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Detection of spores using polarization image features and
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Abstract: Timely detection and control of airborne disease is important to improve productivity. This study proposed a novel
approach that utilizes micro polarization image features and a backpropagation neural network (BPNN) to classify and identify
airborne disease spores in a greenhouse setting. Firstly, disease spores were collected in the greenhouse, and their surface
morphological parameters were analyzed. Subsequently, the micropolarization imaging system for disease spores was
established, and the micropolarization images of airborne disease spores from greenhouse crops were collected. Then the
micropolarization images of airborne disease spores were processed, and the image features of polarization degree and
polarization angle of disease spores were extracted. Finally, a disease spore classification model based on the BPNN was
ultimately developed. The results showed that the texture position of the surface of the three disease spores was inconsistent,
and the texture also showed an irregular shape. Texture information was present on the longitudinal and transverse axes, with
the longitudinal axis exhibiting more uneven texture information. The polarization-degree images of the three disease spores
exhibit variations in their representation within the entirety of the beam information. The disease spore polarization angle image
exhibited the maximum levels of contrast and entropy when the Gabor filter’s direction was set to 7/15. The recognition
accuracy of cucumber downy mildew spores, tomato gray mildew spores, and cucumber powdery mildew spores were 75.00%,
83.33%, and 96.67%, respectively. The average recognition accuracy of disease spores was 86.67% based on BPNN and
micropolarization image features. This study can provide a novel method for the detection of plant disease spores in the
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1 Introduction

29

There has been a growing demand for “vegetable basket
projects in recent years due to individuals’ aspirations for an
improved quality of life!"”. Currently, China boasts a protected
cultivation area of over 4.2 million hm’ extensively dispersed
throughout the country, securing its position as the global leader in
this domain®*. The vegetable basket project in China is widely
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regarded as a crucial pillar of support and a significant avenue for
farmers to enhance their revenue™*. Tomatoes and cucumbers enjoy
considerable popularity among customers because of their flavorful
profiles and high nutritional content. Moreover, the cultivation
space dedicated to these crops constitutes a substantial portion of
China’s protected agriculture area™. The greenhouse’s temperature
and humidity conditions are conducive to the prevalence of airborne
fungal diseases”'”. The prevalence of airborne fungal infections is
anticipated to rise annually due to the growth of cultivated areas and
the prolonged practice of continuous cropping. This escalation in
fungal diseases can significantly reduce crop production, ranging
from 20% to 50%, and in extreme cases, complete crop failure!''’.
Hence, timely detection and prevention of airborne diseases in
greenhouses hold significant importance.

At present, the diagnosis of plant diseases is mainly based on
the experience of producers and the results of routine laboratory or
field tests. Laboratory detection technology mainly encompasses
electron microscope detection technology, PCR, and molecular
biological detection technology. These detection techniques can
accurately determine the type of plant disease, but laboratory
detection techniques have the disadvantages of being disruptive and
time-consuming!?. Conventional field detection techniques mainly
use spectral and image processing techniques to detect known or
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specific plant diseases. These techniques can detect plant diseases
through statistical modeling inversion, and provide accurate
guidance for the timely prediction and treatment of diseases in
greenhouse crop cultivation™. Nevertheless, these diagnostic
approaches cannot provide early diagnosis before the outbreak’s
onset. In this case, the optimal time frame for implementing crop
disease control measures has already elapsed™*.

Before airborne diseases of greenhouse crops occur and spread
over a large area, the first thing that happens is that the spores of
airborne diseases are spread by air currents’. With the
improvement of spore traps by technicians, more and more spore
traps are now sold on the market, and using spore traps to capture
airborne disease spores has become a common method"”. The
existing portable spore traps, vehicle-mounted spore traps, and fixed
spore traps. Airborne disease spores are captured in the air and
identified with the help of a microscope. For example, Lei et al.l'
used a portable spore catcher to collect urediniospores. Microscopic
examination was conducted to capture images of urediniospores.
Subsequently, the urediniospores image was processed by threshold
segmentation, contour extraction, and morphological manipulation.
The remote monitoring platform of urediniospores was built to
collect and count wheat stripe rust spores in real-time. To identify
false smut and rice blast by using microspore images, Yang et al.l'l
selected four shape features and three texture features for decision
tree model classification, and the detection accuracy was 94%.
Wang et al.'"! extracted 90 features of spores from 600 spore data
sets to establish an SVM classification model, and the overall
accuracy was 92%. In order to determine the density and quantity of
anthrax spores in microscope images automatically, Zhao et al.””
proposed an image segmentation method. The experimental results
demonstrate that their method achieves 93.0% mean IoU and 1.5%
overall error rate. In order to address the issue of tiny targets in
spore images, Zhang et al.”" suggested a modified Yolov5-ECA-
ASFF target detection algorithm. Due to the influence of the
external environment, some characteristics are challenging to find in
the spore images taken by ordinary optical microscopes.

