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Abstract: To solve challenges in the automated and rapid, non-destructive detection of damage to Korla fragrant pears, this
study explored the laws influencing the impact of load on damage to fragrant pears during ripening. A comparative analysis of
the external features and microscopic structural changes before and after fragrant pear damage was performed. The electrical
parameters of fragrant pears were collected using the fruit electrical parameter detection system, including parallel equivalent
capacitance (Cp), parallel equivalent resistance (Rp), and complex impedance (Z). The correlations between the electrical
parameters of fragrant pears and the degree of damage were analyzed. A detection model for the degree of damage to Korla
fragrant pears was constructed using partial least squares regression (PLSR), support vector regression (SVR), and particle
swarm optimization-least squares support vector regression (PSO-LSSVR), and the optimal model was determined and
screened. The results showed that, in the same ripening, the damaged area of fragrant pears increased as the falling height
increased. Given equal impact loads, the damage area of fragrant pears increased as the picking time increased. Cp, Rp, and Z
were strongly correlated with the damaged area of fragrant pears. When the test frequency was 1 kHz, the PSO-LSSVR model
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showed the optimal detection performance (R* = 0.9172, RMSE = 117.56) for the damaged area of fragrant pears. These

research results provide a theoretical reference for the quality assessment and storage regulation of fragrant pears.
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1 Introduction

The Korla fragrant pear has a thin pericarp, crisp pulp, rich
juice, sweet taste, and plentiful nutrients. It has extremely strong
growth regions and is known as thetfeasure of pears’The Korla
fragrant pear is mainly produced in Korla and Aksu in Xinjiang,
China, as it is a protected product in the national geographical
region'”. The Korla fragrant pear suffers mechanical damage
during harvesting, grading, packaging, transportation, storage, and
other processing stages'”. Damaged fragrant pears are discarded
directly before storage. Annually, more than 38% of fragrant pear
waste is caused by different types of mechanical damage, which
seriously restricts the development of the fragrant pear industry®.
According to industrial standards and relevant studies, fragrant
pears with some surface defects or damage still have some
marketing value'*”. Fragrant pears with different degrees of damage
can be used in different processing channels or stored and sold at
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different times. Therefore, the development of a non-destructive
detection method to determine the degree of damage of fragrant
pears is urgently needed to enable the suitable use of damaged
fragrant pears, thereby decreasing the waste, increasing the
utilization, and extending the industrial processing chain of fragrant
pears.

Fruit damage is usually divided into explicit damage and
implicit damage®. Explicit damage to fruit can be observed by the
naked eye through the brightness, wrinkles, and external pericarp
features, enabling fruit with explicit damage to be distinguished
from normal fruit. The explicit damage of fruit is mainly recognized
by the geometric size of tissue browning. The damage area method,
damage volume method, and damage depth method are generally
used to measure and detect explicit damage to fruit. In these, the
damaged fruit is stored at room temperature for more than 24 h to
ensure full browning of the damaged position. The area, volume, or
depth of browning are measured to represent the degree of
damage®. However, this measurement method is time-consuming,
which is disadvantageous for the rapid detection of the degree of
damage to fruit. With implicit damage, the fruit cell tissues are more
integral and the oxidation rate of enzymatic substances in fruits is
relatively low compared to explicit damage!"”. It is very difficult to
observe and distinguish this damage by the naked eye from external
information and pericarp features. Due to its limitations in the
quantitative evaluation of fragrant pear damage, the replacement of
artificial identification by a reasonable non-destructive detection
technology would enable the non-destructive detection of the degree
of damage of fragrant pears before storage, which would enable the
optimal processing mode to be selected after harvesting. Such a
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method would provide theoretical guidance for quality grading and
storage technology regulation.

