

# Optimized fertilization strategy for improving grain yield, nutrient uptake, and fertilizer use efficiency of drip-fertigated winter wheat in Northern Xinjiang, China

Shuai He<sup>1,2†</sup>, Huaisheng Li<sup>3†</sup>, Shuhong Wang<sup>4</sup>, Yan Li<sup>5</sup>, Lei Zhang<sup>5\*</sup>, Dongwei Li<sup>1,2</sup>

(1. Northwest Oasis Water-saving Agriculture Key Laboratory, Ministry of Agriculture and Rural Affairs, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, Xinjiang, China;

2. Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, Xinjiang, China;

3. Key Laboratory of Efficient Utilization of Water and Fertilizer Resources of Xinjiang Production and Construction Corps, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, Xinjiang, China;

4. XPCC Surveying & Designing Institute Group Co., Ltd., Shihezi, Xinjiang, 832000, China;

5. College of Agriculture, Tarim University, Arar 843300, Xinjiang, China)

**Abstract:** Excessive fertilizer application is common in the management of winter wheat (*Triticum aestivum* L.) in northwest China. However, this practice does not necessarily guarantee higher wheat yield and also causes a waste of resources and environmental pollution. The nitrogen (N), phosphorus (P), and potassium (K) fertilizer application rates need to be optimized to reduce the nitrate residue in the soil while maintaining a high wheat yield. Field experiments were conducted in three consecutive growth seasons (2018-2021) on winter wheat in Northern Xinjiang of China with four reduced fertilization (N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O) rates (FS1: 166-80-30 kg/hm<sup>2</sup>, FS2: 0-80-30 kg/hm<sup>2</sup>, FS3: 166-0-30 kg/hm<sup>2</sup>, FS4: 166-80-0 kg/hm<sup>2</sup>) and the local fertilization rate (CK: 240-105-38). The soil nutrients, nutrient uptake content of organ, dry matter accumulation, yield, and fertilization use efficiency were investigated. The results showed increasing NH<sub>4</sub><sup>+</sup>-N concentrations in the soil over the three growing seasons, while NO<sub>3</sub><sup>-</sup>-N concentrations decreased in the later experimental years. High soil NH<sub>4</sub><sup>+</sup>-N concentration and low soil NO<sub>3</sub><sup>-</sup>-N residues were observed in FS3. When the control fertilization (CK) was applied, the grains had a higher proportion of N and P, while the N content in grains was relatively low at the high fertilization rate. When the fertilizer supply was insufficient (FS2, FS3, and FS4), the proportion of vegetative organs to the total biomass was relatively low. Lower fertilization rates resulted in higher N, P, and K use efficiencies in 2019-2020 and 2020-2021, in comparison to those at higher rates, while FS2 exhibited the highest fertilizer use efficiency. When fertilization (CK) was sufficient, the dry matter accumulation decreased by 3.33%-17.08%, and the harvest index increased by 0.87%-47.40%. FS1 had the highest spike number, which significantly increased by 17.98%, 17.80%, and 9.64% compared with CK during 2018-2019, 2019-2020, and 2020-2021, respectively. In conclusion, a reduction in fertilizer application compared with CK could provide excellent production results. The optimal drip fertigation approach for winter wheat production in the arid regions of northwest China was determined to be the N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O application rate of 166-80-30 kg/hm<sup>2</sup> when comprehensively considering the winter wheat yield, soil NH<sub>4</sub><sup>+</sup>-N, and NO<sub>3</sub><sup>-</sup>-N, N use efficiency, P use efficiency, and K use efficiency. This research can provide a scientific basis for the responses of winter wheat production to nutrient uptake of drip-irrigated winter wheat in arid and semi-arid regions.

**Keywords:** winter wheat, soil nutrients, yield, fertilizer application rate, nutrient content and use efficiency

**DOI:** [10.25165/ijabe.20251805.8801](https://doi.org/10.25165/ijabe.20251805.8801)

**Citation:** He S, Li H S, Wang S H, Li Y, Zhang L, Li D W. Optimized fertilization strategy for improving grain yield, nutrient uptake, and fertilizer use efficiency of drip-fertigated winter wheat in Northern Xinjiang, China. Int J Agric & Biol Eng, 2025; 18(5): 47-58.

## 1 Introduction

Winter wheat (*Triticum aestivum* L.), a major staple crop in

Received date: 2024-01-27 Accepted date: 2025-07-09

**Biographies:** Shuai He, Professor, research interest: water-saving agriculture and soil improvement, Email: [xjshzhb@163.com](mailto:xjshzhb@163.com); Huaisheng Li, Assistant Professor, research interest: plant nutrition and fertilizers, Email: [1505421154@qq.com](mailto:1505421154@qq.com); Shuhong Wang, Associate professor, research interest: water-saving agriculture and irrigation design, Email: [295263126@qq.com](mailto:295263126@qq.com); Yan Li, MS, research interest: plant nutrition and fertilizers, Email: [1695169541@qq.com](mailto:1695169541@qq.com); Dongwei Li, PhD, research interest: water-saving agriculture and soil improvement, Email: [lidongwei@caas.cn](mailto:lidongwei@caas.cn).

†These authors contributed equally to this work.

**\*Corresponding author:** Lei Zhang, Associate professor, research interest: plant nutrition and fertilizers. Address: +86-150 0162 5213, Email: [zhanglei3127@163.com](mailto:zhanglei3127@163.com).

Xinjiang of China and abroad, has been widely cultivated to ensure national and global food security<sup>[1,2]</sup>. Nevertheless, farmers often excessively apply fertilizers to achieve high yields and maximize profits<sup>[3-5]</sup>, which not only results in low fertilizer use efficiency<sup>[6]</sup> but also exacerbates fertilizer losses by leaching in the soil and volatilization<sup>[7,8]</sup>. Specifically, the leaching of soluble inorganic matter (such as nitrate) due to excessive fertilization is considered the main cause of increased inorganic salts in groundwater, which directly disrupts soil hydrological ecosystems<sup>[9,10]</sup>. Consequently, maintaining high yields and increasing nutrient and fertilizer use efficiency is crucial for achieving sustainable food production<sup>[4,11]</sup>.

Growth, yield, and fertilizer use efficiency in winter wheat have been studied extensively to determine how different rates of fertilizer application affect the crop<sup>[12,13]</sup>. Notably, although increasing the fertilization rate increased winter wheat yield, the

efficiency of the fertilizer used declined drastically<sup>[1,14]</sup>. Guo et al.<sup>[15]</sup> discovered that under drip irrigation, increased N fertilization rate led to an increase in both residual soil N and water use efficiency. Zhu et al.<sup>[16]</sup> observed that elevated P fertilization rate resulted in increased grain yield and P use efficiency. Previous studies indicated that excessive N accumulated in the soil profile. However, the balanced application of N and P fertilizer could remarkably enhance yield and lower nitrate-N residue in comparison to N fertilization alone<sup>[17,18]</sup>. Shi et al.<sup>[19]</sup> reported that the use of N increased winter wheat yield, and a combined treatment with P fertilizer further enhanced this effect. Similarly, K fertilizer applied to the soil can directly increase crop yield<sup>[20]</sup>. Liu et al.<sup>[21]</sup> reported that N and K fertilization significantly increased yields. Therefore, it is critical to establish suitable N, P, and K fertilizer ratios in winter wheat production in Xinjiang, China.

The supply of fertilizer will directly or indirectly affect biomass distribution and assimilate production through the availability of macronutrients (N, P, and K) to the soil, and the nutrient content of plant will directly or indirectly affect biomass distribution and assimilate production<sup>[22,23]</sup>. The amount of macronutrients absorbed directly influences wheat yield<sup>[24]</sup>. Many studies have shown that suitable fertilizer ratios (nitrogen, phosphorus, and potassium) can improve wheat growth and yield<sup>[25-27]</sup> and reduce fertilizer input<sup>[28]</sup>. In addition, the combined N, P, and K fertilization can result in higher grain yield, protein, nitrogen, phosphorus, and potassium uptake and utilization efficiency<sup>[1]</sup>. When the fertilization rate was N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O (162-72-57 kg/hm<sup>2</sup>), sustainable wheat production and environmental safety could be achieved, as reported by Xu et al.<sup>[29]</sup>. When N, P, and K were in limited supply, the winter wheat growth and yield were significantly affected<sup>[30,31]</sup>. Additionally, researchers have studied the effects of applying fertilizer on the yield and quality of winter wheat<sup>[32]</sup>. In conclusion, the suitable application of N, P, and K benefits wheat growth and enhances fertilizer utilization efficiency under drip fertigation<sup>[33]</sup>.

Reducing fertilizer application is essential for sustainable intensification, thus promoting sustainable agriculture<sup>[34]</sup>. Effectively combining N, P, and K application at appropriate rates can help achieve higher wheat yields, improve fertilizer use efficiency, and control soil nitrate-N residue<sup>[35,36]</sup>. Consequently, the study objectives were to: 1) examine how dry matter accumulation and nutrient absorption in winter wheat are affected by the combined application of N, P, and K, and 2) determine a suitable N, P, and K application ratio to maximize winter wheat yield and fertilizer use efficiency and to reduce soil nitrate-N. In arid regions, drip-fertigated winter wheat production may be optimized by using the scientific basis derived from this study to optimize N, P, and K fertilization.

## 2 Materials and methods

### 2.1 Experimental site

Field experiments were conducted in three consecutive growth seasons (from 2018 to 2021) at the Unity Farm, 9th Division, Xinjiang Production and Construction Corps (46°31'3"N, 83°29'40"E; 1521.0 m a.s.l.). The climate is classified as temperate continental, characterized by lengthy and cold winters as well as short and hot summers. It is prone to drought and has an annual mean potential evaporation of 1810 mm. The precipitation and daily average temperature distributions during the three consecutive growth seasons are displayed in Figure 1. The soil texture at this site is sand loamy. Additionally, soil bulk density is 1.24-1.58 g/cm<sup>3</sup> in the 0-100 cm soil layer. Table 1 presents other primary characteristics and features of the topsoil. Winter wheat was planted for three seasons

on October 8, 2018, October 10, 2019, and October 6, 2020, and harvested on June 24, 2019, June 20, 2020, and June 25, 2021.