Polarization imaging technology uses the polarized light
reflected and scattered by various points on the surface of the
detection object for imaging. Compared with the ordinary optical
image, the brightness and contrast between the object and the
background in the polarized image are relatively enhanced””. The
polarization diffraction imaging approach was investigated by Jiang
et al.”* to achieve the precise classification of malignant and benign
cancers. By extracting morphology-related “fingerprints”, the
diagnosis and early warning of tumors can be significantly
improved. Feng et al.*¥ developed a non-staining labeled apoptosis
detection method using polarization diffraction imaging techniques,
achieving a test accuracy of more than 90% on independent data
sets. Feng et al.® used polarization diffraction technology to
complete the classification experiment of Jurkat cells, Ramos cells,
and other cells, and the classification effect reached 99.9%. The
surface of the spores is not smooth and are some convexes. The
recognition rate of spores based on surface texture information
under an optical microscope is easily disturbed by the external
environment. The polarization image can contain the surface
microstructure information of the spores. Therefore, it is possible to
classify the greenhouse crop airborne disease spores based on
micropolarization image features.

This study developed a novel classification approach for
classifying and identifying airborne disease spores in a greenhouse
using micro polarization image features combined with BPNN.

Hence, the main objectives of this study were: 1) Initially, to
capture
micropolarization images of disease spores; 2) Subsequently, to
process and extract the features of micropolarization images of
disease spores; 3) Finally, to classify the disease spores using the
developed machine learning algorithm. This study can provide a
new method for the detection of plant disease spores in the

construct a micropolarization imaging device to

greenhouse.

2 Materials and methods

2.1 Cultivation and parameter measurement of disease spore
samples

1) Cultivation of disease spore samples

Cucumber and tomato plants were cultivated in a Venlo-type
greenhouse at Jiangsu University, Zhenjiang, Jiangsu, China, to
obtain the disease spores samples. The tomato variety tested was
“Zhejiang Powder 202” (Zhejiang Yinong Seed Industry Co., Ltd.,
China). The cucumber variety tested was “Jinyou No. 1 (developed
by Tianjin Academy of Agricultural Sciences, China). In order to
obtain a sample of crop disease spores, pesticides are not sprayed
during the planting of the sample. The planting of tomato and
cucumber plants is shown in Figure 1.

a. Tomato plant sample b. Cucumber plant sample

Figure 1 Examples of experiment sample cultivation

Fresh diseased leaves were collected from infected cucumber
plants after natural disease. Individual cucumber downy mildew and
powdery mildew spots with sufficient incidence and distance from
other spots were cut with scissors. Dip in sterile water, spot down
and gently apply to pre-planted cucumber leaves. Spores of
cucumber downy mildew and powdery mildew could not be
cultured in vitro, in order to preserve the samples, these spores were
transferred from old infected cucumber plants to newly cultivated
cucumber plants. Then to achieve the purpose of expanding
propagation and culture®®.

To obtain an uncontaminated sample of tomato gray mold
spores, a leaf with diseased spots was first cut from an infected
tomato plant, dipped in sterile water, and then attached to a non-
infected tomato plant with diseased spots facing downwards. Repeat
until the gray mold is the only spot on the tomato plant. Then,
tomato leaves with gray mold were placed in the PDA (Potato
Dextrose Agar) medium. The preservation and propagation of the
strains were carried out.

2) Surface morphological parameters analysis of disease spore
samples

Disease spores samples from PDA medium dish with sterile
water were washed off. Then, spore suspension and put in a
disposable test tube has been Prepared. After that, the supernatant of
spore suspension was sucked by a disposable pipette and dripped
into the cell counting plate. The surface morphology of the diseased
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spores was observed by a three-dimensional ultra-depth-of-field
microscope (VHX-900F, KEYENCE Co, Japan) in 3D display
mode (Figure 2).

