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Abstract: Recognition of the boundaries of farmland plow areas has an important guiding role in the operation of intelligent
agricultural equipment. To precisely recognize these boundaries, a detection method for unmanned tractor plow areas based on
RGB-Depth (RGB-D) cameras was proposed, and the feasibility of the detection method was analyzed. This method applied
advanced computer vision technology to the field of agricultural automation. Adopting and improving the YOLOvS5-seg object
segmentation algorithm, first, the Convolutional Block Attention Module (CBAM) was integrated into Concentrated-
Comprehensive Convolution Block (C3) to form C3CBAM, thereby enhancing the ability of the network to extract features
from plow areas. The GhostConv module was also utilized to reduce parameter and computational complexity. Second, using
the depth image information provided by the RGB-D camera combined with the results recognized by the YOLOvS-seg model,
the mask image was processed to extract contour boundaries, align the contours with the depth map, and obtain the boundary
distance information of the plowed area. Last, based on farmland information, the calculated average boundary distance was
corrected, further improving the accuracy of the distance measurements. The experiment results showed that the YOLOv5-seg
object segmentation algorithm achieved a recognition accuracy of 99% for plowed areas and that the ranging accuracy
improved with decreasing detection distance. The ranging error at 5.5 m was approximately 0.056 m, and the average detection
time per frame is 29 ms, which can meet the real-time operational requirements. The results of this study can provide precise
guarantees for the autonomous operation of unmanned plowing units.
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1 Introduction

With the rapid development of intelligence and information
technology, as well as smart agriculture, the unmanned driving and
autonomous operation of agricultural machinery have become
popular research fields. Intelligent agricultural equipment will
constitute the main direction of agricultural mechanization
development!.

An intelligent farmland operation machine should be able to
correctly identify not only the marking line™ between the
unploughed area and the plowed area but also, simultaneously, the
boundary of the farmland to ensure the integrity of the farmland
operation process. The traditional automatic navigation system
needs to be manually punched to mark the boundary of the ground
beforehand, which additionally increases the workload; however,
machine vision can obtain images of the farmland environment in
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real-time, obtain the required target features, and realize distance
detection via target detection, which has the advantages of high
speed, high accuracy, noncontact nature, automation, and
multifunctionality”, which is important for the automation and
intelligence of agricultural machinery. The farmland boundary of a
farm field is bounded by ridges and road edges, which are important
markers for distinguishing plowed and unplowed areas. Accurately
identifying and calculating relative distances are crucial for the
subsequent operation of farm machinery.

Current related researches mainly focused on methods based on
traditional vision™® and distance sensors™'!. Traditional visual
inspection uses cameras to obtain images of farmland boundaries
and then to obtain boundary lines. Wang et al.'”’ employed machine
vision techniques to divide farmland boundary images into 8
subregions, each of which was solved for grayscale jump feature
points and linearly fitted with a robust regression method to obtain
the main extensions of irregular land heads. Cai et al.l'”! used a
support vector machine algorithm to segment paddy field ridge
images based on superpixel segmentation and then extracted the
ridge boundaries using the Hough transform. Zhu et al.'" performed
image processing with the HIS color space model using an
improved region splitting aggregation algorithm and the Moore
boundary tracking algorithm to extract field road boundaries. Ollis
et al.'”! developed an automatic harvester based on a visual system
that can recognize the boundaries of the field, adapt to local changes
in lighting and crops, and eliminate the interference of shadows.
Astrand et al.'” proposed a robust recognition method for plant
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rows based on the Hough transform, which determines whether a
crop row has ended and reached the boundary of the farmland by
detecting anomalies in the offset and heading angle of the crop row.
The above-mentioned traditional 2D image processing for farmland
boundary recognition is limited by perspective issues, and missing
depth information, which limit its accuracy and robustness.

The utilization of 3D image processing will enhance the
accuracy of information processing. Wei et al.'”’ acquired 3D data
via a binocular camera, extracted crop height information via an
improved clustering method and color image segmentation, and
subsequently extracted harvest boundary points. Hong et al.'"* used
binocular cameras to perform adaptive threshold point cloud
extraction and interference cancellation on 3D point clouds
constructed from disparity maps, achieving the recognition of field
ridge boundaries. However, the construction of 3D point clouds
typically requires a large amount of memory and processing time,
resulting in low efficiency.