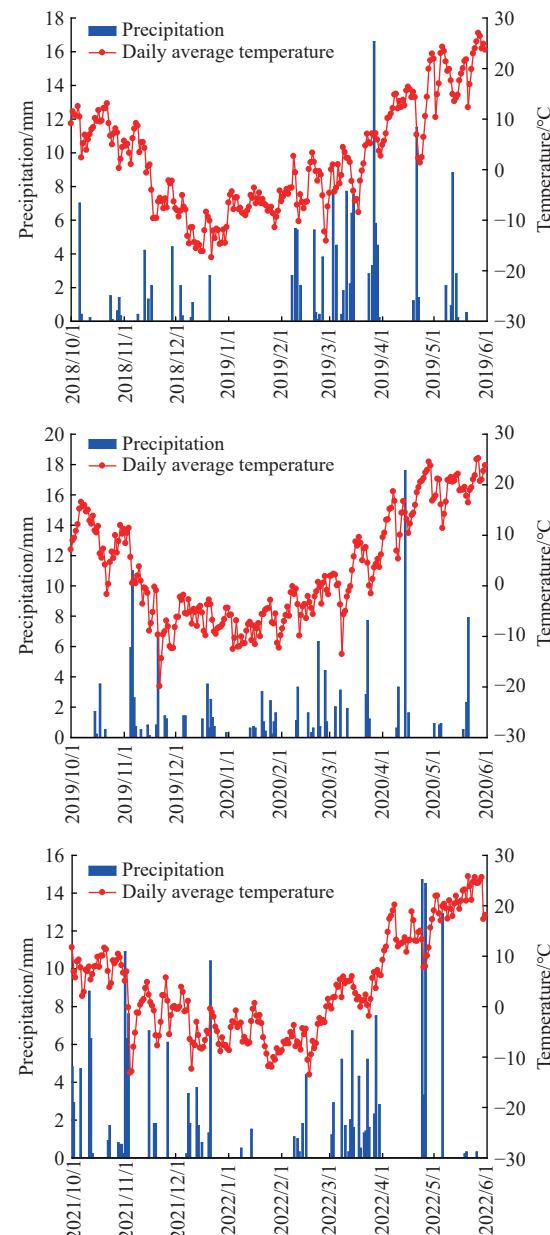



Figure 1 The distributions of precipitation and temperature at the experiment site during the three growing seasons

**Table 1 Chemical properties of the soil (0-100 cm layer) before the experiment in 2018**

| Soil depth/ cm | Properties                         |                                    |                                                     |                                                      |                         |                         |     |
|----------------|------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------|-------------------------|-----|
|                | Organic matter/ g·kg <sup>-1</sup> | Total nitrogen/ g·kg <sup>-1</sup> | NO <sub>3</sub> <sup>-</sup> -N/ g·kg <sup>-1</sup> | NH <sub>4</sub> <sup>+</sup> -N/ mg·kg <sup>-1</sup> | AP/ mg·kg <sup>-1</sup> | AK/ mg·kg <sup>-1</sup> |     |
| 0-100          | 19.5                               | 0.7                                | 30.5                                                | 1.7                                                  | 23                      | 219.5                   | 8.2 |

Note: AP: available phosphorus; AK: available potassium.

### 2.2 Experimental design and field management

To examine how fertilizer reduction affects nutrient allocation ratio on soil nutrient content, winter wheat yield, and fertilizer utilization efficiency, this study used local production practices as a control treatment and referred to previous research results<sup>[37,38]</sup>. The field experiment included five distinct fertilization applications and was set up with completely randomized design (CK: fertilizer applied by local farmers [N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O: 240-105-38], FS1: reduced fertilization [N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O: 166-80-30], FS2: reduced N fertilization

[N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O: 0-80-30], FS3: reduced P fertilization [N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O: 166-0-30], FS4: reduced K fertilization [N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O: 166-80-0]. The treatments were performed in three replicates. The fertilization application rates are detailed in Table 2. The nitrogen as urea [(NH<sub>2</sub>)<sub>2</sub>CO; 46% N], phosphate as superphosphate [Ca<sub>2</sub>PH<sub>4</sub>O<sub>8</sub>; 14% P<sub>2</sub>O<sub>5</sub>], and potassium as [K<sub>2</sub>SO<sub>4</sub>; 50% K<sub>2</sub>O] (Table 2) were used to fertilize the experimental plots. Each experimental planting plot had an area of 40 m<sup>2</sup> (5×8 m). The application of each fertilizer was conducted using a drip irrigation system. The water source for irrigation was groundwater. The water amount applied to winter wheat with drip irrigation was 295 mm for the entire cultivation period, and the drip irrigation dates were 145, 160, 178, 195, 210,

225, and 240 days after sowing, corresponding to drip irrigation water amounts of 30, 35, 60, 60, 35, 35, and 40 mm, respectively. Winter wheat was sown at a rate of 400 kg/hm<sup>2</sup>, with a row spacing of 15 cm and a sowing depth of 5 cm (Figure 2). Aphids and Hylemya coarctata were the most prominent types of pests that caused damage to the winter wheat in the experimental regions, and wheat stripe rust was the most common type of disease. Pests and diseases were effectively managed throughout the experiment with the use of agrochemicals like cyhalothrin, thiophanate-methyl, and others. Manual hoeing was used to control the weeds. Furthermore, other common planting management techniques mirrored those used by the local farmers.

**Table 2 Fertilizer treatments and application rates used in the field experiment**

| Treatment | Fertilization                      |                                                                 |                                                   | Fertilization/kg·hm <sup>-2</sup>                |                                                                                                      |                                                                          |
|-----------|------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|           | N fertilizer/kg N·hm <sup>-2</sup> | P fertilizer/kg P <sub>2</sub> O <sub>5</sub> ·hm <sup>-2</sup> | K fertilizer/kg K <sub>2</sub> O·hm <sup>-2</sup> | Urea [(NH <sub>2</sub> ) <sub>2</sub> CO; 46% N] | Superphosphate (Ca <sub>2</sub> PH <sub>4</sub> O <sub>8</sub> ; 14% P <sub>2</sub> O <sub>5</sub> ) | Potassium sulfate (K <sub>2</sub> O <sub>4</sub> ; 50% K <sub>2</sub> O) |
| CK        | 240                                | 105                                                             | 38                                                | 522                                              | 750                                                                                                  | 76                                                                       |
| FS1       | 166                                | 80                                                              | 30                                                | 361                                              | 571                                                                                                  | 60                                                                       |
| FS2       | 0                                  | 80                                                              | 30                                                | 0                                                | 571                                                                                                  | 60                                                                       |
| FS3       | 166                                | 0                                                               | 30                                                | 361                                              | 0                                                                                                    | 60                                                                       |
| FS4       | 166                                | 80                                                              | 0                                                 | 361                                              | 571                                                                                                  | 0                                                                        |

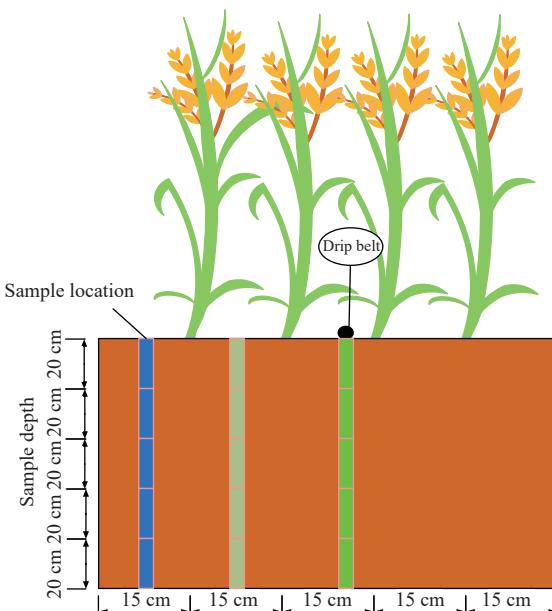



Figure 2 Planting pattern and soil sampling locations

### 2.3 Sampling and measurements

#### 2.3.1 Soil NO<sub>3</sub><sup>-</sup>-N and NH<sub>4</sub><sup>+</sup>-N concentration and residue determination

At the wheat maturity stages (i.e., June 15, 2019, June 17, 2020, and June 16, 2021), the concentrations of NO<sub>3</sub><sup>-</sup>-N and NH<sub>4</sub><sup>+</sup>-N were measured in the soil layer depth ranges of 0-20, 20-40, 40-60, 60-80, and 80-100 cm. Figure 2 depicts the sites used for soil samples. A hand-held soil iron drill (5 cm diameter) was used to take samples of the soil. The drilled soil samples from each experimental plot were sealed in their corresponding aluminum case and were returned to the laboratory for further analysis. After air milling and fine sifting (1 mm), the soil samples were extracted using a 2 mol/L KCl solution (5 g dry soil and 1:10 soil-to-liquid ratio). A flow analyzer (Bran+Luebbe AutoAnalyzer-III, SEAL company, Nordersted, Germany) was used to estimate the concentrations of NO<sub>3</sub><sup>-</sup>-N and NH<sub>4</sub><sup>+</sup>-N in the extracts. Soil NO<sub>3</sub><sup>-</sup>-N and NH<sub>4</sub><sup>+</sup>-N residues were calculated as follows<sup>[39]</sup>:

$$\text{Soil NO}_3^- - \text{N and NH}_4^+ - \text{N residue (kg/hm}^2) = 0.1 \times \text{CN} \times \gamma \times h \quad (1)$$

where, CN is the NO<sub>3</sub><sup>-</sup>-N and NH<sub>4</sub><sup>+</sup>-N concentration (mg/kg);  $\gamma$  represents the bulk density (g/cm<sup>3</sup>);  $h$  represents the soil depth (cm).

#### 2.3.2 Dry matter, total N, P, and K concentration

Four plants in each experiment plot were collected with completely randomized design during the harvest period. Following a 120-minute drying period at 105°C, the stem in an oven, leaf, husk, and grain were further dried at 75°C to a consistent weight. The dry matter accumulation was the mean weight of four plants multiplied by the planting density. After pulverizing the dried plant samples, they were subsequently filtered through a 1 mm sieve. Nutrient concentration was determined by digesting the particulates with H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O<sub>2</sub>. Thereafter, a continuous flow analyzer was employed to obtain total N and P, whereas the atomic absorption spectrometry (Z-2000, Tokyo, Japan) was employed to obtain total K.

#### 2.3.3 N, P, and K use efficiency

N, P, and K use efficiency (kg/kg) were calculated as:

$$\text{N use efficiency (NUE)} = Y/\text{FN} \quad (2)$$

$$\text{P use efficiency (PUE)} = Y/\text{FP} \quad (3)$$

$$\text{K use efficiency (KUE)} = Y/\text{FK} \quad (4)$$

where,  $Y$  represents the winter wheat yield (kg/hm<sup>2</sup>). Total amounts of N, P, and K accumulation (kg/hm<sup>2</sup>) at maturity are denoted by FN, FP, and FK, respectively<sup>[40]</sup>.

#### 2.3.4 Harvest index

The harvest index was calculated as the ratio of the grain yield/aboveground dry matter accumulation<sup>[41]</sup>.

#### 2.3.5 Yield and partial factor productivity

At harvest, three areas of 1 m<sup>2</sup> (1 m×1 m) were chosen at random from each experimental field, and the plants that corresponded to those random areas were threshed using a hand-driven thresher to obtain the yield of wheat grain. The weight of 1000 grains was determined from three subsamples of 1000 random grains<sup>[24]</sup>.

