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Abstract: Human labor efficiency has become unable to keep the pace with gradually annual citrus increasing production.
Highly efficient and intelligent citrus picking and accurate yield estimation is the key to solve the problem. Success heavily
depends on detection accuracy, prediction speed, and easy model deployment. Traditional target detection methods often fail to
achieve balanced results in all those aspects. An improved YOLOvVS8 network model with four significant features is proposed.
First, a lightweight FasterNet network structure was introduced to the backbone network, which reduced the number of
parameters and computations while maintaining high-precision detection. Second, a progressive feature pyramid network
AFPN structure was added to the neck network. Third, a parallel multi-branch attention mechanism PMBA was added before
the detection head to improve the sensing ability after the feature fusion network. Fourth, a Wise-IoU was introduced to replace
the original CloU loss function to make the whole training process converge faster. Based on this, this study proposes an
improved version of the YOLOv8 model: the FAP-YOLOVS. This improved model achieved an average accuracy (mAP@0.5)
of 97.2% on the citrus datasets, with an accuracy that was 4.7% higher than the original YOLOv8, which was 19.2%, 7.4%,
5.1%, 4.9%, and 5.2% higher than the other models: Faster R-CNN, CenterNet, YOLOv5s, YOLOx-s, and YOLOV7,
respectively. The number of parameters was reduced by 55.45%, the computation was reduced by 20% compared to the
YOLOv8 benchmark, and the frame rate reached 46.51 fps to meet the detection requirements of lightweight networks. The
experiments showed that the FAP-YOLOvV8 models all outperformed the comparison models. Consequently, the proposed FAP-
YOLOvV8 model can help solve the citrus detection problem in orchards, which can be better applied to edge devices and
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provides strong support for intelligent orchard management.
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1 Introduction

With the rapid popularization of smart agriculture, the
intelligence of China’s citrus industry is in a rapid development
stage. The realization of automated citrus harvesting, accurate citrus
yield prediction, and intelligent management have become
essential goals.

In recent years, although the field of agricultural artificial
intelligence has taken off!", three key problems need to be solved to
realize agricultural picking intelligence™ and accurate prediction of
citrus yield”. First, the recognition accuracy needs to be further
improved; second, the inference speed of the model should match
the production demand; and finally, lightweight deployment is
crucial for citrus recognition. Deep learning® has made rapid
development in the past decades, and many excellent modules and
networks have been proposed, but many of them are still in the
theoretical stage, lack practical applications, or cannot completely
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solve the above problems, and need further improvement and
progress. In terms of fruit detection™®, there are many researchers
who have achieved good research results, and the research in this
study must be carried out on the basis of the previous work to
promote the development of intelligence in the citrus industry.

In response to the above problems, scholars at home and abroad
have researched fruit recognition and detection and proposed many
new algorithms. In the traditional digital image processing, Gao et
al.” proposed a multilevel apple detection method based on fast
regional convolutional neural networks, which can detect apples
under different conditions but does not address the recognition in
high-density complex environments. Kukreja et al.'” proposed a
dense CNN network, which provides ideas for citrus quality
detection by designing data enhancement and pre-processing
techniques. However, in real orchard environments, the accuracy of
traditional machine vision inspection is often unsatisfactory due to
the different levels of occlusion between leaves, fruits, and
branches!"". To solve the lightweight problem of the model, Liu et
al.'"” used MobileNetv2 as the backbone network for citrus disease
detection. In addition, Qiu et al."* investigated a model compression
method based on knowledge distillation, successfully achieving
optimized results in reducing parameters and improving detection
speed. However, Liu et al.'! used a convolutional neural network
that can detect leaves, branches, and fruits hidden by branches or
leaves. The hierarchical contour analysis algorithm proposed by Lu
et al.” was able to detect green citrus on trees, but the time
efficiency of their algorithm still needs to be improved. Bi et al.!'”
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proposed a citrus visual recognition model using multiple
segmentation methods, but the detection effect is poor in complex
situations. Zhang et al.'” overcame inconsistent fruit detection
accuracy and repeated counts of the same fruit. Utilizes video
sequences to help overcome these problems. Mitigated the double
counting problem associated with occluded fruits. Zhuang et al.'
proposed a citrus fruit detection method that achieves robust citrus
region localization under different lighting conditions through a
multi-step process of local isomorphic filtering, threshold
processing, and morphological operations. However, the
performance of the method under cloudy conditions still needs to be
further improved, and there are 13 false detections. In addition, Lin
et al."), based on RGB-D image analysis for citrus detection and
localization in the field is greatly affected by the complex
background. Although Chen et al.*” implemented a citrus detection
algorithm in an orchard environment using a multi-scale lightweight
and efficient model of YOLOV7, the algorithm was less effective in
detecting dense citrus trees. Similarly, Lyu et al.?" implemented
citrus detection and counting in orchards using the YOLOvV5
algorithm and an edge computing system, which optimized resource
utilization, but the detection efficiency was still not high in complex
scenarios. Yang et al.”” implemented an apple target detection
method using YOLOvV7, but the algorithm cannot detect dense
scenes and is highly affected by fruit tree leaves and branches.

2 Introduction to Yolov8
YOLOVS is the latest work in the YOLO (You Only Look

Conv | = |conv2d] BN | SiLU]

Once)*series, open-sourced by Ultralytics in 2023, and is the one
of most advanced target detection model. The single-stage detection
algorithm first came into the limelight in 2015 when YOLOvI was
proposed. It effectively solved the problem of slow inference in two-
stage detection networks and excelled in detection accuracy.
Subsequently, YOLOv3™, as an improved version of the previous
work, introduced the residual module Darknet-53 and the FPN
architecture, which realized the prediction of objects at three
different scales and multi-scale fusion. Since then, YOLOv4®"! and
YOLOVS5 have added a number of tricks to the versions. In 2022,
YOLOv7® was created, innovating the Extended-ELAN
architecture, which improves the self-learning ability of the network
without destroying the original gradient paths. In addition, it uses a
cascade-based model scaling approach to generate models of
appropriate scale for real-world tasks to meet the detection needs.

YOLOVS8, on the other hand, is a significant improvement
based on the YOLOVS5 project. It refers to the design idea of
YOLOv7 ELAN and improves the backbone network and the neck
part, replaces the C3 structure of YOLOvS with the C2f structure,
which is richer in gradient flow, and adjusts the number of channels
for the models of different scales. The head part has a big change
compared to YOLOVS and adopts the current mainstream decoupled
head structure, which separates the classification head and the
detection head and also shifts from anchor-based detection to
anchor-free detection. These improvements enable YOLOVS to
achieve higher performance and accuracy in target detection. Figure 1
shows a diagram of the YOLOVS architecture.