176.32

100.00

0 um
0 pum 100.00

200.00

Figure 2 3D image of disease spores

2.2 Quantitative characterization method of polarization
information

As a kind of electromagnetic wave, light has many
characteristics. The polarization information carries the target
object’s delicate structure and morphological characteristics. This
information and characteristics are often not available by ordinary
optical measurement methods®. When studying polarization
imaging, the relevant researchers will give priority to using the
Stokes vector method™. Stokes vector method is used in this study.
The relationship formula of the Stokes vector method was as
follows:

So Iy + 15

S = N 1 — IO - 190 (1)
SZ 145 _1135
S 3 Iright - Ileﬂ

where, S, represents the total optical field strength of the incident
light; S; represents the difference in intensity between the linear
polarization at 0° and 90°; S, represents the intensity difference
between the linear polarization at 45° and 135°; S; represents the
difference in intensity between the right and left rotation of circular
polarization; I represents the polarization angle is 0°; I,5 represents
the polarization angle is 45°; I, represents the polarization angle is
90°; 1,35 represents the polarization angle is 135°; I, represents
right-hand circular polarization; I,z represents left-hand circular
polarization.

Besides light intensity, the degree of polarization (DOP) and
angle of polarization (AOP) are also commonly used to represent
the polarization characteristics of light™. The degree of polarization
was used to represent the proportion of the polarization information
in the entire beam. The calculation formula was as follows:

\/ST+83+83
pop= Y ! “2°"3 )

So

As can be seen from Equation (2), the higher the light intensity
of the polarization part, the higher the value of the polarization
degree. Because the polarized image contains polarization
information, the more information the polarized image contains, the
stronger the polarization characteristics of the polarized image of
the diseased spores.

In addition, the polarization angle is the angle between the
vibration direction of the polarized light and the reference direction
and can also be used to represent the polarization information of
disease spores. The calculation formula was as follows:

AOP = % arctan i—? 3)
2.3 Disease spores micro polarization image acquisition system

The polarizing images of disease spores were collected in the
Bioinformatics Analysis Laboratory for the School of Agricultural
Engineering, Jiangsu University. The equipment is the microscopic
polarization system built by the laboratory (as shown in Figure 3).
The system mainly includes a polarized camera (LUCID Vision
Labs, model TRIO50S-QC), polarized image acquisition software
(ArenaView-ArenaView2), a polarized microscope (including a
light source and polarizer), and a computer.

Figure 3 Disease spores micro polarization image

acquisition system

2.4 Micropolarization image acquisition of disease spores

According to the previous analysis, the micropolarization
images of disease spores were mainly collected at 0°, 45°, 90°, and
135¢ directions. The process of collecting micropolarization images
of disease spores is as follows: Firstly, the disease spores were
captured in the greenhouse by using a portable spore capture device,
and the glass slides containing spores were put in a closed box and
brought to the laboratory. Then the spores on the slide were
observed under a microscope and the field of view of the spores was
adjusted to the range where polarization images could be taken.
Finally, the polarization image acquisition mode of the
micropolarization system was opened and the disease spores were
captured. The collected micropolarization images of disease spores
are shown in Figures 4-6, respectively.

a.0° b. 45° c. 90°

d. 135°

Figure 4 Polarized image of tomato gray mold spores

a. 0° b. 45° c. 90°

d. 135°

Figure 5 Polarized image of cucumber powdery mildew spores

|

[
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a.0°

b. 45° c. 90°
Figure 6 Polarized image of cucumber downy mildew spores

d. 135°

2.5 Feature extraction from micro polarization images of
diseased spores

1) Relative light intensity distribution value of disease spore
polarization degree image

The polarization image of disease spores can be used to reflect
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the proportion of their polarization information in the whole beam
information. This study used a micropolarization system to capture
the polarization images of diseased spores. The brightness of the
light source is constant. Therefore, the relative light intensity
distribution of the disease spore polarization degree image can be
used to express the information of the disease spore polarization
degree image. The steps for extracting the relative light intensity
feature of the polarization degree image of disease spores were as
follows:

(1) According to Equations (1) and (2), the polarization degree
image of the disease spore image was calculated and saved as a file
in .bmp format.

(2) Open Matlab software, and use import data to import the
polarization degree image of disease spores saved as .bmp format
into Matlab software.

(3) The double () instruction was used to convert the imported
image data into a double-precision data type.

(4) mesh () command was used to convert the double precision
image data to generate the 3D image and the relative light intensity
value of the polarization-degree image of disease spores was
obtained.