Nitrogen partial factor productivity (NPFP), Phosphorus partial factor productivity (PPFP), and Potassium partial factor

productivity (KPFP) were derived as indicated below:

$$NPFP = \text{Grain yield (kg/hm}^2\text{)}/\text{nitrogen application rate (kg/hm}^2\text{)} \quad (5)$$

$$PPFP = \text{Grain yield (kg/hm}^2\text{)}/\text{phosphorus application rate (kg/hm}^2\text{)} \quad (6)$$

$$KPFP = \text{Grain yield (kg/hm}^2\text{)}/\text{potassium application rate (kg/hm}^2\text{)} \quad (7)$$

## 2.4 Statistical analysis

SPSS 18.0 and Microsoft Excel 2010 were used to carry out the analysis of the data. An analysis of variance (ANOVA) was conducted, and Duncan's method was used to evaluate multiple comparisons among the treatment means. The least significant difference (LSD) method was applied to split-plot ANOVA. A general linear model was applied to investigate the influence of each treatment on soil  $\text{NH}_4^+$ -N, soil  $\text{NO}_3^-$ -N, total N content of winter wheat of various organs, total P content of winter wheat of various organs, total K content of winter wheat of various organs, dry matter accumulation, winter wheat yield, and partial factor productivity using the SPSS environment version 18.0. Across the two years, to examine whether or not variance (ANOVA) between treatments were related to soil  $\text{NH}_4^+$ -N, soil  $\text{NO}_3^-$ -N, total N content of winter wheat of various organs, total P content of winter wheat of various organs, total K content of winter wheat of various organs, dry matter accumulation, winter wheat yield, and partial factor productivity, this study set treatments and growing year as fixed factors, and three replicates were considered as random factors. Differences were considered statistically significant at the  $p<0.01$  and  $p<0.05$  levels. Sigma plot 14.0 was used to generate the figures.

## 3 Results

### 3.1 Soil $\text{NH}_4^+$ -N and $\text{NO}_3^-$ -N concentrations and residues

Different fertilization strategies had varying influences on the concentrations of soil  $\text{NH}_4^+$ -N and  $\text{NO}_3^-$ -N at different soil depths (Figure 3). The highest average soil  $\text{NH}_4^+$ -N content over three years (0-100 cm depth) was observed in CK (1.76 mg/kg), but the lowest  $\text{NH}_4^+$ -N was in FS2 treatment (0.79 mg/kg). The highest three-year average  $\text{NH}_4^+$ -N and  $\text{NO}_3^-$ -N concentrations were measured in the 0-40 cm soil layer. FS2 decreased the  $\text{NH}_4^+$ -N concentration in the layers of soil ranging from 0 to 100 cm compared with the other treatments. Specifically, the  $\text{NH}_4^+$ -N concentration in FS2 was 55.38%, 32.53%, 26.46%, and 31.61% higher compared to CK, FS1, FS3, and FS4, respectively. In addition, CK led to an increase in the soil  $\text{NO}_3^-$ -N concentration in

the top 0-100 cm soil layer, being 51.22%, 124.12%, 64.82%, and 53.29% higher as compared to FS1, FS2, FS3, and FS4, respectively. Similar results were obtained for soil  $\text{NH}_4^+$ -N and  $\text{NO}_3^-$ -N residues under various fertilization strategies (Figure 4). Overall, there was an increasing and then decreasing trend of soil  $\text{NH}_4^+$ -N concentrations over the three seasons (Figure 3g), while  $\text{NO}_3^-$ -N concentrations decreased (Figure 3h).

### 3.2 N, P, and K concentrations in various plant organs

The total N content of winter wheat decreased as a result of the reduction in fertilization rates over the three growing seasons (Figure 5a-5c). During the three growing seasons, CK, FS2, FS3, and FS4 treatments decreased the total N content by 19.63%, 15.85%, 11.06%, and 15.92% relative to FS1, respectively. Total N content differed significantly between CK and FS1 ( $p<0.05$ ), while the difference was insignificant between FS1 and FS2 and between FS3 and FS4 during 2018-2019 and 2019-2020 ( $p>0.05$ ). Furthermore, the average distribution percentages of total N in the stem+leaves, spikes+hulls, and the grains over the three seasons ranged from 14.05%-16.27%, 14.32%-18.31%, and 65.42%-71.62%, respectively. When fertilization was sufficient, the N content in grain was relatively low.

Total P concentration increased as a result of the reduction in fertilization rate over the three growing seasons (Figure 5d-5f). FS1 increased total P content by 13.46%, 14.51%, and 6.89% compared with CK during 2018-2019, 2019-2020, and 2020-2021, respectively. The difference in the total P content between CK, FS1, FS2, FS3, and FS4 was insignificant ( $p>0.05$ ). Furthermore, the average distribution percentages of total P in the stem+leaves, spikes+hulls, and the grain over the three seasons ranged from 15.95%-18.74%, 9.52%-18.13%, and 64.74%-71.74%, respectively.

The total K concentration increased as a result of the reduction in fertilization rate over the three growing seasons (Figure 5g-5i). FS1 increased the total K concentration by 37.16%, 40.64%, and 35.57% compared with CK during 2018-2019, 2019-2020, and 2020-2021, respectively. Furthermore, the average distribution percentages of total K in the stem+leaves, spikes+hulls, and the grains over the three seasons ranged from 71.75%-75.90%, 12.16%-14.05%, and 10.96%-15.42%, respectively.

### 3.3 N, P, and K use efficiency

Significant ( $p<0.05$ ) effects on NUE were observed for fertilization, year, and fertilization $\times$ year interaction (Table 3). CK significantly increased NUE by 4.95% and 18.31% and by 16.31% and 13.07% as compared to FS1 and FS4 during 2018-2019 and 2019-2020, respectively. During 2020-2021, CK significantly increased NUE by 24.78% compared with FS1, and the difference between CK and FS1 was significant in NUE ( $p<0.01$ ) (Table 3).

**Table 3 Effects of various fertilization strategies on N, P, and K use efficiency (NUE, PUE, and KUE) during 2018-2019, 2019-2020, and 2020-2021**

| Treatments        | NUE/kg(yield) $\cdot$ kg $^{-1}$ N |                 |                 | PUE/kg(yield) $\cdot$ kg $^{-1}$ P |                   |                   | KUE/kg(yield) $\cdot$ kg $^{-1}$ K |                 |                 |
|-------------------|------------------------------------|-----------------|-----------------|------------------------------------|-------------------|-------------------|------------------------------------|-----------------|-----------------|
|                   | 2018-2019                          | 2019-2020       | 2020-2021       | 2018-2019                          | 2019-2020         | 2020-2021         | 2018-2019                          | 2019-2020       | 2020-2021       |
| CK                | 36.5 $\pm$ 5.41                    | 32.5 $\pm$ 3.07 | 36.4 $\pm$ 3.33 | 153.6 $\pm$ 17.02                  | 220.4 $\pm$ 23.82 | 176.8 $\pm$ 13.50 | 45.0 $\pm$ 3.28                    | 66.1 $\pm$ 6.59 | 39.7 $\pm$ 5.41 |
| FS1               | 34.8 $\pm$ 5.91                    | 28.0 $\pm$ 0.31 | 29.2 $\pm$ 1.75 | 200.5 $\pm$ 11.11                  | 187.1 $\pm$ 17.71 | 150.8 $\pm$ 12.64 | 39.6 $\pm$ 2.87                    | 47.1 $\pm$ 4.30 | 25.4 $\pm$ 5.41 |
| FS2               | 42.2 $\pm$ 6.02                    | 46.7 $\pm$ 4.16 | 35.6 $\pm$ 6.89 | 252.2 $\pm$ 15.58                  | 289.3 $\pm$ 21.20 | 321.6 $\pm$ 18.58 | 48.3 $\pm$ 4.09                    | 88.3 $\pm$ 3.15 | 54.5 $\pm$ 5.41 |
| FS3               | 41.2 $\pm$ 2.03                    | 29.5 $\pm$ 2.24 | 34.8 $\pm$ 2.80 | 250.0 $\pm$ 18.67                  | 189.5 $\pm$ 10.93 | 184.0 $\pm$ 18.63 | 40.1 $\pm$ 3.27                    | 40.5 $\pm$ 2.12 | 36.8 $\pm$ 5.41 |
| FS4               | 30.9 $\pm$ 4.02                    | 28.8 $\pm$ 0.82 | 38.0 $\pm$ 4.70 | 181.3 $\pm$ 9.28                   | 188.3 $\pm$ 6.27  | 197.8 $\pm$ 21.36 | 36.6 $\pm$ 3.32                    | 44.6 $\pm$ 3.34 | 37.8 $\pm$ 5.41 |
| Fertilization (F) | **                                 |                 |                 | **                                 |                   |                   | *                                  |                 |                 |
| Years (Y)         | *                                  |                 |                 | NS                                 |                   |                   | **                                 |                 |                 |
| F $\times$ Y      | **                                 |                 |                 | **                                 |                   |                   | **                                 |                 |                 |

Note: NUE, PUE, and KUE represent the N use efficiency, P use efficiency, and K use efficiency. Values within a column followed by the different lowercase letters indicate a significant difference at  $p<0.05$  using the LSD method. \* significant  $p<0.05$ ; \*\* significant  $p<0.01$ ; NS not significant  $p>0.05$ . The value of each treatment in the table is the average effect value.  $\pm$ : Standard deviation.