3  Yolov8 algorithm improvement

3.1 Improvement strategy

Figure 1

The citrus fruit detection task is prone to problems such as
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YOLOVS structural frame diagram

background interference, occluded fruits to be detected, and
different sizes. This study proposes to improve the YOLOv8
network model, and the specific structure is shown in Figure 2.

Based on the YOLOvV8 model, four improvements are proposed:
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first, the backbone part of the backbone network is improved, and
the original C2f structure is replaced by the improved C2f Faster
which reduces the number of parameters and
computations while increasing the effective information associated
with location awareness. The improved AFPN feature pyramid
structure is then introduced to strengthen the neural network’s
ability to perceive the feature region, and the problem of feature

structure,

information loss or degradation in the traditional feature pyramid

Backbone
Cony
[ Conv ]
i C2f H

method is solved by gradually fusing the features of non-adjacent
layers for feature fusion so that the model can more accurately
locate and identify the target of interest. The improved parallel
multi-branch attention mechanism PMBA is added again to enhance
the ability to extract semantic features and improve the accuracy of
feature extraction; finally, the loss function in the prediction part is
improved, and Wise-IoU replaces the existing CloU loss calculation
to improve the detection of targets with different sizes and shapes.

Head
C2f Yolo head

C2f Yolo head

C2f —{PMBA}H—{Yolo head

SPPF

Conv

Figure 2 Improvement of YOLOVS structural frame diagram

3.2 FasterNet structure

In traditional neural network optimization, reducing the number
of floating point operations (FLOPs) is considered an effective way
to improve network performance. However, practical observations
have shown that reducing FLOPs alone does not significantly
reduce the computational latency of neural networks. This is mainly
due to the fact that the inefficient number of floating point
operations per second (FLOPS) becomes a major bottleneck in
network computation.

To overcome this problem, academic researchers have re-
examined commonly used operators and found that the inefficient
FLOPS are mainly due to the frequent memory accesses of
operators, especially deep convolutional operations. Therefore, a
novel approach called Partial Convolution (PConv)®" has been
proposed to extract spatial features more efficiently.

It is designed to reduce both memory accesses and
computational redundancy, thus optimizing the execution efficiency
of the entire neural network. Compared to
convolution, PConv requires only 1/16 of the number of FLOPs and
1/4 of the number of memory accesses.

Based on PConv, researchers also proposed the FasterNet
structure?”, which runs much faster than other networks. The
FasterNet structure enables the neural network to extract features
and perform computations more efficiently during execution, thus
improving overall performance.

In this study, the C2f module of YOLOvVS8’s backbone network
is redesigned based on partial convolution (PConv). The improved
module can effectively reduce the number of parameters and the
amount of computation. The module uses PConv to replace the
original Conv operation, which has the advantage of improving the
spatial feature extraction for some input channels while remaining
unchanged for the rest of the channels. This is illustrated in
Figure 3. The application of the C2f Faster module of this paper in
the improved backbone network can effectively reduce
computational redundancy and the number of parameters.

conventional

C2f Faster
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Note: The packet bottleneck structure is shown by the small figure on the right,
which includes 2 PConv and 2 Conv.

Figure 3 C2_Faster structure diagram

In the deep learning target detection task, the neck is the
module or layer between the backbone and head networks. Its role
is to process further and fuse the features extracted from the
backbone network to improve the target detection performance.

However, neck modules also have some drawbacks. Some neck
structures may introduce a bottleneck effect, i.e., the feature
dimensions may be constrained or compressed during the feature
fusion process, resulting in information loss and model performance
degradation. Some complex neck structures can introduce
significant computational and memory overhead, increasing the
training and inference time of the model and limiting its use in
resource-constrained environments. In some cases, the neck module
may not be able to fully utilize and convey feature information
extracted from the backbone network at different scales and levels,
resulting in degraded target detection performance.

To address these shortcomings, this study proposed an
improved bottleneck structure for backbone and neck networks, as
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shown in Figure 4, to reduce computational and storage overheads,
increase flexibility, and improve the balance of information
delivery, further enhancing target detection’s accuracy and
efficiency.

:C2f PConv

E PConv3x3| |

PConv 3x3 Conv 1x1

Note: The structure consists of a 3x3 PConv followed by two 1x1 Convs plus a 3x
3 PConv residual structure.

Figure 4 Improved C2f PConv structure

3.3 AFPN structure
Asymptotic Feature Pyramid Network (AFPN)®is a feature

| C2 o caf
i* Conv Cc2f
Backbone
(4 Conv
Cs5

pyramid structure for target detection tasks. AFPN solves the
problem of feature information loss or degradation in the traditional
feature pyramid approach by incrementally fusing the features of
non-adjacent hierarchical levels. The main idea is to start from the
bottom and avoid large semantic gaps between non-adjacent levels
by fusing low-level features and gradually introducing high-level
features. AFPN also introduces adaptive spatial fusion operations to
solve the multi-target information conflicts that may occur in the
feature fusion process.

Specifically, the feature fusion process of AFPN starts from
low-level features, gradually fuses deep-level features, and finally
fuses the highest-level features. This gradual fusion approach brings
the semantic information of features at different levels closer
together and reduces the semantic gap between non-adjacent levels.
For example, fusing the features of C2 and C3 reduces the semantic
gap between them; meanwhile, fusing the features between C3 and
C4 reduces the semantic gap between C2 and C4.

By introducing AFPN, the feature pyramid network can better
maintain the continuity and consistency of feature information and
AFPN is of great
significance in multi-scale feature coding, and it can effectively

improve target detection performance.

solve the problem of the poor effect of feature fusion between non-
adjacent layers, as is shown in Figure 5.

Caf P2, predict

C2f B3, predict

caf P4, predict
> Conv

Note: The small target detection layer is introduced in the backbone network through the progressive fusion network, the original large target detection layer (P5) is

removed, and finally the P2, P3, and P4 layers are retained.

Figure 5 Improved AFPN architecture diagram

In the adaptive spatial fusion process, the adaptive spatial
fusion (ASF) mechanism is used to assign different spatial weights
to features at different levels, thereby enhancing the importance of
key-level features and mitigating the influence of conflicting
information from different targets on feature fusion. The ASF
mechanism weights features for fusion according to the spatial
importance of features at different levels. For those key hierarchical
features with high importance, ASF assigns higher weights so that
they have more influence in the fusion process. ASF assigns
appropriate weights for other hierarchical features based on their
effectiveness at a particular location. In this way, ASF emphasizes
those features that are more important for the target detection task
and improves the model’s ability to perceive key features.

At the same time, ASF can also mitigate the effect of
conflicting information from different targets on feature fusion. In
the target detection task, there may be semantic and morphological
differences between different targets, and these differences may
lead to the conflict of feature information. By adjusting the fusion
of features according to the spatial weights of different targets, the
ASF makes the features more balanced and stable in the fusion
process and reduces the effect of conflicting information. The
adaptive spatial fusion process of different network layers is shown
in Figure 6, where it can be seen that the ASF module fuses the
features of different network layers through horizontal connectivity,
downsampling, and upsampling.