Radar ranging is another method used to detect the distance
between farmland boundaries and agricultural machinery. Chen
Binbin et al.'”! proposed the laser and inertial measurement unit
algorithm, which accurately and in real-time detects grain
boundaries by considering the correlation between sampling points
and laser harnesses. Using laser nondestructive detection
technology, Wei et al.” developed an online recognition system for
harvesting boundaries of combine harvesters. Zhang et al.”!
proposed the fusion detection of cameras and millimeter wave
radar, which obtains accurate information such as the shape,
distance, and height of the field ridges ahead via visual detection
and vertical placement of the radar. When using distance sensors for
detection, it is necessary to establish a distinct protrusion feature on
the farmland boundary and use sensors such as LiDAR to perceive
the boundary. The above-mentioned traditional image-based
methods for recognizing farmland boundaries generally suffer from
long processing time, which usually takes hundreds of milliseconds.
Sensor-based boundary detection methods, on the other hand, face
many drawbacks such as high cost, increased complexity, and
limited versatility. Against this backdrop, the application of deep
learning technologies has brought breakthrough improvements to

agricultural field boundary recognition. Intelligent machine vision,
primarily utilizing deep learning and convolutional neural networks,
has become the mainstream research direction.

Persello et al.” used a fully convolutional network with
globalization and grouping algorithms to effectively detect and
delineate farmland boundaries by learning complex spatial-
contextual features. Qiao et al.””! developed a deep learning method
for recognizing farmland boundary images, constructing a six-
category dataset trained on the MobileNetV2 network, which
achieved a Top-1 accuracy of 98.5% and an Fl-score of 97.0% on
validation and test sets, respectively.

In summary, to meet the real-time detection and ranging
requirements of the farmland boundary of intelligent agricultural
machines during plowing operations, this study proposed a plow
area detection method based on RGB-D images with an improved
YOLO model. First, color and depth map information of the front
area of agricultural machinery was obtained through a depth
camera, and the improved YOLO model was used to perform
forward processing on the color map to obtain plow area
information. Second, combined with depth images, the distance
between the working area boundary and the nonworking area
boundary. Last, the reliability of depth recognition farmland
boundary detection is verified via real-field machine experiments.

2 Materials and methods

2.1 Data acquisition and calibration

When agricultural machinery is operating in the field, obstacles
such as trees, ditches, and road edges may appear at the end of the
field. The data collected in this study include data from areas with
different situations, as previously mentioned. The Intel RealSense
D455 depth camera produced by Intel company (USA) was installed
on the Newfoundland 2204 tractor at an angle of 15° to the ground.
The camera has an installation height of 1.4 m, an image resolution
of 640x480 pixels, and a capture frame rate of 60 fps, and 3000
images were captured in an unplowed farmland environment.
Figure 1 shows the installation diagram of the camera, and Figure 2
shows the collected image samples of the farmland boundary in
several scenarios.

b. Installation location schematic diagram

1. Camera 2. Computer terminal

Figure 1

According to the work requirements mentioned earlier, the
AnyLabeling tool is used for manual annotation after scaling the
image. This tool combines the intelligent annotation function of
Segment Anything and YOLO model, which can efficiently and
accurately annotate the image and assign mask labels for subsequent
segmentation tasks.

Before training, in order to ensure obtaining a more accurate
dataset and improve the robustness of the network model, the
dataset is subjected to Mosaic image rotation, mirror symmetry,
translation transformation, and mean processing to expand the

Diagram of data collection platform

amount of data®, and the training set, validation set, and test set
were divided in an 8:1:1 ratio.
2.2 Modeling of farmland edge segmentation

Segmentation is the process of identifying the desired target
pixel by pixel in the original image. Instance segmentation requires
both bounding box detection and localization of the target, as well
as pixel-level foreground and background segmentation of the target
within the bounding box. The YOLOvS model is the most stable
version, fully integrated with support for instance segmentation.
Therefore, this article adopts instance segmentation based on the
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YOLOvV5 model. Compared with other segmentation models,
YOLOVS5 changes the resulting mask of instance segmentation from
the entire image to only the mask within the detection result box to
improve memory utilization efficiency and computational speed.
Limiting the segmentation focus to the area of interest can save
considerable storage space and accelerate the segmentation process.
This method is important for detecting and segmenting plowed
areas and provides strong support for improving practical
application scenarios.