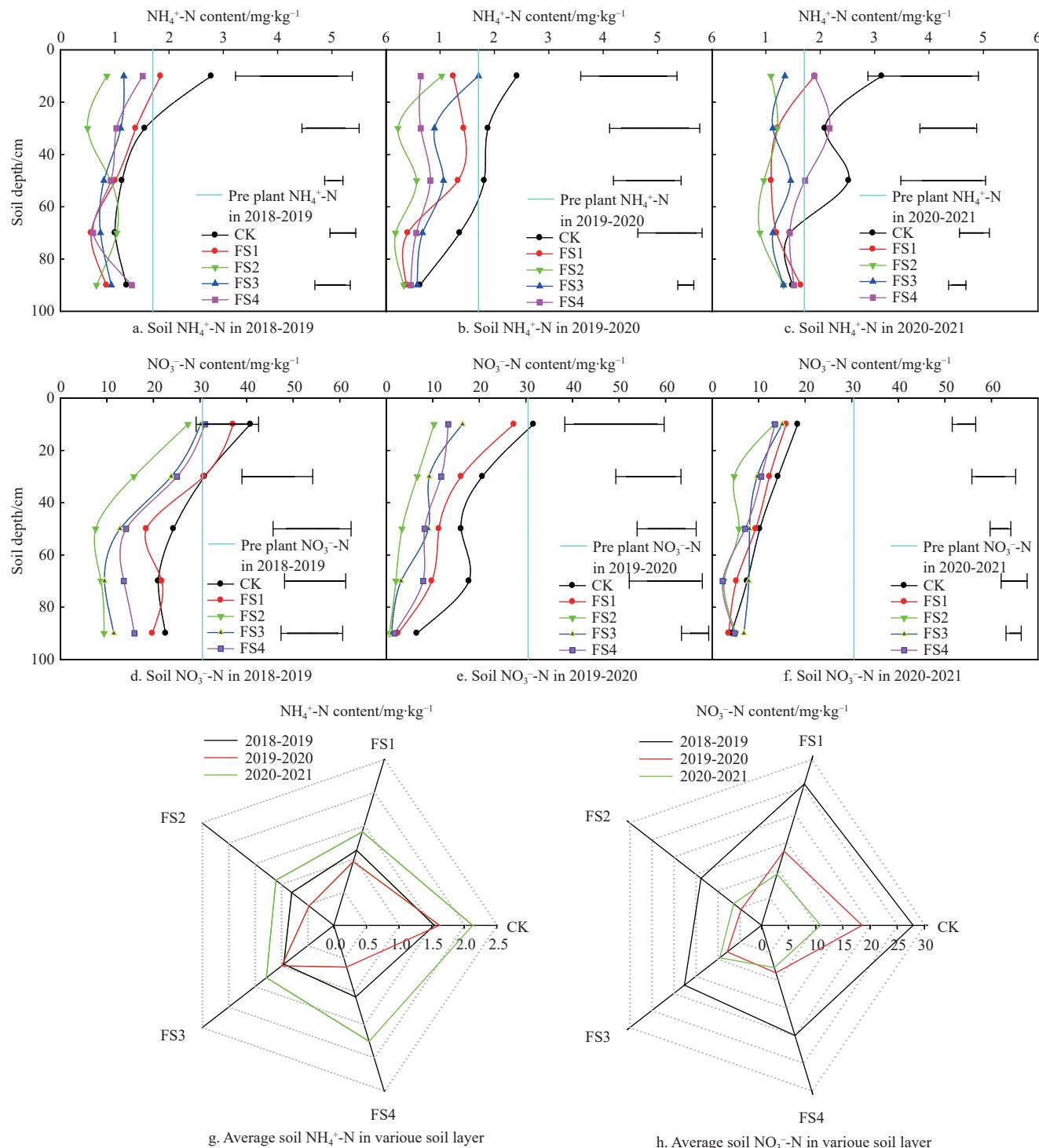
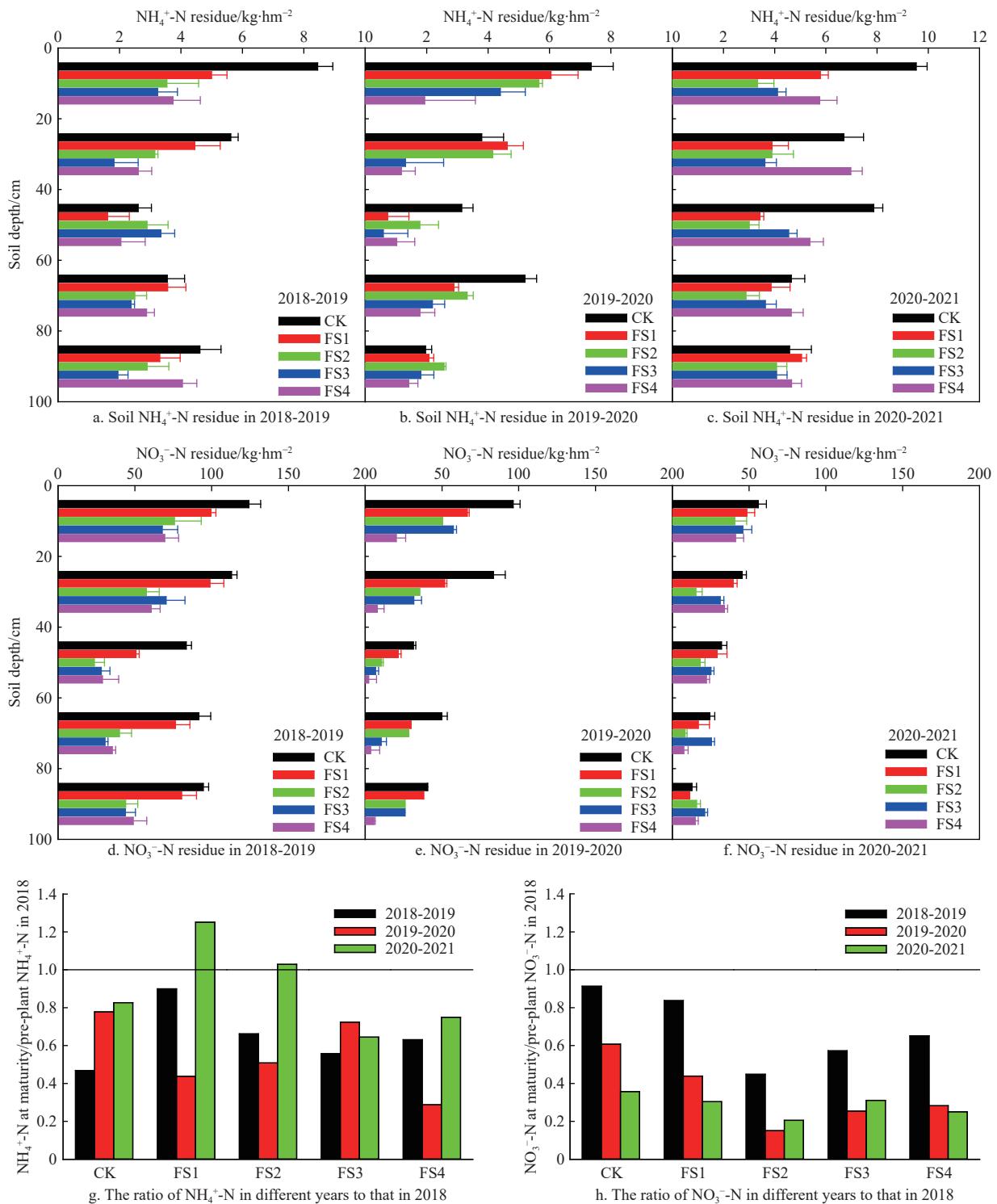


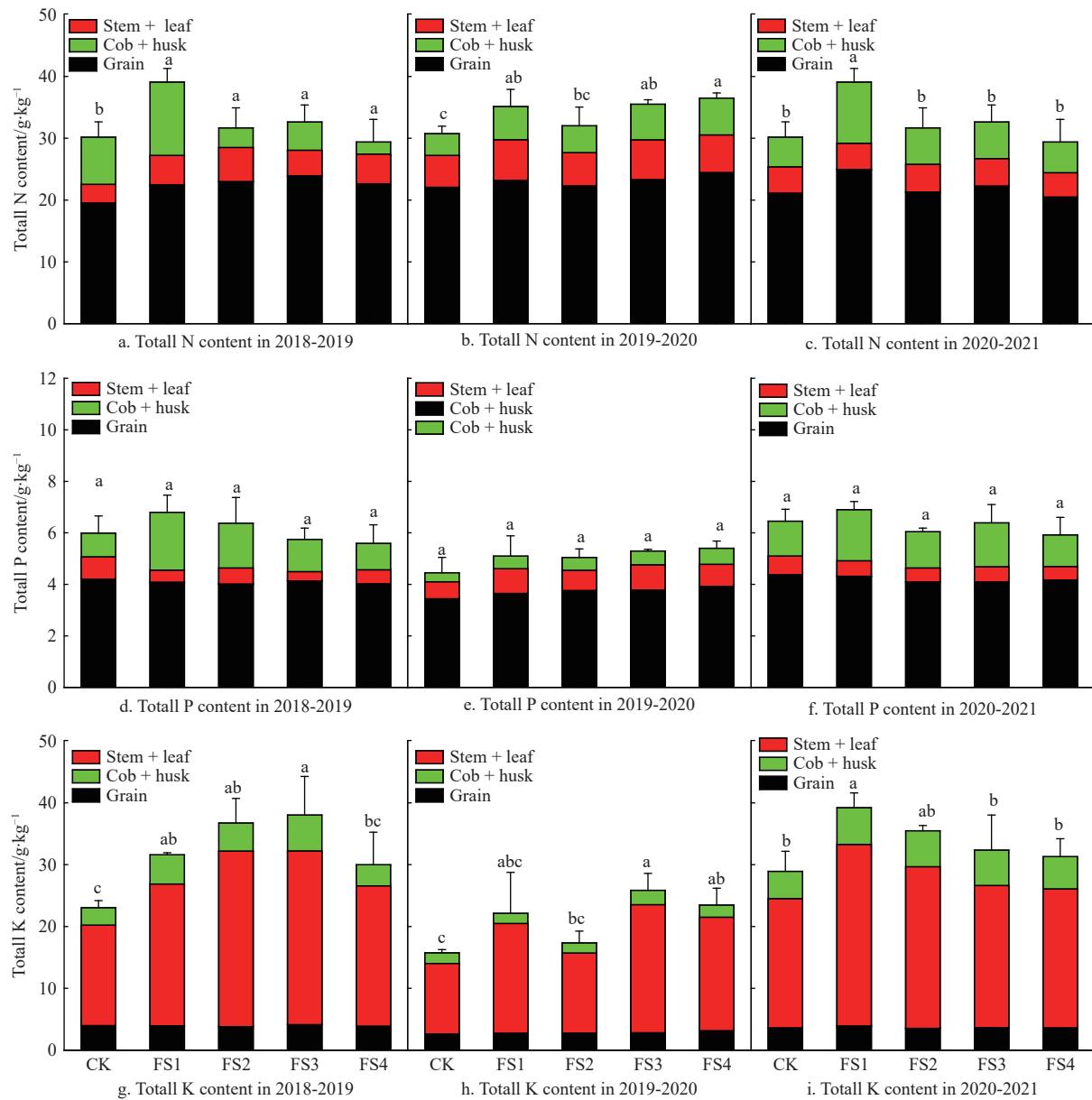

Figure 3 Changes of soil ammonium nitrogen ( $\text{NH}_4^+ \text{-N}$ ) and nitrate nitrogen ( $\text{NO}_3^- \text{-N}$ ) concentration at different soil depths under different fertilization strategies in 2018–2019, 2019–2020, and 2020–2021

The FS2 had a higher NUE, which suggested that the lack of nitrogen fertilizer promoted and improved nitrogen use efficiency.