—

Horizontal
“_connection

R

Down-
sampling

.

Up-
sampling

Figure 6 Adaptive spatial fusion

3.4 Parallel branching attention mechanism

In the input citrus images, which are often accompanied by
noise, a large amount of redundant information will be generated
with the increase of convolution depth, which will result in the loss
of some useful information and decrease target detection accuracy.
For this reason, this study proposes an improved Parallel Multi-
Branch Attention (PMBA) module and chooses to incorporate it
into the YOLOVS network at effective network locations, which can
enable the network to more accurately localize and identify regions
of interest.

The attention module is divided into the Channel Attention
Module (CAM) and Spatial Attention Module (SAM). The CAM is
used to compute the weights corresponding to each channel of the
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input features, and its structure improves the channel module of the
NAMP attention mechanism. The SAM is used to compute the
weights corresponding to each feature point, and its structure adopts
the spatial module of the CBAMP"! attention mechanism.

The NAM attention mechanism improves the performance of
the attention mechanism by introducing a contribution factor for the
weights. It uses a batch-normalized scale factor to represent the
importance of the weights, effectively avoiding the fully connected
and convolutional layers used by the ECA®Y and CBAM modules.
Specifically, NAM adopts the modular integration of CBAM with a
redesign of the channel attention submodule. The feature map F is
multiplied by the BN scaling factor and weights, and finally, after a
sigmoid activation function, the output channel features are
obtained. The channel attention submodule adopts the scaling factor
in the batch normalization and uses the scaling factor to compute
the channel variance to measure the importance of the weights, as
shown in Equation (1):

B[n —Hgp
Ll ip (1)
\oste
where, B;, is the input feature; B, is the output feature; y and f§ are
the parameters of trainable affine transformation; u; and oy are the
mean and standard deviation of the small batch, respectively; and &

B,.=BN(B;,) =y

The input features /'

is the error. The channel module in NAM is shown in Figure 7,

where, F is the input feature; M, is the output feature; BN denotes

the normalization; “weight” denotes the weights, which is expressed

as W=7/ ny ; 7; denotes the scale factor of each channel; and o
Jj=0

denotes the sigmoid activation function, which is given in

Equation (2):

M, = c(W(BN(F))) 2

The structure of the SAM module is shown in Figure 8. Firstly,
global maximum pooling and average pooling operations are
performed on the input features F' to obtain two features F,, and
F,.. Then, F,andF,, are spliced together and normalized by
convolution operation and sigmoid activation function to obtain the
two-dimensional spatial attention weights M, with the formula as in
Equation (3):

M (F) = o(Conv(AvgPool(F) ®MaxPool(F))) 3)

where, AvgPool is the average pooling function over space,
MaxPool is the maximum pooling function over space, Conv is the
convolution function,®is the feature merging operation, and o is the
sigmoid activation function; F' is the input feature and M, is the
output feature.

Channel weights M,

Figure 7 Structure of channel attention module
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Figure 8 Structure of spatial attention module

Improvements are made to solve the problem of the tandem
connection of the channel and spatial attention modules in ordinary
attention mechanisms (e.g., CBAM and NAM), and the possible
loss of channel and spatial information during training. The
improved formula is shown in Equation (4) as follows: in the
improved attention module, the input features are first processed
with channel attention to obtain the channel attention-weighted
features. Then, spatial attention processing is performed on the
features after channel attention processing to obtain the final output
features. With this improvement, the channel and spatial
information can be better preserved when the network depth is
deepened, and the performance of the attention mechanism can be
improved.

Fr=M(F)®F)®(M,F,)®F),) “4)

where, F, and F, are channel features and spatial features, respec-

tively; F" is the output feature; ® is the feature multiplication oper-
ation; and @ is the feature merging operation. The improved parallel
multi-branch attention module (PMBA) is shown in Figure 9.

3.5 Loss function

The traditional YOLOVS uses CIoU™ as the loss function for
regression loss, and the CloU loss function is very sensitive to
changes in the size and shape of the target frame. This means that
the model may not perform stably when dealing with targets of
different sizes and shapes, and for small targets, since their IoU
values tend to be low, the advantage of CloU is not obvious, which
may lead to poor detection of small targets by the model.

Since the training data inevitably contains low-quality samples,
geometric factors such as distance, aspect ratio, etc. will aggravate
the punishment of low-quality samples, thus reducing the model’s
generalization performance. To solve the above problems, this study
introduces Wise-loU™to improve the original loss function.
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Figure 9  Structure of parallel multi-branch attention module

The marked frame is denoted as § =[x, y,w,h], and the target
frame is denoted as E’gl = [Xg> Vet Wets P ] In the following figure,
(x,y)denotes the center coordinates of the marked frame
and(x,,,y,)denotes the center coordinates of the target frame. IoU is
used to measure the degree of overlap between the predicted frame
and the real frame in the target detection task, and its loss is defined
in Equation (5):

W, X H,
WX+ Wy X hy — W, X H, (5)
Lo,y =1-IoU

IoU =

In the smallest enclosing box (green) and the central points’
connection (blue), the area of the union is WXh+wyXhy—
WxH;; wxh and wyxhy, denote the area of the width and height of
the labeled and target frames, respectively; and ; and H; denote the
width and height of the intersection of the labeled and target frames,
respectively. IoU denotes the loss intersection and merger ratio of
the labeled frame to the target frame, as shown in Figure 10.

W, —

(Xg> Vo) i

(. ) __T_

\ |
\ W, \

g

Figure 10 Loss of intersection ratio

Wise-IoU can better focus on the target and increase the
detection frame regression accuracy. Its formula is shown in
Equation (6):

Lyiovnt = Ryiou(1 —10U)
(.X - xgl)z + (y _ygl)2 (6)

Rywiou = exp (Wf +H§)

where, W, and H, are the sizes of the smallest enclosing frames of
the labeled frame and the target frame. Ry, refers to a weighted
form of IoU (intersection and concurrency ratio), specifically
distance-attention-weighted IoU, which is used to significantly
amplify the IoU values of ordinary quality anchor frames. It
optimizes the detection performance of the model by introducing

the concept of distance attention, which enables the model to pay
more attention to those anchor frames that are moderately distant
from the target frame and have a better fit during the training
process. Lwiuw 1S the first version of the Wise-IoU loss function,
which significantly amplifies the IoU values of normal-quality
anchor frames and reduces the attention of high-quality anchor
frames by introducing Rwiou.