2) Texture characteristics of disease spores polarization angle
image

The polarization angle image can not only highlight the
detailed features of the target object but also reflect the target object’
s edge contour and texture details. This study mainly extracted the
edge contour and texture information of the polarization angle
image of disease spores. The contrast of the gray co-occurrence
matrix can reflect the contribution rate of filtered disease spores
polarization angle image to its texture feature analysis. Entropy can
be used to reflect the energy of polarization angle images of disease
spores®. The more the direction of the filter is consistent with the
texture direction of the disease spore polarization angle image, the
greater the energy output of the disease spore polarization
angle image.

Moreover, within the spatial domain, certain textures present in
the image may pose challenges in their detection, although their
identification becomes more straightforward upon conversion to the
frequency domain. Gabor transform can extract the features of
different scales and directions in the frequency domain. The two-
dimensional expression of the function is shown in Equation (4):

BOPEe) | e
gt = e |e ()
o

“4)

Among them:
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where, g,() represents two-dimensional Gabor function; v
represents the wavelength of Gabor filter; u represents the direction
of the Gabor kernel function; K represents the total number of
directions of the Gabor kernel function; o/k indicates the size of
the Gaussian window.
2.6 Classification and recognition of disease spores based on
BP neural network

In this study, 600 micropolarized images of diseased spores

were used. There were 200 micropolarized images of each disease
spore. In addition, 70% of the samples were used as training sets
and other samples were used to test the trained network model. That
is 180 micropolarized images of disease spores as a test set for the
network. The number of neurons in the hidden layer was selected
according to +/n,+n,+a, where n, and n, are respectively
expressed as the number of input parameters and output parameters,
and a€[0, 10]. The flow chart of the disease spore classification
algorithm is shown in Figure 7.
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Figure 7 Process of disease spores identification and classification

3 Results and analysis

3.1 Surface morphology parameters of disease spores

According to the measurement and analysis of the surface
topography parameters of the disease spores (Figure 8), the spores
of tomato gray mold were round to oval, with a size range of 11.4-
26.7 um on the long axis, with an average value of 19.3 um. The
size in the direction of the short axis’s direction ranges from 8.3-
14.5 um, with an average of 11.7 um. Cucumber downy mildew
spores were oval or lemon-shaped, with a size range of 21.1-
39.8 um on the long axis, with an average value of 30.6 um. The
size in the short axis’s direction of 13.8-23.6 um, with an average of
20.5 um. The spores of cucumber powdery mildew were cylindrical
and oblong, with a size of 30.2-39.5 um, with an average value of
35.4 um. The size in the direction of the short axis ranges from 7.3-
22.2 um, with an average of 14.2 um.

Specifically, these spores exhibit higher concentrations in the
central region and lower concentrations at both ends along the long
and short-axis directions, forming a parabolic shape. The cucumber
downy mildew spores had a certain depression near the top and
middle of the long axis, and a V-shaped depression in the center of
the short axis. In the direction of the short axis, the spores of
cucumber downy mildew decreased from the beginning to 8.0 um,
and there was a trough at 8 yum. A place with three peaks and
troughs along the long axis, but the spacing between the peaks and
troughs is not equal. The short axis of cucumber powdery mildew
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spores decreased from the beginning to 2.8 xm. There is a trough at
2.8 um. Subsequently, the value ascends and reaches a maximum
peak at 7.3 um, then declines with a small fluctuation between 9.2
and 12.0 ym. In the longitudinal axis direction, the height of the
central region can be up to 4.35 um, surpassing the heights observed
at both ends. The height at the head of the spore is close to 3.2 um,
and the height from the head to the tail of the spore fluctuates.
Tomato gray mold spores decreased from the beginning to 2.0 um
along the short axis. A trough is observed at 2.0 um, followed by a
rapid rise with fluctuations between 3.0 and 5.0 um, and a peak at
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5.8 um. A peak at 9.0 um was seen along the longitudinal axis,
while the magnitude of height fluctuation from the head to the tail
of the spores was comparatively lower than that of spores belonging
to cucumber powdery mildew. In summary, the texture position of
the surface of the three disease spores was inconsistent, and the
texture also showed an irregular shape. Texture information was
observed on both the longitudinal and transverse axes, with the
longitudinal axis exhibiting a greater degree of uneven texture.
Hence, the disease spores can be classified based on their texture
and further distinguishing features.
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Figure 8 Surface morphology parameters for three kinds of diseases spores

3.2 Processing results for diseased spores micro polarization
images

According to the above analysis, Matlab R2016 b was used to
write disease spores the micropolarization image processing
program. The Stokes parameters (S, S, S,, S3;), degree of
polarization (DOP), and polarization Angle (AOP) images of the
three disease spores were calculated as shown in Figures 9-11.
3.3 Micropolarization image features for disease spores

The relative light intensity distribution of the polarization-
degree image of disease spores obtained according to the steps of
feature extraction of the relative light intensity value of the
polarization-degree image of disease spores is shown in Figure 12.

