracy  of  tomato
leaf diseases can be improved. However, methods that rely on static
data  do  not  take  into  account  real-time  environmental  changes,
which  makes  it  difficult  to  apply  to  complex  and  dynamic
agricultural environments. Methods that rely on images are usually
used  to  assess  the  current  status  and  have  no  predictive  ability.
Addressing  these  limitations  requires  combining  the  advantages  of
both  methods  to  achieve  dynamic  and  predictive  modeling  of
seedling growth.

One  of  the  achievements  of  machine  vision  tasks  in  recent
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years  is  to  predict  future  image  frames  from past  image  frames  in
video  footage  based  on  long  short-term  memory  (LSTM)
technology.  It  has  been  successfully  applied  to  automatic
navigation[17],  human  behavior  prediction[18],  and  weather
forecasting[19].  Likewise,  if  it  is  possible  to  predict  future  images
from  past  images  of  tomato  seedlings,  LSTM  will  help  seedling
growers  adjust  management  strategies  and  production  expectations
to  maintain  seedling  production  stability.  Based  on  public  datasets
such  as  Komanatsuna[20]  and  Arabidopsis[21],  researchers  have
proposed  methods  to  predict  seedling  growth  images  at  an  early
stage  from  the  top  view  of  plants[22-24].  However,  due  to  the  short
sampling  time  interval  of  these  datasets,  these  studies  achieved
image  prediction  after  a  few  hours  and  were  only  evaluated  using
image similarity metrics. However, image growth prediction over a
longer  time  needs  to  be  implemented,  and  the  accuracy  of  the
method needs to be measured with biological information.

In this research, this study aims to predict future 5-day images
of  tomato  seedlings  using  images  from the  previous  5  d.  This  can
allow  seedling  growers  to  perform  forecasting  and  adjust
management strategies and production expectations. The objectives
of this study are to be presented as follows: (1) To build an efficient
neural network for image prediction of tomato seedling growth from
5  d  into  the  future;  and  (2)  to  judge  whether  the  prediction  is
effective  from  two  aspects:  image  similarity  and  biological
information. 

2    Materials and methods
 

2.1    Materials 

2.1.1    Data collection
Materials used were provided by a seedling grower (Evergreen

Fujimi K. K., Gunma, Japan) and included a total of 24 fresh tomato
grafting  seedlings  (grafting  is  performed  in  the  early  stages  of
tomato seedlings, when they have 2.5-3 leaves) with the root stock
of Cady 1 and the scion of Momotaro 8. The front of each pot was
labeled  from  1  to  24.  To  obtain  image  sequences  of  seedling
growth, a simple greenhouse and photographic platform were built.
As shown in Figure 1a, the simple greenhouse had three levels, and
each level could hold six tomato seedlings. There were LED lights
at  the  top  of  each  level  to  maintain  12  h  of  light  per  day.  Each
tomato  seedling  was  supplied  with  100  mL of  water  per  day.  The
temperature  was  maintained  at  25°C  during  the  day  and  15°C  at
night  by  air  conditioning.  As  shown  in  Figure  1b,  the  photo
platform consists  of  a  turntable,  a  camera  (RealSense  D435,  Intel,
Santa Clara, CA), and a circular LED lamp. As shown in Figure 1c,
the  turntable  angle  was  labeled  from  0°  to  315°.  When  collecting
data, this study placed the seedling pot at the center of the turntable
to  align  the  front  label  of  the  pot  with  the  0°  label.  Then,  the
turntable was rotated to the next labels in turn, and images were taken
from each angle. Figure 2 shows examples of images taken from 0°
and 45°.

 
 

a. Simple greenhouse b. Photo platform c. Photo method

Lamp

Turntable

Camera
315°

0°

180°

45°

270° 90°

225° 135°

Shooting direction

Rotate

Figure 1    Process of collecting data
 
 
 

a. Taken from 0° b. Taken from 45°

Figure 2    Photo examples
 

For  10  consecutive  days,  the  seedlings  were  photographed
sequentially  starting  at  10:00  am  and  10:00  pm  each  day,  and  the
photographing  of  the  24  plants,  in  all  eight  directions,  was
completed  at  approximately  12:00  am  and  12:00  pm  each  day.  A
total of 3840 images were collected. 