Wise-IoU v3 defines the outlier to describe the quality of the
anchor frame. The outlier of the anchor frame is denoted by the

Ligy

ratio of L,y and E:ﬁ: € [0,+c0) , where a small outlier

implies that the anchor frame I1osU of high quality, and it is assigned a
small gradient gain to bring the bounding box back into focus on the
anchor frame of normal quality. A non-monotonic focusing factor #
is constructed using rand applied to Wise-IoU v1. The formula for
implementing Wise-IoU v3 is shown in Equation (7):

Lyiowws = rlwioue
B (7

r =
oar~

wherer =1 when 8 =¢ , at which point the degradation is Wise-loU
v1. If the degree of outliers of the anchor frame satisfies 8= C (C is
a constant value), the anchor frame will receive the highest gradient
gain. Ly 18 the third version of the Wise-IoU loss function,
which further introduces a dynamic non-monotonic focusing
mechanism on the basis of Lyj,uy;, Which dynamically adjusts the
gradient gain according to the outliers of the anchor frames,
enabling the model to focus on high-quality anchor frames in the
early stage of the training, while focusing more on the ordinary-
quality anchor frames in the late stage of the training, thus
optimizing the model’s detection effect.

4 Experiment and analysis

4.1 Data collection

In this experiment, the datasets of citrus fruits in a citrus
orchard environment were generated. This study’s citrus images
were taken in a Chu-style agricultural plantation in Yunnan
Province. The shooting device was an iPhone (Apple Inc, USA), the
shooting distance was 1-3 cm, automatic exposure, the resolution
pixel of the near image was 1984x1448, the resolution pixel of the
far image was 2840%1563, and it was saved in *.JPG format.

The datasets were taken around November 2021, and a total of
1315 raw images were collected, all taken under natural daylight
conditions, including whole multi-fruit images and partial multi-
fruit images taken under different weather conditions, such as
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sunny, cloudy, and after rain. In order to reduce the number of
duplicate images as well as the interference of fruitless images on
model training, a manual screening method was used to clean the
data from the captured raw images, and a total of 1275 raw images
containing citrus fruits were finally obtained.

This dataset contains four types of disturbances, including
overlap, occlusion, light-dark variation, and distance variation,
which were designed to best reproduce the real condition of the
human eye when observing citrus fruits in a natural environment.
These disturbances are common in real-world picking scenarios, so
the datasets can provide challenging data for citrus fruit recognition
and related tasks.

Some of the samples in the datasets are shown in Figure 11,
demonstrating citrus images from different viewpoints and under
different environmental conditions. With such a dataset, it is
expected to improve the robustness and generalization ability of the
model in real scenarios, which will make an important contribution
to the research and application of citrus fruit recognition and
agricultural automation technology.

a. Single fruit

de
K %

s

d. Multi-fruit overlap

e. Back-lighting f. Contre-jour

Figure 11 Diversity dataset demonstration

4.2 Data enhancement

Since the large telephoto image contains complex information
and it is not easy to distinguish the characteristics of the small citrus
fruit, this study manually selected the telephoto image for further
data enhancement processing. First, the telephoto image was
segmented, which has the advantage of highlighting small targets.
Second, the dataset was expanded using the data enhancement
method.

Data enhancement is a technique commonly used in machine
learning and deep learning, which aims to increase the variety and
amount of data by transforming and expanding the original data to
improve the generalization ability and robustness of the model. In
this study, 1275 raw data were collected, including far-view and
near-view images, and the far-view images were divided into four
parts using the image segmentation operation.

The far-view and near-view images provide different
perspectives and scales, and their presence in the dataset can
increase the diversity of the data. By performing the segmentation
operation on the telephoto image, the original image was divided
into 4 pieces, each of which represents a localized region in the
telephoto image, as shown in Figure 12. This segmentation
operation can effectively increase the amount of data and introduce
different spatial context information.

Data augmentation aims to enable the model to better adapt to
different scenarios and changes and reduce the model’s dependence

on specific samples in the dataset. With the segmentation operation,
more training samples are generated, each containing a different
region of the telepresence map, which helps the model learn the
representational capabilities of different local features.

Split image

Original image

Figure 12 Partial datasets segmentation demonstration: splitting
dense images into 4 parts

In the model training process, the segmented image is used in
combination with other original data through rotation, mirror
flipping, enhancement, scaling, brightness adjustment, and blurring.
Such data enhancement operations can further expand the training
dataset and expose the model to more different image variations
during the learning process, thus improving its generalization ability
and reducing the risk of over-fitting.

It should be noted, however, that in deep learning model
training, data augmentation cannot dominate the entire training
process but should be auxiliary. Augmenting each image can
destroy the features of the original data, so a certain amount of
randomness and probability needs to be added to the augmentation
operation. This means that in each training iteration, only some of
the images are subjected to data enhancement operations, while the
others are left as they are. These enhancement means are
randomized individually or superimposed to enhance the original
image, such as rotating 20% of the image left and right, mirroring
50% of the image, scaling the image between 80% and 95%,
multiplying each pixel by a number between 0.5-1.5 to darken or
lighten the image, and blurring the image with one of Gaussian,
Mean, and Median. Some examples of data enhancement are shown
in Figure 13.

b. Inverted and c. Flipped leﬁAand d. Fuzzy and
scaled right scaled

f. Brightness enhanced g. Inverted and blurred

e. Brightness

Figure 13 Example data enhancement diagram

By choosing the probabilities and operations of data
augmentation wisely, the model can be helped to learn the
commonalities and patterns of the data better and thus perform
better on unseen data. Data augmentation is an effective technique
to improve the generalization performance of the model, but care
must be taken to balance the degree of augmentation when applying
it so as not to cause excessive distortion of the original data.

There are 7566 images of citrus fruits in the datasets, out of
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which 93 561 citrus fruits were captured and divided into training,
validation, and test sets in the ratio of 8:1:1. The training set
consists of 6054 images containing 74 688 citrus fruits, the
validation set consists of 756 images containing 9270 citrus fruits,
and the remaining 756 images containing 9603 citrus fruits
constitute the test set. In addition, about 40% of the individual citrus
images in the dataset fall into the category of small target objects,
about 20% of the citrus images are large target objects, and nearly
50% of the images contain more than 3 citrus fruits. All datasets
were stored in JPG format. Table 1 shows the distribution of the

datasets.
Table 1 Division of the datasets

Dz'itaset' Delineation Proportion Nu'mber of Number
classification pictures of fruits
Training set 80% 6054 74 688

Datasets Validation set 10% 756 9270

Test set 10% 756 9603

Total 100% 7566 93 561

4.3 Pre-training

The operating system used for training in this study was
Ubuntu 20.04, the CPU model is Intel(R) Xeon(R) Platinum 8255C
CPU, the GPU model was RTX 3080, and the frameworks were
Pytorch 1.10.0 and CUDA version 11.3 framework.
4.4 Evaluation criteria

In the field of target detection, the main metrics used to
evaluate the performance of the network are Mean Average
Precision (mAP) and Average Precision (AP). The comprehensive
consideration can evaluate the effectiveness of the model and
calculate the average value of the predicted area of each category
target under the recall rate R and precision rate P, i.e.,

TP

R=Tp7 N ®)
TP
P=Tp7Fp ©)

where, TP refers to correctly predicted as positive cases; FP refers
to incorrectly predicted as positive cases; and FN refers to
incorrectly predicted as negative cases.