Fertilization and fertilization $\times$ year exhibited highly significant ( $p<0.01$ ) effects on PUE (Table 3). Among the three growing seasons, FS2 had the highest PUE, which was increased by 25.77%–64.25%, 31.23%–54.60%, and 62.58%–113.32% compared with other treatments during 2018–2019, 2019–2020, and 2020–2021, respectively. There was a significant difference in PUE between FS2 and CK during 2019–2020 and 2020–2021 ( $p<0.01$ ). Generally, the FS2 treatment had a higher PUE, possibly due to P accumulation mainly in wheat grains under low fertilization conditions. Fertilization, year, and fertilization $\times$ year significantly

( $p<0.05$ ) affected KUE (Table 3). The CK significantly increased KUE by 13.78%, 12.30%, and 44.88% in 2018–2019, 40.43%, 63.37%, and 48.14% in 2019–2020, and 55.94%, 7.80%, and 5.26% in 2020–2021 in comparison with FS1, FS3, and FS4, respectively. On the other hand, CK significantly decreased KUE by 6.72%, 25.13%, and 27.16% compared to FS2 during 2018–2019, 2019–2020, and 2020–2021, respectively. Additionally, there was a significant difference in KUE between CK and FS2 during 2019–2020 and 2020–2021 ( $p<0.05$ ). In summary, KUE was high in the CK treatment, which may be a result of K accumulation mainly in the vegetative organs of wheat under high fertilization conditions (Table 3).





Figure 4 Changes of soil  $\text{NH}_4^+$ -N and  $\text{NO}_3^-$ -N residue at different soil depths under different fertilization strategies in 2018–2019, 2019–2020, and 2020–2021

### 3.4 Dry matter accumulation and harvest index

The fertilization, year, and year×fertilization all exhibited a significant impact on dry matter accumulation ( $p<0.05$ ) (Figure 6c). The grain at maturity constituted the majority of the total dry matter (41.01%-44.50%). The stems and leaves represented 38.50%-40.00% of total dry matter, and spikes and hulls accounted for the lowest proportion of total dry matter (16.99%-20.00%). The dry matter of CK treatment decreased by 11.20%, 3.80%, and 11.08% in 2018-2019, 9.27%, 3.33%, and 3.79% in 2019-2020, and 16.21%, 12.39%, and 17.08% in 2020-2021 as compared with FS1, FS3, and FS4, respectively. On the other hand, CK increased dry

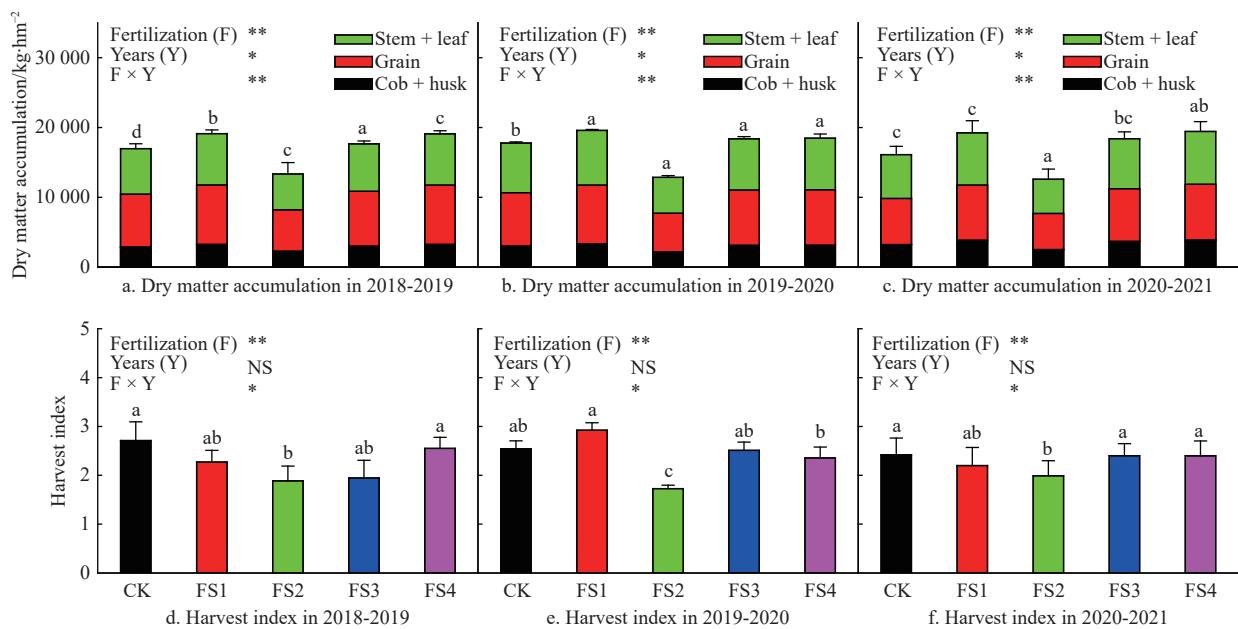
matter by 11.20%, 3.80%, and 11.08% compared to FS2 during 2018–2019, 2019–2020, and 2020–2021, respectively. Moreover, significant differences were observed in dry matter between CK, FS2, and FS4 over the three growing seasons ( $p<0.05$ ). The dry matter increased due to the proper reduction of fertilizer application over the three growing seasons (Figure 6a-6c).

The fertilization, year, and fertilization×year all exhibited a significant impact on the harvest index ( $p>0.05$ ) (Figure 4f). CK increased the harvest index by 43.91%, 39.46%, and 6.37% in 2018-2019, 47.40%, 1.33%, and 7.97% in 2019-2020, and 21.63%, 0.76%, and 0.87% in 2020-2021 as compared to FS2, FS3, and FS4,



Note: Bars are the means+one standard error of the mean ( $n=3$ ). Different letters above the bars indicate a significant difference at  $p<0.05$  according to an LSD test.

Figure 5 Effects of different fertilization strategies on total N, P, and K concentrations of winter wheat during 2018-2021


respectively. Interestingly, FS1 increased the harvest index by 14.99% compared to CK during 2019-2020, and decreased it by 16.29% and 9.13% during 2018-2019 and 2020-2021, respectively (Figure 6d-6f). The high harvest index during 2019-2020 could be explained by the occurrence of drought, which caused lower wheat yields (Table 4).

### 3.5 Grain yield and partial factor productivity

In the three growth seasons, fertilization significantly affected the grain yield ( $p<0.01$ ). Year did not significantly affect wheat yield ( $p>0.05$ ), but highly significantly affected the spike number, grains per spike, and 1000-grain weight ( $p<0.01$ ). Fertilization $\times$ year exhibited a significant impact on the yield and the 1000-grain weight ( $p<0.01$ ) (Table 4). Compared with CK, FS1, FS3, and FS4 increased yield by 6.73%-31.50%, 4.95%-15.00%, and 6.11%-21.49% during 2018-2021, respectively. This indicated that appropriate fertilization reduction would not decrease winter wheat yield. In addition, the yield in the FS2 treatment showed an increasing trend in the later years, while a reasonable effective reduction in fertilizer application rate (i.e., FS3) increased the yield (Table 4). Among the three growing seasons, FS1 resulted in the

highest number of spikes, which increased by 17.98%, 17.80%, and 9.64% compared with CK during 2018-2019, 2019-2020, and 2020-2021, respectively. Interestingly, FS2 increased the spike number by 1.05% compared with CK during 2018-2019, while reducing it by 8.26% and 3.79% during 2019-2020 and 2020-2021, respectively. In agreement with the spike number results, FS1 had the highest number of grains per spike. This explained its high yield across the growing seasons due to the high number of spikes and grains per spike. Nevertheless, FS3 showed a positive effect in terms of 1000-grain weight, with increases of 2.37%, 2.35%, and 9.17% compared with CK during three growth seasons (Table 4). This suggested that P fertilizer application improved the 1000-grain weight across the growing seasons.

Fertilization and fertilization $\times$ year exhibited highly significant ( $p<0.01$ ) effects on NPFP, PPFP, and KPFP. Year significantly affected NPFP, PPFP, and KPFP ( $p<0.05$ ) (Table 5). FS1 positively affected NPFP, PPFP, and KPFP across the three growing seasons, which increased by 54.33%-90.10%, 40.10%-72.58%, and 35.21%-66.57% compared with CK during three growth seasons, respectively ( $p<0.01$ ). Furthermore, FS4 increased NPFP by 5.67%,

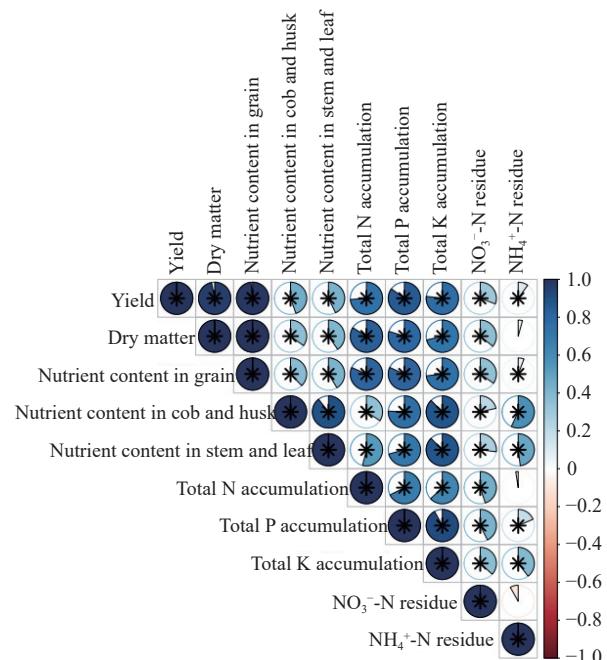


Note: Bars are the means+one standard error of the mean ( $n=3$ ). Different letters above the bars indicate a significant difference at  $p<0.05$  according to an LSD test.

\* significant  $p<0.05$ ; \*\* significant  $p<0.01$ ; NS not significant  $p>0.05$ .

Figure 6 Effects of different fertilization strategies on dry matter accumulation and harvest index during 2018–2021