2.1.2    Preprocessing
To  reduce  the  amount  of  computation  and  the  interference  of

noise, the obtained images were preprocessed as shown in Figure 3.

First,  each  image  was  cropped  from  720×1080  pixels  to
720×720  pixels.  The  selection  of  the  region  of  interest  (ROI)  was
based  on  the  principle  of  ensuring  that  the  growth  of  the  seedling
was  always  within  the  image.  The  cropped  image  was  then
processed  with  the  excess  green  (ExG)  index,  which  removed  the
background and retained only the seedlings. This index is generally
used for  background segmentation when the  target  is  green plants.
Then,  the  images  were  resized  to  a  size  of  256×256.  After
preprocessing,  1  pixel  corresponded  to  0.94  mm,  and  the  entire
image area corresponded to 576 cm2 in reality.

t

Because  of  the  nyctinastic  movement  of  plants[25],  leaves  of
tomato seedlings closed at night and opened in the morning, and the
dataset  was  divided  into  Night  and  Day  groups.  Taking  every  10
images  as  a  sequence,  there  were  24  seedlings,  each  seedling
contained eight angles, and a total of 192 image sequences could be
obtained  for  both  Night  and  Day.  Three  seedlings  were  randomly
selected  from  24  seedlings  as  the  test  set,  and  the  remaining  21
seedlings were used as the training set. Thus, in each group, a total
of  168  sequences  were  used  for  training,  and  24  sequences  were
used  for  testing.  Figures  4a  and  4b  show  examples  of  growth
sequences  of  the  same  plant  during  the  day  and  at  night.
Specifically,  this  study  aims  to  predict  the  images  of  the  next  5  d
(  = 6\sim 10) based on the images of the first 5 d (t = 1\sim 5).
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Figure 3    Schematic diagram of image preprocessing flow

 
 

a. Images collected from the same seedling for 10 consecutive nights

b. Images collected from the same seedling for 10 consecutive days

t=1-5

t=6-10

t=1-5

t=6-10

Figure 4    Sequence examples
  
2.2    Method of prediction 

2.2.1    Causal LSTM

Mk
t Ck

t

LSTM is a recurrent neural network (RNN) architecture that is
usually  composed  of  forget  gates,  memory  gates,  and  output  gates
and can be used to process time-series data[26]. It has been applied to
radar  echo  prediction[27],  traffic  flow  prediction[28],  and  video
prediction[29].  The  causal  LSTM  unit[30]  shown  in  Figure  5  is
connected in  a  cascaded way through gate  operations  and contains
the  spatial  memory   and  the  temporal  memory  .  This  design
incorporates  a  deeper  network  structure  compared  to  a  standard
LSTM  network,  thereby  enhancing  its  capacity  to  extract
spatiotemporal  features  more  effectively.  The  formulas  can  be
written as follows:Ñ
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where,    represents  the  timestamp  and    represents  the  kth  causal
LSTM  module  in  the    timestamp.  New  temporal  memory  and
spatial memory are generated by an input gate  , forget gate  , and
input  modulation gate  .  The symbol    represents  convolution, 
represents  elementwise  multiplication,  and    represents  the
convolutional filter. The output of this timestamp   is determined
jointly by   and  .
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Figure 5    Architecture of causal LSTM
  

2.2.2    Gradient highway unit
In the traditional RNN structure, when the network is deep, the

gradient is difficult to transmit, so the features of the raw input are
easily  forgotten.  The  gradient  highway  unit  (GHU),  as  shown  in
Figure  6,  is  designed  to  enhance  the  raw  input  features  at  each
timestamp[31].  It  is  connected  between  the  first  and  second  causal
LSTM modules and traverses the entire network, which allows it to
effectively transfer long-term skip-frame relationships.
 
 

Xt Ws St 1−St

Wp Pt

Zt−1 Zt

tanh

σ

Figure 6    Architecture of gradient highway unit
 

The formulas of GHU can be written as follows:

Zt = S t ⊙Pt + (1−S t)⊙Zt−1 (6)

Pt = tanh
(

Wpx ∗Xt +Wpz ∗Zt−1

)
(7)

S t = σ (Wsx ∗Xt +Wsz ∗Zt−1) (8)

S t

Pt Zt

where,  ,  called  the  switch  gate,  can  adaptively  learn  the
transformed input   and the hidden states  . 