In the field of object detection, precision (P) refers to the
proportion of targets that are correctly predicted as citrus fruits
among all targets predicted to be in the citrus category. Recall (R)
represents the proportion of all targets that were actually citrus fruit
that were correctly predicted to be in that category. These two
metrics combine the model’s accuracy and recall for targets and can
effectively evaluate the performance of the target recognition
model.

Neither the precision rate nor the recall rate provides a
complete picture of the model’s performance, so the F1 score is
used as a compromise between the two, as defined in Equation (10):
% _ 2XPxR (10)

P+R
PR

Fl=

Mean Accuracy Rate (mAP) is the integral of the precision rate
over the recall rate in the precision-recall curve (P-R curve) in the
recall range [0,1], which is calculated as shown in Equation (11).
mARP represents the average of the APs of the different categories of
targets, and for the citrus dataset in this study, N=1 since there is
only one category. By calculating the mAP, it is able to measure the
overall effectiveness of citrus detection objectively.

AP = jo‘ P(R)R (11)
3 jol P(R)R
mAP = ‘# (12)

4.5 Results and comparison

In order to visualize the effectiveness of the improved
YOLOvV8s algorithm, the test images were detected by comparing
two sets of dense citrus images using the traditional YOLOVS and
the improved FAP-YOLOVS algorithms in this study, respectively,
and both models use the standard size ‘s’ (denoting the model size).
From the comparison graphs, the accuracy of the traditional
YOLOV8 detection is generally low, while the improved FAP-
YOLOvV8 detection accuracy is improved. The two sets of
comparison images show that the traditional YOLOv8 has leakage
detection, while the improved algorithm pays more attention to the
details of dense, occluded, and poorly lit fruits, improving the
leakage detection of complex and occluded fruits. As can be seen
from the second group of comparison pictures, when the
background is complex and the small target fruits have high
similarity and are difficult to distinguish, the traditional model
appears to miss detection, while the improved algorithm shows
stronger recognition ability. The result comparison is shown in
Figure 14.

oronge g

PSR
8 o Y wns0

YOLOVS8 detection results FAP-YOLOVS detection results

Note: Blue ellipses indicate leakage in the original model.

Figure 14 Comparison of results before and after improvement

4.6 Ablation experiments

Based on the original datasets, to verify whether the improved
parallel multi-branch attention mechanism module (PMBA) in this
study is effective for training, it was compared with the ECA
attention mechanism module, NAM attention mechanism, and
CBAM attention mechanism module, respectively, in a comparison
experiment. The experiments were conducted by introducing ECA,
NAM, CBAM, and PMBA after the YOLOvV8 neck network. The
purpose was to further explore the differences between the
improved parallel multi-branch structure and the parallel structure
of the CBAM attention mechanism, as well as the serial structure of
the NAM channel-only module and the CBAM spatial module-only.
These are denoted as PMBA, CBAM-B, and NCBAM-S in this
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study, respectively, and are added behind the neck network of
YOLOvVS8 under the same conditions.

The results are listed in Table 2, where the introduction of the
attention mechanism in the same position as the traditional
algorithm all improved, and where ECA and NAM improved over
the benchmark, contributing 0.9% and 1%, respectively, indicating
that the channel-only attention module added to the necking
network is able to strengthen the weight share of the input features
to each channel. The CBAM attention mechanism improved over
the benchmark by a 1.2% improvement of the parallel structure
CBAM-B attention mechanism, and both the channel-only NAM
module and the spatial module-only serial structure NCABAM-S
improved by one percentage point.

Table2 Comparison of various attention mechanisms

Model Model size’ M mAP@0.5/%  Precisio/M  GFLOPS/G
YOLOV8 22.6 92.5 11.1 284
NAM 225 93.5 10.6 28.5
CBAM 222 93.7 10.7 28.5
ECA 225 93.4 10.6 284
CBAM-B 225 93.5 10.6 28.5
NCBAM-S 225 93.5 10.6 28.5
PMBA 23.1 93.8 11.0 28.8

The improved parallel multi-branch structure PMBA, on the
other hand, improved by 1.3 percentage points, indicating that the
improved parallel multi-branch structure strengthened the
aggregated channel characteristics and improved the ability to
perceive the target in the spatial dimension, which enabled a more
balanced attention to the target region and improved the ability of
the overall PMBA attention mechanism in the aggregated network.

In order to verify the need for image segmentation and the
effectiveness of the improved model proposed in this study, this
study firstly compared the detection effectiveness of the original
dataset and the dataset processed by image segmentation in the
same experimental environment. Then, the improved method was
applied on the data-enhanced dataset and further experiments were
implemented. Meanwhile, the optimized YOLOv8 network was
tested for comparison while ensuring that the training parameters
were consistent with the dataset. The experimental results are

detailed in Table 3.

Table 3 Ablation experiments with improved strategies

; Model - .
Split  C2f_ . mAP@ Precision/ FLOPs/ Rise/
Image Faster AFPN PMBA WloU 311\246/ 0.5/% M G %

- - - - 226 925 11.1 28.4 -

\ - - - 226 935 11.1 284 1.0
\ - - - 196 942 9.2 244 1.7
\ - \ - - 140 951 6.7 271 2.6
\ - - \ - 225 945 11.1 285 2.0
\ \ \ - - 1.1 956 5.0 228 3.1
\ - \ \ - 140 954 6.7 271 29
\ \ - \ - 196  94.6 9.6 242 22
\ \ \ \ - 1.1 97.1 5.0 229 46
\ \ \ \ N1 972 5.0 229 47
In the table, C2f Faster, AFPN, PMBA, and WIoU

improvement denote the incorporation of the improvement scheme
into the traditional YOLOV8 network, respectively. From Table 3, it
can be analyzed that there was an improvement of 1.0 percentage
points after the segmentation was done only for the large image in

the far view, which indicates that the network ignored some small
and occluded targets when dealing with complex images. In
addition, the segmented image maintained the background of the
original image, but the model reduced the loss of the target of
interest due to the complex background.

First, the use of the improved C2f Faster to replace the
backbone network provided a 1.7 percentage point improvement for
the model, which resulted in higher accuracy of model recognition
and a significant reduction in model size, number of parameters,
and computation. Second, in the improvement of neck network, the
overall improvement of 2.6% using the improved AFPN structure
indicates that the AFPN effectively solved the problem of feature
information loss or degradation in the traditional feature pyramid
method by improving the fusion between feature layers and
resolving the information conflict by using adaptive spatial fusion.
And to a certain extent, it alleviated the problem of missed detection
due to blurred images with complex backgrounds. Finally, after the
introduction of the PMBA attention mechanism, the model
improved by 2% over the benchmark mAP, which indicates that the
addition of the PMBA attention module enabled the network to pay
more attention to the fruits on the fruiting, which led to the
improvement of the performance of the whole model.