**Table 4** Grain yield and its components of winter wheat under different fertilization strategies during 2018-2019, 2019-2020, and 2020-2021


| Treatments        | Yield/<br>kg·hm <sup>-2</sup> | Spikes/<br>10 <sup>4</sup> ·hm <sup>-2</sup> | Grains per<br>spike/No. | 1000-grain<br>weight/g |
|-------------------|-------------------------------|----------------------------------------------|-------------------------|------------------------|
| 2018-2019         |                               |                                              |                         |                        |
| CK                | 6466 <sup>a</sup> ±383        | 573 <sup>a</sup> ±29                         | 30.2 <sup>a</sup> ±2.9  | 59.1 <sup>a</sup> ±3.2 |
| FS1               | 8419 <sup>b</sup> ±685        | 676 <sup>b</sup> ±38                         | 35.0 <sup>b</sup> ±3.8  | 59.8 <sup>b</sup> ±6.8 |
| FS2               | 6562 <sup>c</sup> ±894        | 579 <sup>c</sup> ±29                         | 34.9 <sup>c</sup> ±4.1  | 60.0 <sup>c</sup> ±7.4 |
| FS3               | 7081 <sup>b</sup> ±879        | 632 <sup>b</sup> ±46                         | 33.8 <sup>b</sup> ±1.9  | 60.5 <sup>b</sup> ±4.9 |
| FS4               | 7481 <sup>b</sup> ±956        | 654 <sup>b</sup> ±34                         | 34.7 <sup>b</sup> ±3.2  | 58.6 <sup>b</sup> ±3.7 |
| Fertilization (F) | **                            | **                                           | NS                      | **                     |
| Years (Y)         | NS                            | **                                           | **                      | **                     |
| F×Y               | **                            | NS                                           | NS                      | **                     |
| 2019-2020         |                               |                                              |                         |                        |
| CK                | 6984 <sup>b</sup> ±606        | 545 <sup>b</sup> ±36                         | 32.6 <sup>b</sup> ±3.6  | 54.4 <sup>b</sup> ±5.1 |
| FS1               | 7454 <sup>b</sup> ±749        | 642 <sup>b</sup> ±49                         | 37.7 <sup>b</sup> ±4.2  | 53.2 <sup>b</sup> ±5.3 |
| FS2               | 6478 <sup>c</sup> ±569        | 500 <sup>c</sup> ±38                         | 37.7 <sup>c</sup> ±2.8  | 55.2 <sup>c</sup> ±4.8 |
| FS3               | 7330 <sup>b</sup> ±883        | 600 <sup>b</sup> ±42                         | 36.5 <sup>b</sup> ±2.5  | 55.7 <sup>b</sup> ±5.6 |
| FS4               | 7411 <sup>b</sup> ±418        | 626 <sup>b</sup> ±39                         | 37.5 <sup>b</sup> ±3.4  | 48.4 <sup>b</sup> ±4.5 |
| Fertilization (F) | **                            | **                                           | **                      | **                     |
| Years (Y)         | NS                            | **                                           | **                      | **                     |
| F×Y               | **                            | NS                                           | NS                      | **                     |
| 2020-2021         |                               |                                              |                         |                        |
| CK                | 6667 <sup>a</sup> ±511        | 633 <sup>a</sup> ±52                         | 40.0 <sup>a</sup> ±3.4  | 53.1 <sup>a</sup> ±3.8 |
| FS1               | 8767 <sup>b</sup> ±660        | 694 <sup>b</sup> ±49                         | 40.6 <sup>b</sup> ±4.3  | 54.2 <sup>b</sup> ±4.2 |
| FS2               | 6334 <sup>c</sup> ±665        | 609 <sup>c</sup> ±43                         | 42.0 <sup>c</sup> ±3.7  | 51.5 <sup>c</sup> ±5.1 |
| FS3               | 7667 <sup>b</sup> ±970        | 681 <sup>b</sup> ±51                         | 36.4 <sup>b</sup> ±3.2  | 58.0 <sup>b</sup> ±4.9 |
| FS4               | 8100 <sup>b</sup> ±920        | 654 <sup>b</sup> ±45                         | 40.6 <sup>b</sup> ±3.6  | 58.7 <sup>b</sup> ±3.5 |
| Fertilization (F) | **                            | NS                                           | NS                      | *                      |
| Years (Y)         | NS                            | **                                           | **                      | **                     |
| F×Y               | **                            | NS                                           | NS                      | **                     |

1.11%, and 5.65% compared with FS3 during 2018-2019, 2019-2020, and 2020-2021, respectively. This explained the increase in NPFP due to P fertilizer application across the three growing

seasons. The appropriate combinations of fertilizers could also increase partial factor productivity (i.e., PPFP and KPPFP) (Table 5).

### 3.6 Correlation analysis of grain yield, dry matter, N, P, and K accumulation, and soil nutrient content

A correlation analysis was performed between grain yield, dry matter, nutrient uptake in the grain, spikes, hulls, stems, and leaves, as well as the total N accumulation, total P accumulation, total K accumulation  $\text{NO}_3^-$ -N, and  $\text{NH}_4^+$ -N (Figure 7).



Note: Nutrient content in grain: the sum of N, P, and K content in grain. Nutrient content in cob and husk: the sum of N, P, and K content in cob and husk. Nutrient content in stem and leaf: the sum of N, P, and K content in stem and leaf. Total N, P, and K accumulation: the sum of grain, cob+husk, and stem + leaf. \* significant  $p<0.05$ .

Figure 7 Correlation analysis of grain yield, dry matter, total N, P, and K accumulation, nutrient content in different plant organs and soil  $\text{NO}_3^-$ -N and  $\text{NH}_4^+$ -N

**Table 5 Partial factor productivity of winter wheat under different fertilization strategies during 2018-2019, 2019-2020, and 2020-2021**

| Treatments        | Nitrogen partial factor productivity/NPFP |                        |                        | Phosphorus partial factor productivity/PPFP |                        |                         | Potassium partial factor productivity/KPFP |                          |                          |
|-------------------|-------------------------------------------|------------------------|------------------------|---------------------------------------------|------------------------|-------------------------|--------------------------------------------|--------------------------|--------------------------|
|                   | 2018-2019                                 | 2019-2020              | 2020-2021              | 2018-2019                                   | 2019-2020              | 2020-2021               | 2018-2019                                  | 2019-2020                | 2020-2021                |
| CK                | 27.0 <sup>a</sup> ±2.6                    | 29.1 <sup>a</sup> ±2.9 | 27.8 <sup>a</sup> ±1.9 | 61.6 <sup>a</sup> ±5.2                      | 66.5 <sup>a</sup> ±6.1 | 63.5 <sup>a</sup> ±6.1  | 170.2 <sup>a</sup> ±15.6                   | 183.8 <sup>a</sup> ±16.2 | 175.5 <sup>a</sup> ±15.2 |
| FS1               | 50.7 <sup>a</sup> ±3.8                    | 44.9 <sup>b</sup> ±3.5 | 52.8 <sup>a</sup> ±4.2 | 105.2 <sup>a</sup> ±8.7                     | 93.2 <sup>b</sup> ±8.9 | 109.6 <sup>a</sup> ±9.8 | 280.6 <sup>a</sup> ±26.3                   | 248.5 <sup>b</sup> ±23.1 | 292.2 <sup>a</sup> ±27.1 |
| FS2               | -                                         | -                      | -                      | 94.5 <sup>a</sup> ±7.6                      | 84.3 <sup>b</sup> ±7.9 | 79.2 <sup>b</sup> ±7.2  | 252.2 <sup>a</sup> ±24.1                   | 224.8 <sup>b</sup> ±20.8 | 211.1 <sup>b</sup> ±20.6 |
| FS3               | 42.7 <sup>a</sup> ±3.1                    | 44.2 <sup>a</sup> ±4.1 | 46.2 <sup>a</sup> ±2.6 | -                                           | -                      | -                       | 302.7 <sup>a</sup> ±29.7                   | 244.3 <sup>b</sup> ±23.5 | 255.6 <sup>a</sup> ±24.3 |
| FS4               | 45.1 <sup>a</sup> ±3.5                    | 44.6 <sup>a</sup> ±3.9 | 48.8 <sup>a</sup> ±3.4 | 93.5 <sup>a</sup> ±6.9                      | 92.6 <sup>a</sup> ±9.2 | 101.3 <sup>a</sup> ±9.9 | -                                          | -                        | -                        |
| Fertilization (F) | **                                        |                        |                        | **                                          |                        |                         | **                                         |                          |                          |
| Years (Y)         | **                                        |                        |                        | *                                           |                        |                         | **                                         |                          |                          |
| F×Y               | **                                        |                        |                        | **                                          |                        |                         | **                                         |                          |                          |

Grain yield had a high positive correlation coefficient of 0.969 and 0.983 with dry matter and nutrient uptake in the grains. The dry matter exhibited the strongest positive link to their nutrient uptake in the grains ( $R=0.998$ ), while nutrient uptake in the grains was highly linked to total N accumulation ( $R=0.817$ ) and total P accumulation ( $R=0.817$ ). Total K accumulation positively correlated with nutrient uptake in the spikes and hulls ( $R=0.877$ ) and nutrient uptake in the stems and leaves ( $R=0.876$ ).

## 4 Discussion

### 4.1 Nitrogen concentration and residues in the soil

The crucial significance of soil mineral nitrogen concentration on crop growth has been widely recognized<sup>[19,42-45]</sup>. However, nitrate is highly vulnerable to leaching into groundwater under inappropriate fertigation management<sup>[46]</sup>, which can lead to groundwater pollution<sup>[47]</sup>. Therefore, a reasonable fertilizer reduction could maintain the soil mineral N content for efficient crop yield while reducing the harm of nitrate leaching in the soil and groundwater. Previous studies have indicated that appropriate combined fertilizer application significantly increased winter wheat yields by improving the absorption and utilization of N fertilizer<sup>[19]</sup>. Moreover, the root is an important organ of the plant for absorbing water and nutrients from the soil. The efficiency of water and fertilizer absorption in plants is significantly influenced by the spatial distribution of root systems<sup>[48-50]</sup>. There have been studies showing that reducing N fertilizer inputs (i.e., soil nitrate) can improve crop root growth by increasing nutrient availability in the rhizosphere<sup>[51,52]</sup>. An intriguing phenomenon which emerged from this study was that, compared with FS1, FS2, FS3, and FS4, CK significantly increased the concentrations of  $\text{NO}_3^-$ -N (by 18.83% to 132.30%) and  $\text{NH}_4^+$ -N (by 51.22% to 124.12%) in the 0-100 cm soil layer. In addition, applying P fertilizers rationally has been found to enhance crop growth by increasing N uptake<sup>[16,53]</sup>. The soil  $\text{NO}_3^-$ -N residues were primarily accumulated in the surface layer of the soil (Figure 3). Therefore, additional studies are recommended to elucidate how irrigation and fertilization affect  $\text{NO}_3^-$ -N leaching over a longer time.

### 4.2 N, P, and K concentration and use efficiency

The uptake of nutrients in wheat is related to fertilization levels<sup>[54]</sup>. According to Cao et al.<sup>[55]</sup>, higher wheat yields could be achieved by acquiring sufficient N, P, and K based on multiple years of data experimentation and observations. In the present study, N was transported to wheat grains due to the senescence and abscission of leaves at maturity<sup>[1]</sup>. Additionally, Bogard et al.<sup>[56]</sup> and Sandaña et al.<sup>[57]</sup> found a negative correlation between grain N content and crop yield. However, a positive correlation between grain N concentration and winter wheat yield was found in the current study (Figure 7), and consistent findings were reported by

Yan et al.<sup>[58]</sup>. This interesting phenomenon could be related to environmental factors<sup>[59]</sup>. In addition, Liu et al.<sup>[60]</sup> also identified a linear correlation between wheat yield and P and K concentration using the QUEFTS model. This is highly consistent with this study's findings, indicating that a reduction in fertilizer supply facilitates N, P, and K accumulation by the crop, and a reduction in N, P, and K supply improves the transport from vegetative organs to the grains and increases yield. The fertilizer treatment with the highest nutrient amount (CK,  $\text{N-P}_2\text{O}_5-\text{K}_2\text{O}$ : 240-105-38 kg/hm<sup>2</sup>) resulted in a lower wheat N, P, and K content. This interesting phenomenon was attributed to the fact that when the nutrient supply capacity of the soil exceeds the nutrient demand of the grain, the nutrients absorbed by the soil are not efficiently transported to the grain, contributing to higher contents of accumulated nutrients in the vegetative organs (leaves and stems)<sup>[1,61]</sup>.