2.2.3    Pix2pix GAN
The  pix2pix  module  as  shown  in  Figure  7  is  a  kind  of

generative adversarial network (GAN) that can transfer one kind of
image  style  to  another[32].  It  is  made  up  of  a  generator  and
discriminator. The generator is used to generate a new image, while
the  discriminator  is  used  to  determine  the  gap  between  the
generated  image  and  the  target  image.  The  generator  is  trained  by
the discriminator to improve its performance. The original intention
of using the pix2pix module was as follows: When the input image
is  processed  multiple  times  by  the  causal  LSTM module,  the  final
output  result  might  be  blurred,  which  is  difficult  for  a  human  to
recognize  as  a  seedling.  The  pix2pix  module  can  convert  blurred
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images  into  more  realistic  and  detailed  images.  Therefore,  it  can
improve the image quality of the final prediction.
  

Generator

Discriminator Discriminator

Fake Real

Figure 7    Schematic diagram of pix2pix GAN
  

2.2.4    Structure of the whole network

d

Figure  8  shows  the  structure  of  the  entire  network,  which  is
mainly  composed  of  three  modules:  causal  LSTM,  gradient
highway  unit  (GHU),  and  pix2pix.    at  the  bottom  represents  the
timestamp;  in  chronological  order,  images  are  input  from  the

Mk
t

Ck
t

position of each timestamp. For example, the image of the first day
is  input  from the position of  t=1.  Each image is  processed by four
superimposed causal LSTM modules to update spatial memory 
and temporal memory  . The kth causal LSTM modules of adjacent
timestamps are connected, and the output at the previous timestamp
is connected to the first causal LSTM module at the next timestamp.
The  GHU  module  traverses  the  entire  network  and  accepts  the
output  of  the  first  causal  LSTM  at  each  timestamp.  The  pix2pix
module  is  set  in  the  output  stage,  accepts  the  output  of  the  causal
LSTM,  and  outputs  the  final  predicted  image.  The  output  of  each
timestamp  can  be  regarded  as  a  prediction  for  the  next  day.  For
example,  the  output  at  t=7  is  used  as  the  predicted  image  on  the
eighth  day.  After  the  training  is  completed,  in  actual  use,  the
pictures of the seedlings in the first 5 d are input, and through this
network, the images of the next 5 d can be obtained.
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Figure 8    Network structure diagram of the proposed method
 
 

3    Results and discussion
 

3.1    Image similarity
This study's process is to input the image sequence of the first

5 d of the test dataset, and output the image sequence of the last 5 d
through  the  proposed  method.　 Figure  9  shows  the  predicted
images  obtained  when  inputting  daytime  images  and  nighttime
images.  Obvious  nyctinastic  movement  can  be  seen  from  the
comparison between the two sets of images. The first row contains
the  first  5-d  images  of  this  tomato  seedling,  which  were  used  as

input.  The  second  row  is  the  real  growth  image  of  this  tomato
seedling.  The  third  row  is  the  prediction  result  without  using  the
pix2pix unit, and the fourth row is the final images predicted by the
method  proposed  in  this  paper.  Although  the  image  without  the
pix2pix  unit  resulted  in  the  gradual  growth  of  the  seedling,  the
generated images were relatively blurry, and biological information
could  not  be  clearly  obtained  from  them.  However,  the  method
presented in this paper could significantly improve the quality of the
generated images, and each image could be recognized as a seedling
by a human.
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The 1st row is the input, which is the image of the previous 5 d. The 2nd row is the real growth image. The 3rd row is the prediction without pix2pix. The 4th row is the
prediction result combined with pix2pix.

Figure 9    Growth prediction example
 

To  measure  the  similarity  of  the  predicted  image  and  ground
truth, the mean square error (MSE) and structural similarity (SSIM)

were  used.  MSE  aims  to  evaluate  the  squared  difference  between
pixels[33] and is an objectively quantified error. The formula for MSE
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is as follows:

MSE =
1

M ·N

M−1∑
i=0

N−1∑
j=0

[I (i, j)−K (i, j)]2 (9)

I
M N

i

I (i, j) K (i, j)
(i, j)

where,    represents  the  ground  truth  image;  K  represents  the
predicted image;    is  the pixel  size of  the image height;    is  the
pixel  size  of  the image width;   and  j  represent  the position of  the
pixel  along  the  x-  and  y-axes  in  the  image  coordinate  system,
respectively; and   and   represent the binary number of
pixels  at    in  the  ground  truth  image  and  predicted  image,
respectively.  If  the  image  size  is  256,  the  MSE  ranges  from  0  to
65536.  When  the  MSE  is  equal  to  0,  the  two  images  can  be
considered the same.