As can be seen from Figure 12, the relative light intensity

distribution of the polarization degree image of tomato gray mold
spores is more uniform than that of the other two airborne disease
spores, and there are large relative light intensity values in the
middle and around. The relative light intensity distribution of the
polarization degree image of cucumber downy mildew spores was
mainly located in the surrounding circle and showed a decreasing
trend from the surrounding to the middle. The relative light intensity
distribution of the polarization degree image of cucumber powdery
mildew spores is mainly located in the middle, with a prominent
relative light intensity value in the middle. This may be because the
three disease spores have their color characteristics (the color of the
tomato gray mold spores is nearly colorless, the cucumber downy
mildew spores have milky white bumps on the top that are light
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brown, and the cucumber powdery mildew spore is colorless).
When their polarization images are taken with a micropolarization
system, the spores with different color characteristics absorb and
reflect the beam of light emitted by the microscope light source
differently. Reflected in the polarization image of disease spores,

f. AOP

the relative light intensity distribution of the polarization image of
spores with different color characteristics is different. Therefore, the
relative light intensity of polarization degree images of disease
spores can be used as their polarization degree image features to
classify them.

e. DOP

Figure 9 Results for polarized image processing of tomato gray mold spores

e. DOP f. AOP

Figure 10 Results for polarized image processing of cucumber powdery mildew spores

b. S, c.S

Figure 11
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Figure 12 Relative light intensity distribution for the polarization degree image of disease spores

Based on the processing results of the relative light intensity
distribution of disease spores’ polarization degree images, the
relative light intensity distribution values of the polarization degree
images for three disease spores were statistically analyzed. The
statistical results are listed in Table 1.

Table 1 Statistical results for relative light intensity
distribution about disease spores polarization degree images

Measured index/Ix

Spore species Rangeof  Rangeof — p.. ¢
minimum  maximum
means
values values
Tomato gray mold spores 12-18 163-187 82.36-87.84
Cucumber downy mildew spores 11-15 179-205 75.27- 83.61
Cucumber powdery mildew spores 27-34 185-216 65.32-74.88

When the Gabor filter takes different directions, the contrast
and entropy of the polarization Angle image of disease spores are

shown in Figure 13. As can be seen from Figure 13, when the
direction of the Gabor filter was m/15, the contrast and entropy of
the disease spore polarization angle image were the highest. At this
time, the shading degree of the disease spores’ polarization angle
image has the greatest contribution to its texture characteristics. The
direction of the filter was also the most consistent with the texture
direction of the disease spore polarization angle image. Therefore,
in this study, when the Gabor filter was used to extract features in
different scales and directions of polarization angle images of
disease spores in the frequency domain, the direction value of the
Gabor filter was set to n/15. The polarization angle image results of
the treated disease spores are shown in Figure 14. By comparing
Figures 14a and 14b, it can be seen that the texture information of
disease spores after filtering was more clear. Therefore, according
to the above analysis, the contrast and entropy of disease spores
were extracted from the filtered polarization angle images of disease
spores as texture features.
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Figure 13  Effect of Gabor filter direction on contrast and entropy
for polarization angle images of disease spores

3.4 Classification and identification of disease spores
In this study, 600 micropolarized images of disease spores were

Gradient=0.48067, at epoch 10

taken. The micropolarization images of each disease spore were
200. 30% of the data set serves as the test set for the network. That
is 180 micropolarized images of disease spores as a test set for the
network. The spores of cucumber downy mildew, tomato gray
mold, and cucumber powdery mildew were named class 1, class 2,
and class 3, respectively. The operation results of the BP neural
network are shown in Figure 15.

a. Before filtering b. After filtering

Figure 14 Comparison of polarization angle images for disease
spores before and after processing
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Figure 15 Results for network operation

Using the BP neural network and micropolarization image
features to classify disease spores resulted in a minimum root mean
square error of 0.136 41 for the system, as depicted in Figure 15.
This achievement was attained after conducting four iterations of
the network. After conducting 10 iterations of the network, it was
observed that the gradient of the network equaled 0.480 67. The
linear coefficients of the training set, the verification set, and the
test set were 0.9391, 0.8925, and 0.904 63, respectively. The
performance of the network was close, and the linear coefficient of
the overall network performance was 0.925 01. The classification
results for the test set of three disease spores are shown in

Figure 16.
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Figure 16 Classification results of three disease spore test sets

The classification results of the 180 test sets in Figure 16 were
counted. The results are listed in Table 2.