Cement road/farmland

Vegetated field
ridges/farmland

Dirt road/farmland

a. Color map b. Depth map

Figure 2 Image samples of different terrain scenes

2.2.1 YOIOvS5 model improvement

Presently, YOLOVS (hereinafter referred to as v5) has been
updated to a stable version 7.0, integrating segmentation support.
To consider the lightweight and real-time segmentation
requirements of the model, in this article, we use YOLOvS5s-seg

(hereafter referred to as S5s-seg) to construct the model. The
segmentation improvement is implemented on the basis of the
original model, and these differences are reflected mainly in the
following five aspects, as listed in Table 1.

Table 1 Differences between YOLOvVSs and YOLOvSs-seg

Data loading

Code Network Evaluation
Category and Loss g
entry . changes indicators
processing
Root . yaml+head Object
> directory Ipgtxt (detect) Detection+Giou ap
Se-sc etixt yaml+head Cross- a
& segment g (detect+segment) Entropy+Dice P

Note: ap, average precision.

The Ss-seg model structure is shown in Figure 3. The network
is divided into three parts: feature extraction, fusion, and prediction
output. The CSPDarket53 architecture is used to improve the
Darknet53 network, and performance is enhanced through CSP
connections™.. In feature extraction, the CSP1_X structure divides
the input into two branches: one undergoes convolution after
passing through multiple residual structures, and the other is
directly convolved before connecting to the first branch. CSP2 X
uses 2xX CBS instead of residual structure, primarily used in the
neck networks. The SPPF module replaces the original SPP
structure with three 5x5 max pooling layers to reduce complexity
and improve speed. The neck structure adopts Feature Pyramid
Network (FPN)+Path Aggregation Network (PAN), which extracts
and fuses features through up and down sampling to enhance
feature representation. The head layer uses segmentation instead of

the original detection method and is constructed through yaml files.
The segmentation network inherits the detection class and includes
segmentation and detection functions.
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Figure 3 ' YOLOvS5s-seg network structure
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The improved model structure is shown in Figure 4. By using
ghost convolution instead of regular convolution and replacing the
CSP module of the network with the Convolutional Block Attention
Module (CBAM), the network is lightweight. One CBAM is added
after three C3CBAMs in the backbone network to enhance the
extraction of input features and to improve the accuracy of network
target segmentation.

2.2.2 Improving the C3CBAM

Based on the above network structure and the comprehensive
research of this article and to meet the needs of agricultural
machinery to detect plow areas during field operations, it is

512x40%40

necessary to accurately determine the spatial position information of
the land promptly. This study used the CBAM, which combines
channel attention (CA) and spatial attention (SA), to adaptively
adjust the channel weights of the feature map. In instance
segmentation, the model needs to consider target details and global
contextual information. The CBAM, as a lightweight and universal
module, can seamlessly integrate into any CNN architecture with
slightly increased computational complexity and can efficiently
capture important features and information about the target,
enabling the model to adapt to changes in the shape and size of the
target.
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Figure 4 Improving the YOLOvS5s-seg network structure

Figure 5 shows the structure of the CBAM, which works given
feature map F of height H, width I, and dimension C. First, the
feature map goes through the channel attention mechanism to obtain
a one-dimensional CA feature map, followed by multiplication of
the convolution result by the original map. Second, the output result
is employed as an input to go through the spatial attention

mechanism to obtain a two-dimensional SA feature map. Last, the
output result is multiplied by the original map to obtain the refined
feature map. The entire calculation process is represented as
follows:

F € RC><H><W (1)
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F = M.(F)®F 2

F'=M(F)QF 3)

where, ® denotes element-by-element multiplication, R is the real
numbers, M, is the channel attention module, My is the spatial
attention module, F' is the feature map output by the spatial
attention module, and F" is the final output feature map.