Non-destructive detection technologies are reasonably mature.
With characteristics of non-destructive detection, simple operation,
high convenience, and high sensitivity, electrical analytical
technologies have been widely applied in the identification of fruit
damage and quality!""'?. Korla fragrant pears have a thin pericarp,
juicy pulp, and contain many charged particles. After the pears are
damaged, changes to their internal substances and energy occur,
which in turn influences the distribution and strength of the
bioelectric field™. This is macroscopically manifested as changes in
the electrical properties. These phenomena lay a good foundation
for the detection of damage to fragrant pears based on their
electrical properties via an approach that is rapid, sensitive, and
straightforward. Jiang et al.'*' studied trends in the electrical
parameters of fruit after damage and found obvious differences
between undamaged and damaged fruit. Thus, there has been some
exploration of the relationship between electrical parameters and
fruit damage. An et al."” identified internal damage to fragrant pears
based on electrical feature detection technology, but a detection
model of the degree of internal damage was not developed. Bian et
al.' predicted the browning area of apples after injury based on
dielectric properties, but failed to predict the degree of damage to
the apples. Fan et al.l'” detected static pressure damage to Korla
fragrant pears at three picking times by using the technological
mean based on electrical properties. They built a mathematical
model to describe the relationship between the electrical parameters
of these three crops of fragrant pear and the damaged area. This
mathematical model conformed to a quadratic equation with one
unknown variable. However, since this model was based on
electrical parameter variations before and after fragrant pear
damage, it was not applicable to online detection but only to predict
damage to fragrant pears from the same maturity. Based on the
above literature review, curve fitting was performed for the
electrical parameters and degree of damage, but this was not
applicable to the detection of damage to all fruit. Therefore, there is
an urgent need for a method with a stable modeling effect to enable
the rapid and non-destructive evaluation of fragrant pears.

As important artificial intelligence algorithms, machine-
learning methods are developing rapidly. Recently, machine-
learning methods like partial least squares regression (PLSR),
support vector regression (SVR), and particle swarm optimization-
least squares support vector regression (PSO-LSSVR) have been
extensively applied to predict the static pressure damage of fragrant
pears, the soluble solid content of apples, and the price of
agricultural products due to their quick training and high prediction
accuracy” . However, there has been little research combining
electrical properties and machine-learning methods for the detection
of fruit damage based on PLSR, SVR, and PSO-LSSVR.

In this study, the influence of impact loads on the damage to
fragrant pears was explored. The external features and
microstructural changes of the damaged fragrant pears were
analyzed. Electrical parameters of the damaged fragrant pears were
collected using the electrical parameter detection system for fruit,
and their correlations with the degree of damage were determined.
The electrical parameters were used as the system inputs, and the
damage area was used as the system output. On this basis, some
detection models of the degree of damage to Korla fragrant pear
were built using PLSR, SVR, and PSO-LSSVR. The optimal
detection model was determined and screened to ultimately achieve
the effective prediction of the degree of damage to fragrant pears.

2 Materials and methods

2.1 Test materials

Korla fragrant pear samples: High-quality fragrant pears from
Southern Xinjiang, China were collected from the Shituan
Conventional Management Pear Garden in Alaer City. The trees
were 12 years old. Samples were collected every four days from
September 1-29, 2019, resulting in eight sampling times. The
average weight of the chosen fragrant pears was 125+3 g. For each
sampling, 70 fragrant pears were collected, resulting in a total of
560 fragrant pear samples. These were carried to the laboratory
immediately after picking for the impact damage test. The
experiment required the selection of Korla fragrant pears of similar
shape and size, without distortion, implicit damage, disease or
insect damage, and with uniform color at the same picking time.
2.2 Impact damage test