Table 2 Classification results for test set

Predict the correct

Class Sample number number of samples Accuracy rate/%
60 45 75.00
2 60 53 83.33
3 60 58 96.67

According to the data presented in Table 2, the number of
accurate predictions for class 1 was 45, resulting in an accuracy rate
of 75%. The number of correct predictions for class 2 was 53,
resulting in an accuracy rate of 83.33%. The correct prediction
count for class 3 was 58, resulting in an accuracy rate of 96.67%.
The mean prediction accuracy for three types of airborne disease
spores was found to be 86.67%. The aforementioned results
demonstrate the potential of utilizing the BP neural network and
micropolarization image feature for the classification of greenhouse
crop disease spores.

4 Discussion

Due to the influence of the external environment, some features
of disease spores are challenging to find when taking disease spores
images under visible light. The recognition rate of airborne disease
spores was only 71.45% when classified based on surface texture
information collected under visible light™. It shows that more than
visible light imaging of disease spores is needed. Polarization
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imaging technology can detect the polarization information of the
object’s surface. Compared with the ordinary optical image, the
brightness and contrast of the object and the background in the
polarized image are improved®. Different disease spores have
different effects on the dispersion of polarized light, and the
polarized light can also contain the surface microstructure
information of disease spores. Based on this characteristic, the
polarization scattering feature of different disease spores after the
action of polarized light can be studied to classify the disease
sporesi>2,

According to the statistical analysis of the relative light
intensity distribution values of the polarization degree images of
disease spores (Table 1), the relative light intensity distribution
values of the three disease spores’ polarization degree images are
different. This may be because the spores of the three airborne
diseases have their color characteristics (the color of the tomato
gray mold spores is nearly colorless, the cucumber downy mildew
spores have milky white bumps on the top that are light brown, and
the cucumber powdery mildew spores is colorless). When their
polarization images are taken with a micropolarization system, the
spores with different color characteristics absorb and reflect the
beam of light emitted by the microscope light source differently.
The polarization angle image can highlight the detailed features of
the disease spores and reflect the edge contour and texture details of
the disease spores.

In this study, the maximum, minimum, and mean values of the
relative light intensity distribution of the disease spore polarization
degree image, the contrast, and entropy of the disease spore
polarization angle image were selected as the features of the disease
spore micro polarization image. The recognition rate of disease
spores based on the BP neural network and micropolarization image
features was lower than the average recognition accuracy (98.00%)
in Reference [30]. It may be because the color features, shape
features, and texture features of marigold black spot spores were
selected in this paper when the BP neural network was used to
identify marigold black spot spores.

In addition, the recognition rate based on the BP neural
network and micropolarization image features of disease spores was
lower than that based on color, shape, and texture feature fusion
(94.36%). Although the same disease spores were identified, this
study only considered the relative light intensity distribution of the
disease spores’ polarization degree, the contrast, and the entropy of
the polarization angle image. The shape and color features of
disease spores were not fused with the extracted micropolarization
images of disease spores. But, The classification results based on
BP neural network and micropolarization image features of
greenhouse air-borne disease spores were much higher than those
based on surface texture information of disease spores (71.45%),
color information (45.68%), color and texture information fusion
(75.36%), and shape and texture information fusion (86.18%)".
Therefore, in future research or practical applications, we can
integrate the microscopic shape features of disease spores with the
image features of disease spores polarization degree and angle to
improve the recognition rate of disease spores.

5 Conclusions

This study proposed a novel approach to classifying and
identifying airborne disease spores in a greenhouse based on micro
polarization image features with a BP neural network. The texture
position of the surface of the three disease spores was inconsistent,
and the texture also showed an irregular shape. Texture information

was present on the longitudinal and transverse axes, with the
longitudinal axis exhibiting more uneven texture information. The
polarization-degree images of the three disease spores exhibit
variations in their representation within the entirety of the beam
information. The disease spore polarization angle image exhibited
the maximum levels of contrast and entropy when the Gabor filter’s
direction was set to m/15. The recognition accuracy of cucumber
downy mildew spores, tomato gray mildew spores, and cucumber
powdery mildew spores were 75.00%, 83.33%, and 96.67%,
respectively. The average recognition accuracy of disease spores
was 86.67% based on BPNN and micropolarization image features.
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