AT
Lo gl 2

Input feature Output feature

Note: ®, element-by-element multiplication; CAM, channel attention module;
SAM, spatial attention module.
Figure 5 CBAM structure diagram

The initial channel attention mechanism involved global
average pooling and max pooling operations on the width and
height of the input feature maps, followed by element-wise
weighting of the output from the multi-layer perceptron (MLP), and
activation through a sigmoid function to obtain the final channel
attention feature maps. However, this method tends to overlook the
interaction of information within channels when performing global
average pooling and max pooling. Therefore, this study eliminated
the max pooling operation and used only average pooling to
aggregate the spatial information of the feature maps, thus more
effectively capturing global features while avoiding the neglect of
important information. Additionally, this study drew on the idea of
the Efficient Channel Attention (ECA) model, replacing the MLP
with one-dimensional convolutions of specific kernel size to
enhance the interaction between different channels, and simplifying
the model output through a sigmoid function. This improvement
reduces computational complexity, and enhances model
performance and efficiency, making the network more streamlined
and easy to implement, particularly suitable for visual tasks such as
image classification and object detection. The improved channel
attention module CAM-E is shown in Figure 6, and the
computational process is expressed as follows:

Myo(F) = o(convld,_;(AvgPool(F))) 4)

where, M is the CAM-E module, Avgpool is the average pooling,
o is the sigmoid activation function, convld is 1 for convolution, k&
denotes the convolution kernel size, and the optimal size of k is
determined to be 3 after cross-validation.

1D
— - i © =0~

Add Sigmoid
Output M.

Input feature F AvgPool
Figure 6 CAM-E structure diagram

The convolution operation of the final CBAM is simplified as
follows:

CBAM(F) = F ® Myo(F)® M (F') Q)

2.2.3  Improving the backbone network

The Ss network structure adopts traditional convolutional
operations, and traditional feature extraction methods generate
numerous parameters and computations, as well as rich and
redundant feature maps. Therefore, this study adopted GhostConv
instead of traditional convolutional layers.

As shown in Figure 7, the original 3%3 convolutional operation
is divided into two smaller convolutional phases, where the first
phase with the larger convolutional kernel (kxk) is referred to as the
“main convolution”, which utilizes a small number of convolutional
kernels for feature extraction. The second stage of the convolution
kernel (1x1) is referred to as “phantom convolution”, where the
phantom convolution kernel performs a cheaper linear variation of
the feature maps from the previous section; it is concatenated to
generate the final feature map. This decomposition operation allows
the network to more efficiently learn features and significantly
reduces computational and parameter overhead.

/ Identity \

~Conv*.,
—

Input

Figure 7 Schematic of conventional and GhostConv

For example, when the input feature map data are height (h);
width (w); and channle (¢) and the output is n, 4'; and w' feature
maps, the computation using conventional convolution P, is

P, =nh'w ckk (6)
where, ¢ is the number of input image channels.

The number of parameters using the Chost convolutional
network P, is

Py= 2w ekk+(s— 1)~ nwdd (7)
S S

where, n=m-s, m is the number of feature maps generated in the first
stage, s is the ghost feature map generated in the second stage, and d
is the size of the convolution kernel for linear operation, s < c.
Therefore, the ratio of the number of parameters of the two is
Py - nh’w’ckkn I L ®)
i Shwekk+(s=D7hwdd - STET 1

According to the above equation, when & and d are equal in
size, the number of parameters occupied by the Ghost convolution
is 1/s that of the conventional convolution.

2.3 Model training
2.3.1 Experimental environment and training parameter settings

To start training for the improved model, this article uses the
deep learning framework PyTorch for model training. The hardware
utilized for deep learning was a 12th Gen Intel(R) Core(TM) i7-
12650H 2.30 GHz computer, an NVIDIA GeForce RTX3050
central processor and graphics card were employed, the graphics
memory was 4 GB, and cudall.6 was selected to improve the
network training speed.

The initial learning rate of this experiment is set to 0.01, the
learning rate is adjusted using the cosine annealing restart®!
learning rate mechanism, and the training is performed using
warmup_3, after which the learning rate can be achieved by the
warmup mechanism, and the network parameters are optimized
using the momentum stochastic gradient descent (SGD) algorithm.
The input image is set to 640x640, the batch_size is set to 8, and the
total number of training rounds is 300.