Unlike  MSE,  SSIM  considers  the  brightness,  contrast,  and
overall  structure  of  images  to  evaluate  the  similarity  between
images[34]. The formula for SSIM is as follows:

SSIM =
(2µIµK +C1) · (2σIK +C2)

(µ2
I +µ

2
K +C1) · (σ2

I +σ
2
K +C2)

(10)

I
µ

σI σK

where,    represents  the  ground  truth  image;  K  represents  the
predicted  image;  and    represents  the  luminance  information
calculated  by  averaging  all  pixel  values;    and    represent  the

I
σIK

I
C

C1 = (K1L)2 C2 = (K2L)2 K1 K2

L
L = 255

standard  deviations  of  the  luminance  in    and  K,  respectively,
quantifying the contrast of an image;   represents the covariance
of pixel values between   and K, reflecting the structural similarity
and  correlation;    is  a  constant  used  to  prevent  division  by  zero,

,  ;    and    are  traditionally  set  to  0.01
and  0.03,  respectively;  and    represents  the  dynamic  range  of  the
pixel  values  (for  grayscale  images,  ).  SSIM ranges  from 0
to 1, while when SSIM is equal to 1, two images can be considered
the same.

Figure 10 shows the MSE and SSIM values at each time stamp.
As with other forecasting tasks, errors accumulate over time. Within
the predicted 5 d, the MSE increases from 148.27 to 396.69 without
GAN and  from 252.11  to  582.53  with  GAN.  The  SSIM decreases
from 0.93 to 0.87 without using GAN, while after using GAN, the
value  decreases  from  0.93  to  0.85.  When  GAN  was  used,  the
generated  image  was  closer  to  the  real  image.  To  display  the
similarity  more  vividly,  two sets  of  image examples  with  different
similarity values were selected in Figure 11,  where the left  side of
each group is  a  real  image and the right  side is  a  predicted image.
The left picture is a group with higher similarity, an MSE of 173.79
and  an  SSIM  of  0.94,  and  the  right  picture  is  a  group  with  lower
similarity, an MSE of 532.72 and an SSIM of 0.88.

 
 

6th
0

100

200

M
ea

n
 s

q
u
ar

ed
 e

rr
o
r

300

400

500

600

7th 8th 9th 10th

GAN
No GAN

a. MSE

6th
0.800

0.825

0.875

0.850

0.900

1.000

0.925

0.975

0.950

S
tr

u
ct

u
ra

l 
si

m
il

ar
it

y

7th 8th 9th 10th

GAN
No GAN

b. SSIM

Figure 10    Similarity index between predicted images and real images in the next 5 d
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Figure 11    Examples of images with different similarity values
 

For  the  growth  of  seedlings,  from  the  perspective  of  image
sequences,  the  morphological  changes  of  images  not  only  depend
on  the  growth  time  of  seedlings  but  also  depend  on  the  mutual
constraints between various parts. In reality, the variety of seedlings
and environmental factors also affects the morphological changes of
seedlings. The method proposed in this paper essentially realizes the
prediction  of  the  overall  morphological  changes  of  seedlings,  as
well  as  the  prediction  of  height  and  plant  area,  but  the  generated
images  still  have  some  errors.  In  terms  of  image  quality,  if
predictions  are  made  from  only  one  angle,  as  the  seedling  grows,
some  parts  of  the  leaves  will  be  revealed,  and  some  parts  will  be
occluded.  In  addition,  different  parts  of  the  seedling  and  different
leaf  angles  respond  to  different  trends.  These  factors  can  cause
random and unexpected effects  on forecast  accuracy.  Therefore,  to
further improve the accuracy, the idea of image segmentation can be

combined to distinguish different parts and calculate the changes in
each part.  Furthermore,  the  time interval  of  the  image sequence in
the dataset can be appropriately shortened. 