Proper fertilizer application is highly essential to enhancing wheat yield and efficiency in fertilizer use<sup>[40,62]</sup>. Fertilizer utilization efficiency (N, P, and K) has been demonstrated to decline when N, P, and K application rates have increased in previous research<sup>[1,63]</sup>. Li et al.<sup>[64]</sup> demonstrated that the increased application of nitrogen fertilizer decreased the nitrogen use efficiency under the same phosphorus and potassium fertilizer application rate. This study also obtained a result similar to that of previous studies. Nitrogen, phosphorus, and potassium utilization efficiency were higher under reduced N fertilizer applications than under higher application rates during 2018-2019, 2019-2020, and 2020-2021. However, nitrogen fertilizer application increased the utilization efficiency of phosphorus and potassium<sup>[40]</sup>, contrary to this study's results (Table 3). This could be because reduced nitrogen fertilization could affect phosphorus and potassium accumulation, increasing the phosphorus and potassium fertilizer utilization efficiency. In addition, this study also observed that no application of nitrogen fertilizer could increase the efficiency of N, P, and K utilization. Similar results were reported in the study of Shi et al.<sup>[19]</sup>.

### 4.3 Dry matter accumulation, grain yield, and fertilizer productivity

The fertility characteristics of the soil have a significant impact on the accumulation of dry matter. Moreover, high dry matter accumulation is the prerequisite for high wheat grain yield shown in prior research<sup>[65]</sup>. The translocation and assimilation of dry matter from the different wheat organs, influenced by fertilization, is the dominant contributor to wheat grain yield. Recently, numerous researchers have shown that fertilization increased wheat grain yield. This is mainly because fertilizer application regulates the canopy structure, photosynthetic rate, and sink-to-source ratio<sup>[66-68]</sup>. As observed in this study, the stem, leaf, and grain dry matter percentages tended to decrease at maturity due to N fertilizer reduction. The proportion of dry matter in the grains was greater

under normal reduction conditions compared to fertilizer reduction and local fertilization practices. In addition, Duan et al. [69] identified that achieving high yield was mainly related to the spike dry matter. The results of the present study also demonstrated that wheat yield was positively and linearly related to dry matter accumulation (Figure 7).

Fertilizer application can enhance crop yield and modify soil nutrient supply capacity. An increase in the application rate of nitrogen fertilizer resulted in a rise in wheat yield; however, excessive nitrogen fertilization failed to increase the yield<sup>[70]</sup>. Mon et al. [71] and Fois et al. [72] revealed that nitrogen fertilization increased leaf photosynthetic rate and chlorophyll content and increased light energy interception and capture, resulting in higher dry biomass and yield. Similar results were observed in the present study. Nonetheless, among the various treatments of fertilizer reduction, grain yield was significantly decreased ( $p<0.05$ ) in the CK treatment. This finding could be explained by the local environmental conditions in this arid area and by high fertilizer treatments that would increase the inorganic ion concentration, potentially causing soil salinization<sup>[73]</sup>.

Higher fertilizer effectiveness can be obtained with high fertilizer application when nutritional and reproductive growth are in balance. However, Abdelkhaled et al. [74] observed that excessive fertilizer application disrupts the balance between the nutritional and reproductive growth of the crop and affects crop growth. This study demonstrated that higher crop productivity can also be obtained with moderate fertilizer application rates<sup>[75,76]</sup>. Fertilizer use efficiency decreased with increasing amounts of fertilizer applied. The NPFP and PPFP values were maximized when the amount of fertilizer was 166-80-30 (N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O). The results indicated that fertilizer reduction under this fertilizer application combination could improve the crop's ability to absorb nutrients and increase fertilizer use efficiency. Even though the reduced application rate of N, P, and K fertilizers resulted in higher PFP, the yield production was not meeting the standards (i.e., high yield and high PFP). Therefore, the appropriate ratio of N, P, and K nutrients applied at moderate rates was more favorable for both yield and fertilizer utilization.

## 5 Conclusions

Different fertilizer strategies significantly impacted soil N, plant N, P, and K content, dry matter accumulation, yield components, yield, and fertilizer productivity of winter wheat. Each fertilization strategy regulated the soil mineral N, P, and K concentrations in the root zone and nutrient uptake and distribution of winter wheat, thus affecting yield and fertilizer use efficiency. The optimal fertilizer application strategy was determined to be 166-80-30 (N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O) to obtain maximum benefits in the arid region of northwest China. The findings of this study will provide valuable insights for policymakers to devise optimum fertilizer application techniques for wheat yield optimization in the arid regions of northwest China.

## Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (Grant No. 2021YFD1900805 and Grant No. 2018YFD020040608).

## References

- [1] Yan S C, Wu Y, Fan J L, Zhang F C, Guo J J, Zheng J, et al. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. *Agriculture Water Management*, 2022; 261: 107380.
- [2] Sadak M S, Dawood M G. Biofertilizer Role in Alleviating the Deleterious Effects of Salinity on Wheat Growth and Productivity. *Gesunde Pflanzen*, 2023; 75: 1207-1219.
- [3] Lu J, Bai Z, Velthof G L, Wu Z, Chadwick D, Ma L. Accumulation and leaching of nitrate in soils in wheat-maize production in China. *Agriculture Water Management*, 2019; 212: 407-415.
- [4] Chen L, Xie H, Wang G L, Yuan L M, Qian X Q, Wang W L, et al. Reducing environmental risk by improving crop management practices at high crop yield levels. *Field Crops Research*, 2021; 265: 108123.
- [5] Bakhoun G S, Tawfik M M, Kabesh M O, Sadak M S. Potential role of algae extract as a natural stimulant for wheat production under reduced nitrogen fertilizer rates and water deficit. *Biocatalysis And Agricultural Biotechnology*, 2023; 51(8): 102794.
- [6] Si Z Y, Zain M, Mehmood F, Wang G S, Gao Y, Duan A W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. *Agriculture Water Management*, 2020; 231: 106002.
- [7] Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network. *Nature Reviews Microbiology*, 2018; 16: 263-276.
- [8] De Notaris C, Rasmussen J, Sørensen P, Olesen J E. Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops. *Agriculture Ecosystems & Environment*, 2018; 255: 1-11.
- [9] Badr M A, Hussein S D A, Eltohamy W A, Gruda N. Nutrient uptake and yield of tomato under various methods of fertilizer application and levels of fertigation in arid lands. *Gesunde Pflanzen*, 2010; 62(1): 11-19.
- [10] Delin S, Stenberg M. Effect of nitrogen fertilization on nitrate leaching in relation to grain yield response on loamy sand in Sweden. *European Journal of Agronomy*, 2014; 52: 291-296.
- [11] Kimmel K, Furey G N, Hobbie S E, Isbell F, Tilman D, Reich P B. Diversity-dependent soil acidification under nitrogen enrichment constrains biomass productivity. *Global Change Biology*, 2020; 26: 6594-6603.
- [12] Mostafa H, El-Nady R, Awad M, El-Ansary M. Drip irrigation management for wheat under clay soil in arid conditions. *Ecological Engineering*, 2018; 121: 35-43.
- [13] Jha S K, Ramatshaba T S, Wang G, Liang Y, Liu H, Gao Y, et al. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. *Agriculture Water Management*, 2019; 217: 292-302.
- [14] Abubakar S A, Hamani A K M, Wang G S, Liu H, Mehmood F, Abdullahi A S, et al. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain. *Journal of Integrative Agriculture*, 2023; 22(3): 908-922.
- [15] Guo X P, Xie J H, Xiao J. Effects of different water and fertilizer treatments on growth and water and fertilizer utilization of winter wheat under drip irrigation with Yellow River Water. *Water Saving Irrigation*, 2023; 330: 12-12. (in Chinese)
- [16] Zhu X K, Li C Y, Jiang Z Q, Huang L L, Feng C N, Guo W S, et al. Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat. *Journal of Integrative Agriculture*, 2012; 11(7): 1103-1110.
- [17] Zhang X, Li X, Luo L, Ma Q X, Ma Q, Hui X, et al. Monitoring wheat nitrogen requirement and top soil nitrate for nitrate residue controlling in drylands. *Journal of Cleaner Production*, 2019; 241: 118372.
- [18] Wen Z H, Shen J B, Blackwell M, Li H G, Zhao B Q, Yuan H M. Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. *Pedosphere*, 2016; 26: 62-73.
- [19] Shi Z J, Liu D H, Liu M, Hafeez M B, Wen P F, Wang X L, et al. Optimized fertilizer recommendation method for nitrate residue control in a wheat-maize double cropping system in dryland farming. *Field Crops Research*, 2021; 271: 108258.
- [20] Tan D S, Jin J Y, Huang S W, Li S T, He P. Effect of Long-Term Application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. *Agriculture Science in China*, 2007; 6: 200-207.
- [21] Liu Z H, Jiang L H, Li X L, Härderter R, Zhang W J, Zhang Y L, et al. Effect of N and K fertilizers on yield and quality of greenhouse vegetable crops. *Pedosphere*, 2008; 18: 496-502.

[22] Lollato R, Figueiredo B, Dhillon J, Arnall D, Raun W. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments. *Field Crops Research*, 2019; 236: 42–57.

[23] Gaju O, Allard V, Martre P, Le Gouis J, Moreau D, Bogard M, et al. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. *Field Crops Research*, 2014; 155: 213–223.

[24] Chen X Y, Zhang K, Gao X P, Ai X, Chen G Y, Guo X M, et al. Effect of irrigation with magnetized and ionized water on yield, nutrient uptake and water-use efficiency of winter wheat in Xinjiang, China. *Agriculture Water Management*, 2025; 308: 109292.

[25] Zhang G X, Liu S J, Dong Y J, Liao Y C, Han J. A nitrogen fertilizer strategy for simultaneously increasing wheat grain yield and protein content: Mixed application of controlled-release urea and normal urea. *Field Crops Research*, 2022; 277: 108405.

[26] Liu C H, Yan H H, Wang W Y, Han R F, Li Z Y, Lin X, et al. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation. *Soil & Tillage Research*, 2023; 225: 105546.

[27] Scanlan C A, Bell R W, Brennan R F. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertiliser. *Field Crops Research*, 2015; 178: 125–134.

[28] Ju X, Christie P. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: a case study on the North China Plain. *Field Crops Research*, 2011; 124: 450–458.

[29] Xu X P, He P, Chuan L M, Liu X Y, Liu Y X, Zhang J J, et al. Regional distribution of wheat yield and chemical fertilizer requirements in China. *Journal of Integrative Agriculture*, 2021; 20: 2772–2780.

[30] Hejeman M, Kunzová E, Šrek P. Sustainability of winter wheat production over 50 years of crop rotation and N, P and K fertilizer application on illimerized luvisol in the Czech Republic. *Field Crops Research*, 2012; 139: 30–38.