2.3.2 Model evaluation indicators

To evaluate the performance of the model, this article uses
precision, recall, mean average precision, and model size as
evaluation metrics. P reflects the accuracy of the model in
classifying samples, R represents the ability of the model to obtain
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positive samples, mAP is the average accuracy AP of all categories,
and AP is calculated by integrating the PR curve with accuracy P as
the vertical axis and recall R as the horizontal axis®”, which
comprehensively reflects the overall performance of the model in
detecting all categories. The specific calculation formula is
presented as follows:

—_ P
P= T,+F, ©)
Ty
R= T iF. (10)

where, N denotes the number of categories in the dataset, 7, denotes
the number of positive samples correctly predicted as positive
samples by the model, Fp denotes the number of negative samples
incorrectly predicted as positive samples by the model, and Fy
denotes the number of positive samples incorrectly predicted as
negative samples by the model.

1
AP:LP-RdR (11)

N
1
i=1

In object detection tasks, the determination of positive and
negative samples is based on the intersection union (IoU), which is
the ratio of the area of overlap between the predicted segmentation
and the actual target segmentation to the area of union. When the
IoU is greater than the threshold, the sample is considered to be
positive; when the IoU is less than the threshold, the sample is
considered to be negative. When the IoU is set to 0.5, the average
accuracy of the YOLOVS model is represented as AP,s (AP at an
IoU of 0.5), while the average accuracy of all categories is
described as mAP, 5 (mAP at an IoU of 0.5).

This article starts with pixel accuracy (PA) and uses the mean
intersection over union (mloU) as the standard indicator for
segmentation models. The PA represents the ratio of the number of
pixels correctly classified to the total number of pixels, and the
mloU represents the average of the ratios of the intersection to the
union between the predicted and true segmentations for all classes
or instances. The expression is

TP+ TN

TP
mlOU = o P+ FN (14)

where, the total number of pixels is 7=TP+TN+FP+FN, TP is the
number of pixels correctly predicted by the model (true positives);
TN is the number of background pixels correctly predicted by the
model (true negatives), and in the case of a single category, the
background pixels are the pixels other than those of the target
category; FP is the number of pixels for which the model incorrectly
predicted the background pixels to be in the target category (false-
positives); and FN is the number of pixels for which the target
category pixels are incorrectly predicted to be in the background
pixels (false-negatives).
2.4 Contour processing of plow areas

For the detection and distance measurement of agricultural
machinery operation area boundaries in agricultural environments,
this study proposed a method combined with depth cameras based
on the above training model. The boundary of the segmentation area
is divided, and the distance is calculated by combining depth maps.
Figure 8 shows the technical flowchart of this study.

Depth camera
acquisition system

v

Color camera and
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calibration
|
Capture color Capture depth
images image
Netvyork Depth map
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| Image I
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3 |
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Figure 8 Technical flowchart

2.4.1 Image alignment

Figure 8 shows that the prerequisite for contour processing is
image alignment, which requires aligning the RGB image captured
by the camera with the color image of the depth image. When the
intrinsic and extrinsic matrices of the camera are known, alignment
between RGB images and depth images can be achieved through
matrix transformation®. The conversion relationship between the
pixel coordinate system and the world coordinate system is
expressed as follows:

X, X,
u £ 0
N * R T Y, Y,
Z|vl=|0 £ ¢ {Ol}zzKMZ (15)
| 0 0 1
1 1

where, K is the internal reference matrix of the camera; M is the
external reference matrix; R is a 3x3 unit orthogonal matrix
(referred to as the rotation matrix); T is a 3x1 translation matrix;
fe = fldx, f, = fidy; f'is the focal length of the camera; dx and dy
denote the actual lengths of the unit pixels in the row direction and
column direction, respectively, mm; c, and c, are the width and
height, respectively, of the image in half, pixels.

The coordinate transformation formula for aligning the color
map with the depth image is

-1 -1
T =T T = RocRyyy, b —RuacR )t
a2e = Lyl =
c w2e £ wod 0 1

(16)
where, T,,. and T,,, are the external reference matrices for the
conversion of the world coordinate system to the color coordinate
system and the depth camera coordinate system, respectively; 7, is
the external reference matrix for the conversion of the depth camera
coordinate system to the color coordinate system.