With the combined form of the appeal method, it can be seen
that the combination of improved backbone network C2f Faster and
improved neck network AFPN structure improved the model by
3.1% over the benchmark, reduced the model size by 51% over the
benchmark, reduced the number of parameters by 55%, and reduced
the amount of computation by 20%. It can be clearly seen that the
combination of AFPN structure and PMBA made the model teach
the benchmark to improve the model by 2.9%. The combination of
improved backbone network C2f Faster and PMBA improved the
model by 2.1 percentage points. The combination of backbone
network C2f Faster, neck network AFPN structure, and PMBA
attention mechanism improved the model by 4.6%. The addition of
WIoU using the above improvements finally contributed to the
model’s mAP with a performance improvement over the baseline
model of 4.7%, proving the effectiveness of the four improvement
methods.

Meanwhile, Figure 15 shows the change in the loss curves
before and after the improvement of learning process of YOLOVS.
At the inflection point, the WIoU loss curve is lower than the CloU
loss curve, indicating that the WIoU loss value is lower and the
curve is smoother. Meanwhile, after the inflection point, the loss
values of both loss functions tend to decrease slowly after 40 epochs
and finally become smooth, and the WIoU loss can converge the
network faster and more smoothly during whole training process.

—CloU
— WloU

et et et et e e et et et vt

Figure 15 Curves of different loss functions

Figure 16 shows the comparison of the F1 value between
improved YOLOv8 and original YOLOVS. Figure 17 shows the
relationship between the improved YOLOvVS and the original
algorithm in terms of accuracy, recall, and mean accuracy (mAP).
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From the figure, it can be seen that in the graph of the relationship
between the F1 value and confidence, the improved YOLOVS
model is larger than the original YOLOvVS value, and the area
enclosed by F1 and confidence is larger. In the plot of accuracy vs.
recall, the improved YOLOV8 curve is always above the original
YOLOVS, and the curve fluctuates little. In the plot of mean
accuracy (mAP), the improved YOLOVS curve is above the original
YOLOVS and tends to rise steadily after 25 epochs.

F1-confidence curve

F1-confidence curve

1.0
0.8
0.6
[
0.4
0.2 —Orange 0.2 —Orange
—All classes 0.87 at 0.409 —All classes 0.93 at 0.562 |
0 02 04 06 08 1.0 0 02 04 06 08 1.0
Confidence Confidence
Original YOLOVS8 Improved YOLOvV8

Figure 16 F1 value before and after improvement
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Figure 17 Curves of accuracy, recall, and average accuracy before
and after improvement

4.7 Visualization experiments

In Figure 18, we compare the results of the heat map of layer 9
before and after the improvement. From the visualization graph, we
can see that the results of the original model cover a larger area,
including the leaves and branches around the fruits, compared to the
improved YOLOVS trunk model. This is due to the fact that the
original trunk model focuses too much on the objects with obvious
features in the image, resulting in insufficient attention to the fruit
target. While the improved YOLOVS trunk consists of Faster Block,
it can be seen that the heat map pays more attention to the fruit
targets compared to the original model trunk, which improves the
performance and accuracy of target detection.

The results of the visualization process after improving the
feature pyramid (AFPN) and adding the parallel branch attention

(PMBA) are shown in Figure 19. The enhanced feature fusion part
pays more attention to citrus fruits and less attention to other
branches and foliage backgrounds, so most of the citrus fruits are
covered by the heat map in the enhanced feature pyramid fusion
network. Subsequently, the inclusion of the parallel branch attention
mechanism further enhances the concentration of the entire network
on the region of interest, with the heat map focusing more on the
top of the fruits. This suggests that the improved feature pyramid
and parallel branching attention approach not only focuses on the
primary features but also gives appropriate attention weights to the
secondary features, thus more information can be extracted,
allowing more objects to be detected more accurately in
recognition. These improvements help to improve the performance
and accuracy of object detection, leading to better results in the
citrus fruit detection task.

. R - W A ) g &
a. Layer 14 heat map of the improved feature fusion network

b. Layer 30 heat map of a network with added parallel branching attention
mechanism

Figure 19 Improved feature fusion heat map visualization

4.8 Comparison experiments

In order to compare the superiority of the improved FAP-
YOLOv8 target detection algorithm in this study with other
algorithms, this study conducted comparison experiments with
various advanced target detection algorithms: Faster R-CNNP,
CenterNet™!, YOLOv5E?, YOLOx"", YOLOv7%, and the original
YOLOv8 model, in which YOLOvS and YOLOS are compared
with the standard models YOLOvVS5s as well as YOLOv8s. As can
be seen from Table 4, the improved FAP-YOLOVS reached 97.2%
higher than Faster R-CNN, CenterNet, YOLOvS, YOLOx-s,
YOLOv7, and YOLOVS algorithms in terms of detection accuracy
by 19.2%, 7.4%, 5.1%, 4.9%, 5.2%, and 4.7%, respectively. In
terms of model size, improved FAP-YOLOvVS was 97.1 M, 113.8
M, 33 M, 22.8 M, 61.3 M, and 11.5 M lower than Faster R-CNN,
CenterNet, YOLOv5, YOLOx-s, YOLOv7, and YOLOVS,
respectively. The size of the improved FAP-YOLOv8 model was
smaller than that of the Faster R-CNN, CenterNet, YOLOx-s,
YOLOV7, and the original YOLOv8 model in terms of the number
of parameters by 131. 7 M, 31.7 M, 49.2 M, 304 M, and 6.1 M,
respectively; and the size of the improved YOLOv8 model was
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larger in terms of computational complexity than that of the Faster
R-CNN, CenterNet, YOLOx-s, and YOLOv7 models. CNN,
CenterNet, YOLOx-s, YOLOV7, and the original model algorithm
were 346.8 G, 47.3 G, 133.1 G, 822 G, and 5.7 G lower,
respectively. Although the FPS value of the improved FAP-
YOLOVS algorithm in this study was relatively low, it outperformed
the other algorithms of other classes in terms of model size,
detection accuracy, and computation volume, respectively, proving
the effectiveness of the improved algorithm. This shows that the
FAP-YOLOVS algorithm in this paper is suitable for later
deployment in edge devices.