3.2    Biological information
In addition to calculating the image similarity, it is equally im-

portant to extract biological information from the predicted images.
The plant area and the height were selected as parameters and com-
pared the error between these parameters of the predicted image and
the real image to measure the effectiveness of the method proposed
in this paper. As shown in Figure 12, ImageJ software was used to
measure  the  pixel  value  of  the  canopy  from  the  bottom  as  the
height, and counted the white pixel value of the image as the plant
area,  and  converted  it  into  the  actual  height  and  area  according  to
the 1 pixel value = 0.94 mm calibrated in the preprocessing process.
 
 

a. True image b. Predicted image

HeightHeight

Figure 12    Schematic diagram of biological information
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Figure 13 shows the daily changes in the area and height of the
seedlings, in which the red curves are the true value and contain the
data  of  10  d.  The  predicted  values  start  from  the  6th  day  and  are
represented by the blue curve. Table 1 shows the error between the

true  value  and  the  value  obtained  from  the  predicted  images  for
each day. The relative errors of the plant area were 1.7, 1.4, 1.5, 0.9,
and  3.2  cm2,  and  the  relative  prediction  errors  of  the  height  were
1.7, 1.9, 4.6, 6.9, and 4.5 mm over the 5 d.
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Figure 13    Comparison of biological information extracted from predicted and real images
 
 

Table 1    Relative error of biological information extracted
from predicted and real images

6th 7th 8th 9th 10th
Plant area/cm2 1.7 1.4 1.5 0.9 3.2
Height/mm 1.7 1.9 4.6 6.9 4.5

 

From Figure 13 and Table 1, it can be found that the predicted
values  of  plant  area  and  height  can  follow the  changes  of  the  real
values  well,  but  at  the  same  time,  it  can  be  also  observed  that  the
predicted  plant  area  value  is  always  smaller  than  the  actual  value,
while  the  predicted  plant  height  value  is  larger  than  the  actual
measurement  value.  These  trends  may  be  due  to  the  limitations  of
the  model  and  data  representation.  For  underestimation  of  plant
area,  the  main  reason  may  be  that  the  model  mainly  considers  the
changes in image edge features and structural characteristics rather
than  accurate  area  calculations,  and  as  the  plant  grows,  the  leaves
will  curl  and  extend,  which  is  difficult  to  learn  from  images  of  a
single  angle.  Regarding  the  overestimation  of  plant  height,  the
model  may  be  biased  towards  vertical  structures,  such  as  stems,
because  they  have  strong  and  easily  recognizable  features  in  the
image. This may cause the model to overemphasize these structures
when predicting height. This leads to over-prediction.

To  solve  these  problems,  two  aspects  can  be  considered.
1)  From  the  perspective  of  output  values,  after  verification  with
larger-scale  data,  introducing  adjustment  factors  based  on  average
underestimation  or  overestimation  can  reduce  errors.  2)  From  the
perspective  of  improving  generative  neural  networks,  combining,
for example, 3D structural data or multi-angle images to learn more
comprehensive plant growth characteristics can reduce errors. 

4    Conclusions
In  this  study,  a  10-d  growth  image  sequence  dataset  of  24

tomato seedlings at eight angles was obtained, and a deep learning
approach based on causal LSTM, GHU, and pix2pix for predicting
future  5-day  images  from  the  previous  5  d  was  proposed.  This
method  of  predicting  future  growth  images  based  on  historical
seedling  image  sequences  has  the  potential  to  become  a  basis  for
plant  factories  to  adjust  production  expectations  and  management
strategies. From the evaluation of imaging quality, image similarity,
and  biomass  tracking  performance,  the  following  conclusions  can
be drawn:

(1)  Compared  with  the  traditional  method  of  using  the  LSTM

module  to  form  the  direct  prediction  of  the  recurrent  neural
network,  in  the  output  stage,  the  use  of  the  GAN  module  can
effectively improve the image quality.

(2) The image similarity gradually accumulates errors with the
increasing  number  of  prediction  days.  The  MSE  changed  from
148.27  on  day  6  to  346.69  on  day  10,  while  the  SSIM went  from
0.92 on day 6 to 0.857 on day 10.

(3) The plant area and plant height extracted from the predicted
image  showed  the  same  trend  as  the  real  values;  the  relative
prediction  errors  of  the  plant  area  were  1.7,  1.4,  1.5,  0.9,  and
3.2  cm2;  and  the  relative  prediction  errors  of  the  height  were  1.7,
1.9, 4.6, 6.9, and 4.5 mm over the 5 d. 
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