Through the above process, the corresponding pixel points in
the depth image and color image have the same spatial coordinates,
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which achieves the purpose of image alignment.
2.4.2 Image contour processing

After aligning the images, the region masks recognized by the
deep learning model are processed, and to increase the accuracy of
the subsequent segmentation, a new concept was introduced: the
monoclinic (homography) transform, which is used to describe the
positional mapping relationship of an object between the world
coordinate system and the pixel coordinate system. The uni-
responsive transform is applied to the generated mask map, and the
uni-responsive matrix is defined by the above equation:

i 0 ¢
H=1| 0 f ¢ |lnnrn =K ri] (17)
0 0 1

where, A denotes the scale factor.

According to the perspective matrix transformation of the
homography matrix, the pixel coordinates of the four corner points
of the mask were obtained, and the image from the camera
perspective was transformed into an image based on the vehicle
width state.

Digital

Deep learning models

RGB color data |1 Feature extraction

! Deep data processing

Depth data

Prototype mask

Contour-min

Image masking was performed on the obtained new mask,
which is a pixel-level operation that selectively preserves or
excludes pixels in the original image using pixel information in the
mask to obtain specific regions.

As shown in Figure 9, Contourl was extracted from the mask
map, contourl was analyzed, the lateral coverage of contourl was
calculated as (w,, w,), bias was set to 15 pixels according to the
contour characteristics, and the image of the (w,t+bias, w,tbias)
region was extracted from maksl and constructed as Mask2. The
target contour corresponding to the smaller value was calculated for
Measures 1 and 2, which are denoted as contour-min. The contour-
min was analyzed to calculate the longitudinal coverage of the
contour, as well as its transverse coverage, and the masked contour
external matrix mask Mask2 was constructed. By averaging the
distal contour and adding the bias value, possible errors are
effectively offset, and a single contour is affected by characteristics
such as noise and shape variations. This operation stabilizes the
position of the distal contour, improves its accuracy, and better
separates the tilled area from the background by constructing a
rectangular box to mark the boundary of the tilled area.

Figure 9 Flowchart of the contour processing of data

After the rectangular box was determined, it intersected with
the original Mask1 to determine the final boundary region, and then
contour extraction was performed by the Canny operator™ to obtain
contour3, which excludes non-edge pixels and retains only the lines
of the candidate edges by suppressing the non-extremely large
values of the processed image.

Using the contour center distance measurement method, the
contour obtained by the Canny operator is processed to calculate the
geometric center of the contour, as shown in Figure 10. First,
according to the coordinates of polygon vertices Py(x;, y;), the vector
Vec; pointing to the vertices at the origin is computed Vec=
P—origin and the origin is the origin coordinate. Second, the vector
Vec; is computed and written as SUM. The vector of the geometric
center of the contour is SUM/n, which is written as Vec,. Last, the
coordinate position of the geometric center is expressed as
Vec torigin, which is written as P, and the expression of the
calculation process is presented as follows:

1<
P =- P, — origin) + origin 18
(P~ origin) +orig (18)
i=1

After determining the position of the center point, to reduce
errors, with the center point as the origin, 5 pixels each from the
top, bottom, left, and right were selected to form a 121-pixel square.

The distance from the average value to this area is calculated.

Mask2 Mask3 T Mask4
A
Y P(x.p)
Vec,.
[0) X

Figure 10  Contour center coordinates

3 Results and analysis

3.1 Deep learning model
3.1.1 Ablation test results

To analyze the effect of each model combination on the
performance of the improved model, this study designs ablation
experiments using uniform hyperparameters and training 300
epochs; the results of the experiments are listed in Table 2. In the
model listed in Table 2, GC denotes replacing the traditional
convolution with a phantom convolution structure, BC denotes
replacing the backbone layer C3 structure with C3CBAM, AC
denotes replacing all the C3 structures with C3CBAM, and GM
denotes adding all the modules to obtain the final model, which is
the improved model proposed in this study.
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Table 2 Farmland boundary recognition ablation test

Model P mAP 50005 R Weights/MB Speed/fps

5s-seg 0.939 0.753 0.878 14.8 45
GC-5s-seg  0.961 0.889 0.97 12.4 90
BC-5s-seg  0.937 0.643 0.97 13.7 52
AC-5s-seg  0.952 0.848 0.954 12.7 62
GM-5s-seg  0.991 0.923 0.976 9.82 98