Table 4 Comparison of the various algorithms
Model Model size/M mAP@0.5/% Precision/M Gflops/G FPS/Hz's™

Faster R-CNN 108.2 78.0 136.7 369.7 24.5
CenterNet 124.9 89.8 36.7 70.2 76.1
YOLOvV5 14.4 92.1 7.0 15.9 78.7
YOLOx-s 343 92.3 54.2 156.0 61.9
YOLOvV7 74.8 92.0 35.4 105.1 46.4
YOLOvV8 22.6 92.5 11.1 28.6 78.7

FAP-YOLOvV8 11.5 97.2 5.0 229 46.5

5 Conclusions

In this study, based on the study of YOLOvV8 model, a FAP-
YOLOvV8 model was proposed, which is mainly used to solve the
problem of citrus detection in citrus orchards, high density of fruits,
and overlapping fruit tree branches and leaves. There are four main
ways to improve the model. The first is to replace the traditional
C2f module with a lightweight FasterNet structure module. The
second is to increase the small target detection layer while removing
the large target detection layer and keeping three different scale
detection layers to realize multi-scale feature fusion, which can
alleviate the problem that the original detection layer of YOLOv8
cannot adapt to small target objects. At the same time, the advanced
feature pyramid network (AFPN) is introduced to realize multi-
scale feature fusion to bring the semantic information of features in
different layers closer together and reduce the semantic gap between
non-adjacent layers. Again, by mimicking the human visual
attention learning mechanism, PMBA, an enhanced attention
module with parallel channels and spatial dimensions, is used to
complete the restructuring and optimization of the feature extraction
and detection parts of the neck and head of the YOLOVS feature
fusion network. Finally, by replacing the loss function of the
original model, the use of Wise-IoU to replace the original CloU
can better focus on the target, increase the detection frame
regression accuracy, and the network can converge faster and more
smoothly during the whole training process.

The FAP-YOLOvV8 model proposed in this study achieved
excellent results in several metrics when comparing six target
detectors on the test dataset. The mAP@0.5 value of FAP-YOLOv8
was 97.2%, and the detection accuracy was 19.2%, 7.4%, 5.1%,
4.9%, 5.2%, and 4.7% higher than that of Faster R-CNN,
CenterNet, YOLOvV5, YOLOx-s, YOLOv7, and YOLOvV8 models,
respectively. In terms of the number of parameters index, the
improved model was only 5M, which was about 55.45% lower than
the original model in terms of the number of parameters and six
percentage points higher than YOLOVS in terms of F1 index, which
well balances the detection accuracy and completeness, and is a
model with excellent detection performance. In terms of detection
speed and lightness, the FPS value of 46.51 fps average detection

speed of the FAP-YOLOVS model was lower than that of 78.7 fps
of YOLOvV8. The number of parameters was reduced by nearly 5.7
M. The computational volume was saved by 5.7 G. The improved
model proposed in this study achieved a certain balance of
accuracy, speed, and lightweight deployment. The algorithm is
more suitable for dense scenes of citrus target detection and can be
used for target detection of citrus fruits in real orchard
environments. In future work, other modular structures of the model
could be further improved. For example, the issue of leaf occlusion
can be further addressed, context learning using transformer
structures can be leveraged, and the model’s adaptability to
different scenarios can be enhanced, thereby laying the foundation
for automated harvesting.

Acknowledgements

First of all, I would like to express my heartfelt thanks to my
supervisor, Yang Yi, who gave me selfless guidance and support
from the selection of the thesis topic to the final draft. Under his
careful guidance, I overcame all the difficulties and completed the
research work of the thesis. Secondly, I would like to thank my
labmates for their help to make the experiment go smoothly.
Finally, I would like to thank the Xinping Planting Base of Yunnan
Province (Chu’s Agricultural Co.) for providing the experimental
data. This work was financially supported by the Yunnan Provincial
Major Science and Technology Special Project: Research and
Development and Application Demonstration of Key Technology
for Digitization of Cloud Fruit (Grant No. 202002AE09001002).

[References]

[1] Liu S Y. Artificial intelligence (Al) in agriculture. IT Professional, 2020;
22(3): 14-15.

[2] Tang Y C, Chen M Y, Wang C L, Luo L F, Li J H, Lian G P, et al.
Recognition and localization methods for vision-based fruit picking robots:
A review. Frontiers in Plant Science, 2020; 11: 510.

[3] Diaz I, Mazza S M, Combarro E F, Giménez L I, Gaiad J E. Machine
learning applied to the prediction of citrus production. Spanish Journal of
Agricultural Research, 2017; 15(2). doi: 10.5424/sjar/2017152-9090.

[4] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521(7553):
436-444.

[5] Sal, Ge Z Y, Dayoub F, Upcroft B, Perez T, McCool C. DeepFruits: A
fruit detection system using deep neural networks. Sensors, 2016; 16(8):
1222.

[6] Bargoti S, Underwood J. Deep fruit detection in orchards. In: 2017 IEEE
international conference on robotics and automation (ICRA), Singapore:
IEEE, 2017; pp.3626-3633.

[7] Bargoti S, Underwood J P. Image segmentation for fruit detection and yield
estimation in apple orchards. Journal of Field Robotics, 2017; 34(6):
1039-1060.

[8] Koirala A, Walsh K B, Wang Z, McCarthy C. Deep learning - Method
overview and review of use for fruit detection and yield estimation.
Computers and Electronics in Agriculture, 2019; 162: 219-234.

[9] Gao F F, Fu L S, Zhang X, Majeed Y, Li R, Karkee M, et al. Multi-class
fruit-on-plant detection for apple in SNAP system using Faster R-CNN.
Computers and Electronics in Agriculture, 2020; 176: 105634.

[10] Kukreja V, Dhiman P. A Deep Neural Network based disease detection
scheme for Citrus fruits. In: 2020 International conference on smart
electronics and communication (ICOSEC), Trichy, India: IEEE, 2020;
pp.97-101.

[11] Horng G J, Liu M X, Chen C C. The smart image recognition mechanism
for crop harvesting system in intelligent agriculture. IEEE Sensors Journal,
2019; 20(5): 2766-2781.

[12] Liu Z S, Xiang X Y, Qin J H, Tan Y, Zhang Q, Xiong N N. Image
recognition of citrus diseases based on deep learning. CMC-Computers
Materials & Continua, 2021; 66(1): 457-466.

[13] QiuWJ,YeJ, HuL Q, YangJ,LiQL, MoJ Y, et al. Distilled-MobileNet
Model of convolutional neural network simplified structure for plant


https://doi.org/10.1109/MITP.2020.2986121
https://doi.org/10.3389/fpls.2020.00510
https://doi.org/10.5424/sjar/2017152-9090
https://doi.org/10.5424/sjar/2017152-9090
https://doi.org/10.5424/sjar/2017152-9090
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/s16081222
https://doi.org/10.1002/rob.21699
https://doi.org/10.1016/j.compag.2019.04.017
https://doi.org/10.1016/j.compag.2020.105634
https://doi.org/10.32604/cmc.2020.012165
https://doi.org/10.32604/cmc.2020.012165
https://doi.org/10.32604/cmc.2020.012165
https://doi.org/10.32604/cmc.2020.012165
https://www.ijabe.org

December, 2024

Zeng Y L, et al.