[31] Kunzová E, Hejman M. Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. *Field Crops Research*, 2009; 111: 226–234.

[32] Kuznetsov I, Alimgafarov R, Islamgulov D, Nafikova A, Dmitriev, A. Effect of growth regulator Melafen and chelated fertilizer Metallocene on yield and quality of winter wheat. *Biocatalysis And Agricultural Biotechnology*, 2021; 38: 102198.

[33] Wang H D, Wu L F, Cheng M H, Fan J L, Zhang F C, Zou Y F, et al. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertilized cotton in northern Xinjiang, China. *Field Crops Research*, 2018; 219: 169–179.

[34] Garnett T, Appleby M C, Balmford A, Bateman I J, Benton T G, Bloomer P, et al. Sustainable intensification in agriculture: premises and policies. *Science*, 2013; 341: 6141.

[35] Liu P Z, Lin Y R, Li Z P, Yang Q X, Liu X T, Wang L L, et al. Optimization of fertilization scheme based on sustainable wheat productivity and minor nitrate residue in organic dry farming: An empirical study. *Science of Total Environment*, 2024; 912: 169238.

[36] Feng J Y, Zhang H, Zhang H Y, Kang X R, Wang H, Pan H, et al. Optimization of fertilization combined with water-saving irrigation improves the water and nitrogen utilization efficiency of wheat and reduces nitrogen loss in the Nansi Lake Basin, China. *Journal Integrative Agriculture*, 2025; In Press. doi: [10.1016/j.jia.2025.03.013](https://doi.org/10.1016/j.jia.2025.03.013)

[37] Huang Q N, Wang Z H, Huang T M, Hou S B, Zhang X, Ma Q X, et al. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. *Science Agriculture Sinica*, 2018; 51(14): 2722–2734. (in Chinese)

[38] Cao H B, Wang Z H, Shi Y C, Du Y M, Lei X Q, Zhang W Z, et al. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on weibei dryland. *Science Agriculture Sinica*, 2014; 47(19): 3826–3838. (in Chinese)

[39] Yang X L, Lu Y L, Tong Y A, Yin X F. A 5-year lysimeter monitoring of nitrate leaching from wheat–maize rotation system: comparison between optimum N fertilization and conventional farmer N fertilization. *Agriculture Ecosystems & Environment*, 2015; 199: 34–42.

[40] Wang H D, Wu L F, Wang X K, Zhang S H, Cheng M H, Feng H, et al. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation. *Agriculture Water Management*, 2021; 245: 106662.

[41] Rivera-Amado C, Trujillo-Negrellos E, Molero G, Reynolds M P, Sylvester-Bradley R, Foulkes M J. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. *Field Crops Research*, 2019; 240: 154–167.

[42] Muschietti-Piana M P, Cipriotti P A, Urricariet S, Peralta N R, Niborski M. Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching. *Agriculture Water Management*, 2018; 199: 61–70.

[43] Chen G Z, Wu P, Wang J Y, Zhou Y D, Ren L Q, Cai T, et al. How do different fertilization depths affect the growth, yield, and nitrogen use efficiency in rain-fed summer maize? *Field Crop Research*, 2023; 290: 108759.

[44] Shi Z J, Liu D H, Luo W H, Hafeez M B, Li J, Wen P F, et al. Combined nitrogen and phosphorus management based on nitrate nitrogen threshold for balancing crop yield and soil nitrogen supply capacity. *Agriculture Ecosystems & Environment*, 2022; 337: 108071.

[45] Yan F L, Zhang F C, Fan X K, Fan J L, Wang Y, Zou H Y, et al. Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of dripfertilized spring maize in northwest China. *Agriculture Water Management*, 2020; 243: 106440.

[46] Paramasivam S, Alva A K, Fares A, Sajwan K S. Fate of nitrate and bromide in an unsaturated zone of a sandy soil under citrus production. *Journal of Environmental Quality*, 2002; 31: 671–681.

[47] Jia H, Qian H, Zheng L, Feng W W, Wang H K, Gao Y Y. Alterations to groundwater chemistry due to modern water transfer for irrigation over decades. *Science of Total Environment*, 2020; 717: 137170.

[48] Fernández G J, Simmonds L P. Monitoring and modeling the three dimensional flow of water under drip irrigation. *Agriculture Water Management*, 2006; 83(3): 197–208.

[49] Liang Q, Liao H, Yan X X. Quantitative analysis of plant root configuration. *Chinese Bulletin of Botany*, 2007; 24(6): 695–702. (in Chinese)

[50] Yan X L, Liao H, Nian H. Principle and application of root biology. Beijing: Science Press. 2007; 305p. (in Chinese).

[51] Ren J H, Liu X L, Yang W P, Yang X X, Li W G, Xia Q, et al. Rhizosphere soil properties, microbial community, and enzyme activities: Short-term responses to partial substitution of chemical fertilizer with organic manure. *Journal of Environment Management*, 2021; 299: 113650.

[52] Wang C, Ma H Y, Feng Z H, Yan Z X, Song B L, Wang J L, et al. Integrated organic and inorganic fertilization and reduced irrigation altered prokaryotic microbial community and diversity in different compartments of wheat root zone contributing to improved nitrogen uptake and wheat yield. *Science of Total Environment*, 2022; 842: 156952.

[53] Savini I, Kihara J, Koala S, Mukalama J, Waswa B, Bationo A. Long-term effects of TSP and Minjingu phosphate rock applications on yield response of maize and soybean in a humid tropical maize–legume cropping system. *Nutrient Cycling in Agroecosystems*, 2016; 104: 79–91.

[54] Andresen M, Dresbøll D B, Jensen L S, Magid J, Thorup-Kristensen K. Cultivar differences in spatial root distribution during early growth in soil, and its relation to nutrient uptake-a study of wheat, onion and lettuce. *Plant and Soil*, 2016; 408: 255–270.

[55] Cao H B, Wang Z H, He G, Dai J, Huang M, Wang S, et al. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. *Field Crop Research*, 2017; 209: 88–95.

[56] Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J M, Jeuffroy M H, et al. Deviation from the grain protein concentration–grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. *Journal of Experimental Botany*, 2010; 61(15): 4303–4312.

[57] Sandaña P A, Harcha C I, Calderini D F. Sensitivity of yield and grain nitrogen concentration of wheat, lupin and pea to source reduction during grain filling. A comparative survey under high yielding conditions. *Field Crops Research*, 2009; 114(2): 233–243.

[58] Yan S C, Wu L, Fan J L, Zhang F C, Zheng J, Qiang S C, et al. Dynamic change and accumulation of grain macronutrient (N, P and K) concentrations in winter wheat under different drip fertigation regimes. *Field Crops Research*, 2020; 250: 107767.

[59] Barbottin A, Lecomte C, Bouchard C, Jeuffroy M H. Nitrogen remobilization during grain filling in wheat. *Crop Science*, 2005; 45(3): 1141–1150.

[60] Liu M, Yu Z, Liu Y, Konijn N T. Fertilizer requirements for wheat and maize in China: the QUEFTS approach. *Nutrient Cycling in*

*Agroecosystems*, 2006; 74: 245–258.

[61] Li S S, Wang Z H, Diao C P, Wang S, Liu L, Huang N. Differences in grain zinc concentration and its relationship to NPK uptake and utilization for high-yielding wheat cultivars in dryland. *Journal Plant Nutrition and Fertilizer*, 2019; 25(2): 167–175. (in Chinese)

[62] Bakhoun G S, Mervat S, Sadak, Elham A B. Influence of boron and/or potassium accompanied by two irrigation systems on chickpea growth, yield and quality under sandy soil conditions. *Egyptian Journal of Chemistry*, 2022; 65: 103–117.

[63] Li C, Wang X S, Guo Z K, Huang N, Hou S B, He G, et al. Optimizing nitrogen fertilizer inputs and plant populations for greener wheat production with high yields and high efficiency in dryland areas. *Field Crops Research*, 2022; 276: 108374.

[64] Li F, Guo L, Li J, Xiao C. Effects of nitrogen application rate on N P K uptake distribution and utilization of direct seeding cotton after rape harvest. *Acta Agriculturae Boreali-Sinica*, 2018; 33(3): 196–202.

[65] Aegnehu G, van Beek C, Bird M I. Influence of integrated soil fertility management in wheat and tef productivity and soil chemical properties in the highland tropical environment. *Journal of Soil Science and Plant Nutrition*, 2014; 14: 532–545.

[66] Zhang Y H, Xue Q W, Li J P, Huang J, Yao D X, Wang Z M. Dry matter and nitrogen accumulation and remobilization in wheat as affected by genotype and irrigation. *Journal of Plant Nutrition*, 2017; 40: 2279–2289.

[67] Liu M, Wu X L, Li C S, Li M, Xiong T, Tang Y L. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. *Field Crops Research*, 2020; 248: 107720.

[68] Feng S, Gu S, Zhang H, Wang D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. *Field Crops Research*, 2017; 214: 131–141.

[69] Duan J Z, Wu Y P, Zhou Y, Ren X X, Shao Y H, Feng W, et al. Grain number responses to pre-anthesis dry matter and nitrogen in improving wheat yield in the Huang-Huai Plain. *Scientific Reports*, 2018; 8: 7126.

[70] Shen H Z, Gao Y H, Sun K X, Gu Y H, Ma X Y. Effects of differential irrigation and nitrogen reduction replacement on winter wheat yield and water productivity and nitrogen-use efficiency. *Agriculture Water Management*, 2023; 282: 108289.

[71] Mon J, Bronson K F, Hunsaker D J, Thorp K R, White J W, French A N. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat. *Field Crop Research*, 2016; 191: 54–65.

[72] Fois S, Motzo R, Giunta F. The effect of nitrogenous fertiliser application on leaf traits in durum wheat in relation to grain yield and development. *Field Crop Research*, 2009; 110(1): 69–75.

[73] Cao N, Wang J W, Pang J Y, Hu W, Bai H, Zhou Z G, et al. Straw retention coupled with mineral phosphorus fertilizer for reducing phosphorus fertilizer input and improving cotton yield in coastal saline soils. *Field Crop Research*, 2021; 274: 108309.

[74] Abdelkhaled A A, Darwesh R K, El-Mansouri M. Response of some wheat varieties to irrigation and nitrogen fertilization using ammonia gas in North Nile Delta region. *Annals Of Agricultural Sciences*, 2015; 60(2): 245–256.

[75] Grahmann K, Verhulst N, Peña R J, Buerkert A, Vargas-Rojas L, Govaerts B. Durum wheat (*Triticum durum* L.) quality and yield as affected by tillage–straw management and nitrogen fertilization practice under furrow-irrigated conditions. *Field Crop Research*, 2014; 164: 166–177.

[76] Flagella Z, Giuliani M M, Giuzio L, Volpi C, Masci S. Influence of water deficit on durum wheat storage protein composition and technological quality. *European Journal of Agronomy*, 2010; 33(3): 197–207.