As listed in Table 2, by applying the phantom structure to the
backbone and neck parts of the YOLOvSs-seg and adjusting the
the GC-5s-seg model was developed. This
modification reduced the model’s parameter count without losing

network width,

detection accuracy, improved precision by 3 percentage points, and
increased the mean average precision by 13 percentage points while
doubling the detection speed. To further enhance the model’s
precision, the CBAM was applied to optimize the baseline model
and was integrated at specific locations, resulting in 3 different
models: BC-5s-seg, AC-5s-seg, and GM-5s-seg. Among these, the
GM-5s-seg model achieved a precision (P) of 0.991, which is an
improvement of 6 and 4 percentage points over the first two models
respectively. It has a parameter size of 9.82 MB and an average
detection speed of 0.011 s per image, which is twice as fast as the 5-
seg model. The integrated inference results of GM-5s-seg on
mAP 55,005 showed a performance increase of 17 percentage points
over the original model.

This article uses the mAP 50995 as the measurement standard
for the farmland boundary detection model. As shown in Figure 11,
the improved model has achieved a good fitting effect.

A
1.0+
1‘
| M Mrm ! M{’WIMVM' ‘"AJ)WM
0.8t ! m A \
£ 06} —— 5s-seg
P GC-5s-seg
% — BC-5s-seg
g 04} AC-5s-seg
—— GM-5s-seg
0.2+
0F
0 50 100 150 200 250 300 !
Epoch
Figure 11 Comparison of mAP 5995 obtained in

ablation experiments

3.1.2 Comparison between different attention mechanisms

To further verify the better performance of the model employed
in this article, based on the 5s-seg model, different attention
mechanism modules were combined to select the mainstream
modules ECA and CA to replace the position of the CBAM in the
network. In addition, the GhostNet network structure was
introduced to replace BottleneckCSP with a Ghost bottleneck for
comparison. The experimental results are listed in Table 3.

Table3 Comparison of different attention models

Model P mAP) 595 R Weights/MB Speed/fps

Ss-seg 0.939 0.753 0.879 14.8 45
GM-5s-seg 0.991 0.923 0.976 9.82 98
ECA-5s-seg 0.96 0.894 0.967 10.38 76
CA-5s-seg 0.937 0.643 0.96 13.6 62
GN-5s-seg 0.972 0.682 0.946 12.7 76

As listed in Table 3 and shown in Figure 12, compared with the
original YOLOv5-seg model, the model with the CA and GN
modules yields an increase in the precision rate P and recall rate R,
but the mAP 5,95 significantly decreases. The evaluation metrics
with the ECA module have all improved, showing significant
enhancements in mean Average Precision compared to CA and GN.
Compared to the other three attention modules, models
incorporating the GM module have achieved excellent results in
both accuracy and recall, while also having the smallest model
parameters and computational requirements, demonstrating superior
overall performance. These experiments showed that adding the
GM module is superior to the other attention modules on the self-

constructed dataset of this study.
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Figure 12 Comparison of the mAP 5,95 Obtained in fusion
experiments with different attention

3.1.3 Comparison of different algorithms

To verify the superior segmentation performance of the
improved model in this article, the common instance segmentation
algorithms Mask R-CNNP” and YOLACT"" are selected to conduct
comparative experiments with the same experimental environment
and configuration parameters; the results are listed in Table 4. An
examination of the results in Table 4 clearly shows that the model
proposed in this paper significantly improves the PA, average
intersection and merger ratio (mloU), and average accuracy.
Additionally, the model has a substantial advantage over the other
models in terms of weight and detection speed, which indicates its
effectiveness.

Table 4 Comparison of different algorithms

Model PA mloU mAP(s,9s WeightsMB  Speed/fps
GM-5s-seg 0970  0.952 0.923 9.82 98
Mask R-CNN  0.910  0.801 0.875 249.86 5
YOLACT 0922  0.833 0911 194.44 19

3.2 Measurement of boundary distance in plow areas

To ensure the generality of the boundary object segmentation
algorithm in this article, detection and distance measurement
experiments are conducted for different ground head boundaries.
The following are recognition, detection, and depth information
distance measurement maps for several types of land boundary
conditions.