Enhanced progressive fusion method for the efficient detection of lightweight citrus fruits

Vol. 17No.6 229

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

disease recognition. Smart Agriculture, 2021; 3(1): 109-117.

Liu Y P, Yang C H, Ling H, Mabu S, Kuremoto T. A visual system of
citrus picking robot using convolutional neural networks. In: 2018 5th
international conference on systems and informatics (ICSAI), Nanjing,
China: IEEE, 2018; pp.344-349.

Lu J, Hu X W. Detecting green citrus fruit on trees in low light and
complex background based on MSER and HCA. Transactions of the
CSAE, 2017; 33(19): 196-201. (in Chinese)

Bi S, Gao F, Chen J W, Zhang L. Detection method of citrus based on deep
convolution neural network. Transactions of the CSAM, 2019; 50(5):
181-186. (in Chinese)

Zhang W L, Wang J Q, Liu Y X, Chen K Z, Li H B, Duan Y L, et al. Deep-
learning-based in-field citrus fruit detection and tracking. Horticulture
Research, 2022; 9: uhac003.

Zhuang J J, Luo S M, Hou C J, Tang Y, He Y, Xue X Y. Detection of
orchard citrus fruits using a monocular machine vision-based method for
automatic fruit picking applications. Computers and Electronics in
Agriculture, 2018; 152: 64-73.

Lin G C, Tang Y C, Zou X J, Li J H, Xiong J T. In-field citrus detection
and localisation based on RGB-D image analysis. Biosystems Engineering,
2019; 186: 34—44.

Chen J Y, Liu H, Zhang Y T, Zhang D K, Ouyang H K, Chen X Y. A
multiscale lightweight and efficient model based on YOLOv7: Applied to
citrus orchard. Plants, 2022; 11(23): 3260.

LyuSL,LiRY, Zhao Y W, Li Z, Fan R J, Liu S Y. Green citrus detection
and counting in orchards based on YOLOv5-CS and Al edge system.
Sensors, 2022; 22(2): 576.

Yang HW, Liu Y Z, Wang S W, Qu H X, Li N, Wu J, et al. Improved
apple fruit target recognition method based on YOLOv7 model.
Agriculture, 2023; 13(7): 1278.

Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified,
real-time object detection. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016;
pp-779-788.

Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv
preprint arXiv: 1804.02767, 2018. doi: 10.48550/arxiv.1804.02767.
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv: 2004.10934, 2020. doi:
10.48550/arXiv.2004.10934.

Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors In: 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition

[27]

(28]

[29]

[30]

B31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

(CVPR), Vancouver, BC, Canada: IEEE, 2023; pp.7464-7475.

Chen J R, Kao S-H, He H, Zhuo W P, Wen S, Lee C-H, et al. Run, don’t
walk: chasing higher FLOPS for faster neural networks. In: 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Vancouver, BC, Canada: IEEE, 2023; pp.12021-12031.

Yang G Y, Lei J, Zhu Z K, Cheng S Y, Feng Z L, Liang R H. AFPN:
Asymptotic feature pyramid network for object detection. In: 2023 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
Honolulu, Oahu, HI, USA: IEEE, 2023; 2184-2189.

Liu Y C, Shao Z R, Teng Y Y, Hoffmann N. NAM: Normalization-based
attention module. arXiv preprint arXiv: 2111.12419, 2021; doi: 10.48550/
arXiv.2111.12419.

Woo S, Park J, Lee J-Y, Kweon I S. Cbam: Convolutional block attention
module. In: Proceedings of the European conference on computer vision
(ECCV), Munich, Germany: Springer, 2018; doi: 10.1007/978-3-030-
01234-2 1.

Wang Q L, Wu B G, Zhu P F, Li P H, Zuo W M, Hu Q H. ECA-Net:
Efficient channel attention for deep convolutional neural networks. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA: IEEE, 2020; pp.11534-11542.

Zheng Z H, Wang P, Liu W, LiJ Z, Ye R G, Ren D W. Distance-IoU loss:
Faster and better learning for bounding box regression. In: Proceedings of
the AAAI conference on artificial intelligence, USA: AAAI Press, 2020;
pp-12993-13000. doi: 10.1609/aaai.v34i07.6999.

Tong Z J, Chen Y H, Xu Z W, Yu R. Wise-IoU: Bounding box regression
loss with dynamic focusing mechanism. arXiv preprint arxiv: 2301.10051,
doi: 10.48550/arXiv.2301.10051.

Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time
object detection with region proposal networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017; 39(6): 1137-1149.

Duan K W, Bai S, Xie L X, Qi H G, Huang Q M, Tian Q. Centernet:
Keypoint triplets for object detection. In: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Korea (South): IEEE,
2019; 6568—-6577.

Ultralytics/yolov5. 2021; Available: https://github.com/ ultralytics/yolov5.
Accessed on [2023-04-25].

Ge Z, Liu S T, Wang F, Li Z M, Sun J. Yolox: Exceeding yolo series in
2021. arXiv preprint arXiv: 2107.08430, 2021; doi: 10.48550/arXiv.2107.
08430.

ultralytics, 2023. Available:
Accessed on [2023-04-19].

https://github.com/ultralytics/ultralytics.


https://doi.org/10.11975/j.issn.1002-6819.2017.19.025
https://doi.org/10.11975/j.issn.1002-6819.2017.19.025
https://doi.org/10.6041/j.issn.1000-1298.2019.05.021
https://doi.org/10.1093/hr/uhac003
https://doi.org/10.1093/hr/uhac003
https://doi.org/10.1016/j.compag.2018.07.004
https://doi.org/10.1016/j.compag.2018.07.004
https://doi.org/10.1016/j.biosystemseng.2019.06.019
https://doi.org/10.3390/plants11233260
https://doi.org/10.3390/s22020576
https://doi.org/10.3390/agriculture13071278
https://doi.org/10.48550/arxiv.1804.02767
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2111.12419
https://doi.org/10.48550/arXiv.2111.12419
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.48550/arXiv.2301.10051
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.48550/arXiv.2107.08430

	1 Introduction
	2 Introduction to Yolov8
	3 Yolov8 algorithm improvement
	3.1 Improvement strategy
	3.2 FasterNet structure
	3.3 AFPN structure
	3.4 Parallel branching attention mechanism
	3.5 Loss function

	4 Experiment and analysis
	4.1 Data collection
	4.2 Data enhancement
	4.3 Pre-training
	4.4 Evaluation criteria
	4.5 Results and comparison
	4.6 Ablation experiments
	4.7 Visualization experiments
	4.8 Comparison experiments

	5 Conclusions
	Acknowledgements
	References