As shown in Figure 13, it can be observed that in several
different scenarios, the improved farmland boundary recognition
and ranging model can meet practical needs. Specifically, in
Figure 13, the model performs well in recognition and can
accurately and effectively partition the plow area from the
background, even if the scene boundary is a soil slope, the improved
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model of this study can still accurately identify it, which further
verifies the robustness and applicability of the model. For the depth
map, the depth information was successfully removed from the
background by setting an appropriate threshold, thus avoiding errors
in subsequent distance measurements.

Scenario 1:
house/farmland

Scenario 2:
soil
slope/farmland

Scenario 3:
tin
tiles/farmland

Scenario 4:
cement
road/farmland

a. Color recognition map b. Depth recognition map

Note: The yellow line in the figure represents the boundary contour line, and the
white point represents the center point of the contour.
Figure 13 Detection and ranging samples in different
terrain scenarios

In order to verify the representativeness of the contour average
boundary distance, two boundary measurement distance indicators
are set: the contour average boundary distance and the center
boundary distance, and the center boundary distance is the distance
at the intersection of the image midline, and the boundary.
Combined with the installation height of the camera in Figure 1 and
the measured depth distance value, the distance value in the
horizontal direction was calculated by the collinear theorem. The
results are listed in Table 5.

Table 5 Farmland boundary distance detection results

Image Center Average contour True Error/m
g distance/m distance/m distance/m

Scenario 1 5.463 5.556 5.5 0.056

. 5.882 5.957 6.0 0.043
Scenario 2

6.602 6.606 6.5 0.106

Scenario 3 6.068 6.043 6.0 0.043

. 6.640 6.542 6.5 0.042
Scenario 4

7.773 7.260 7.5 0.260

The driving speed of the agricultural machine is 0.8-1.5 m/s
during the operation, considering the control time of the machine
and the resolution of the sensor, the machine is able to recognize the
boundary of the ridge and try to measure the distance at a distance
(8.0 m), with an allowable distance error of 0.400 m; the machine is
able to accurately recognize the boundary of the farmland to assist
the turn control at a distance (5.0 m), with an allowable distance
error of 0.100 m. It can be seen in Table 5, that with the increase of
test distance, the error will gradually increase, and the error is
0.056 m at the near (5.5 m) and 0.260 m at 7.5 m. Table 5 shows

that with the increase of the test distance, the error will gradually
increase, and the error is 0.056 m at the near place (5.5 m), and
0.260 m at 7.5 m. The average detection time for each image is
29 ms, which verifies the effectiveness of the algorithm.

4 Conclusions

1) This study proposed a farmland plow area recognition
algorithm based on object segmentation. By fully utilizing the
powerful feature learning ability of deep learning, this algorithm
can capture the color, texture, and shape features of plowed areas,
significantly improving recognition accuracy and overcoming the
limitations of traditional manual feature extraction.

2) The model parameters and computational cost were reduced
by improving the network model structure by replacing the
traditional convolution with ghost convolution, replacing the
original CSP structure with the C3CBAM, and adding the CBAM to
the detection header to enhance the feature extraction and detection
capability of the model.

3) A target-ranging method based on RGB-D data fusion was
proposed. By improving the object detection network, camera
calibration, and image registration, the depth image was
successfully matched with the RGB image coordinates to obtain the
depth information of the object to be measured, and this information
was subsequently converted to the relative distance of the target.
The experiment has proven the effectiveness of this method, with
ranging errors controlled at the centimeter level. Compared to single
vision-based ranging methods, the ranging accuracy has been
significantly improved.

4) The distance detection accuracy of this algorithm for the
boundary of the farmland plow area was closely related to the
detection distance. The experimental results reveal that the distance
detection accuracy is 0.260 m at a distance of 7.5 m from the
boundary of the farmland, that the average distance detection error
is approximately 0.056 m at a distance of 5.5 m from the ridge, and
that the detection time of each image is 29 ms, which satisfies the
requirements of distance detection of the boundary during the
autonomous operation of the farm machine with a traveling speed
less than 1.5 m/s.

In conclusion, the proposed target-ranging method based on
RGB-D data fusion fully integrates depth and image information.
By optimizing the network structure, camera calibration, and image
alignment, high-accuracy target ranging is achieved. The method is
expected to be widely employed in practical applications and to
provide a high-precision solution for ranging tasks.
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