The impact damage test for fragrant pears in different ripening
periods was implemented using a self-made impact damage testbed.
Corrugated boards were paved on the testbed, onto which the
fragrant pears fell. The testbed was divided into the hoisting gear
and adsorption device (Figure 1). The adsorption device comprised
a vacuum generator, a sucker, and an air compressor. The hoisting
gear consisted of a lead screw, a linear guideway, a pneumatic
motor, and an extending arm. The operational steps were as follows.
The sucker was lifted to the appointed height by the hoisting gear,
and a sample was adsorbed onto the sucker through the adsorption
device. The suction was turned off, causing the fragrant pear to fall
onto the contact material of the platform surface, resulting in impact
damage on the testbed. First, the falling height was adjusted.
Fragrant pears were damaged when the falling height was 30 cm.
The pericarp of the fragrant pear broke and juice leaked out when
the falling height was 150 cm. At this point, the falling test was
terminated. Finally, the falling height was set to 30, 50, 70, 90, 110,
130, and 150 cm. Ten repetitions were performed in each group of
tests. The electrical parameters of each fragrant pear were measured
immediately after the impact damage test. Finally, the degree of
damage was measured. Test data were recorded and the mean
values were calculated. The surface damage area of fragrant pears
could be recognized by the naked eye, which was conducive to
judging damage degrees. This also was used as a major index to
evaluate apparent quality of fruits”™. Hence, the degree of damage of
fragrant pears was determined from the damage area.

1. Air compressor; 2. Engine body; 3. Vacuum generator; 4. Linear guideway;
5. Cantilever arm; 6. Sucker; 7. Leading screw; 8. Pneumatic motor

Figure 1 ~ Self-made testbed for impact damage
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After the Korla fragrant pears were damaged, they were kept at
room temperature to allow them to fully brown. The pericarp at the
damaged position was removed using a knife. The major semi-axis
(a) and the minor semi-axis (b) of the damaged area were measured
(Figure 2). The damaged area was calculated using the
measurement method proposed by Zhang®” and Komarnicki®
[Equation (1)].

S =nab (1)

where, S is damaged area of fragrant pears, mm?* a is major semi-
axis of the oval damaged area, mm; b is minor semi-axis of the oval
damaged area, mm.

Figure 2 Measurement diagram of damaged area of fragrant pears

2.3 Measurement test of electrical parameters of fragrant
pears

Electrical parameters of fragrant pears were collected using a
self-made electrical property detection system (Figure 3). The LCR
test bridge was preheated for 1 h before use. Subsequently, a
zeroing operation was performed to decrease errors. After
preheating, the shielded box was opened. The lifting and falling of
the upper parallel electrode plate were controlled by a motor for the
rough adjustment of their distance so the two electrode plates were
in contact with the fragrant pear. Next, the fine adjustment of the
upper parallel electrode plate was performed by rotating the hand
wheel to ensure that the electrodes were in contact with two relative
vertical points on the surface equator regions of the fragrant pear.
The orientation of the fragrant pear in the shielded box was kept
consistent. The conductive sponge was pasted onto the electrode
surface, and the air space was eliminated after contact with the
fragrant pear. At this moment, the fragrant pear sample was
clamped into copper electrode plates (diameter: 30 mm) with a
fixed pre-tightening force of 0.7 N, and the shielded box was
closed. The electrode plates were connected to the external
mechanical structure by insulating bars. They were put in the
shielded case with the fragrant pear to measure the electrical
parameters and prevent errors caused by external magnetic
disturbances. The electrical parameters of each fragrant pear were
measured under a test voltage of 1 V and different test frequencies
(1 MHz, 100 kHz, 10 kHz, 1 kHz, and 100 Hz). Parallel equivalent
capacity (Cp), parallel equivalent resistance (Rp), and complex
impedance (Z) are relatively sensitive to fruit damage and are often
used to evaluate the degree of damage to fruit™!. In this study, Cp,
Rp, and Z were chosen as major electrical parameters for damaged
fragrant pears. Cp reflects the charge storage capacity at a given
potential difference. Generally, charges move in an electric field
due to the influences of stresses. The presence of media between
conductors hinders the movement of charges, resulting in their
accumulation on the conductor. As a result, the charges are
accumulated and stored”. Rp is relative to alternating signals at a
certain frequency. In an alternating electric field, resistance,
capacitance, and inductance may hinder the flow of current. Hence,

Rp is the vector sum of resistance, capacitive resistance, and
inductive reactance™. Z reflects the hindering effects of resistance,
inductance, and capacitance against a current. It refers to the sum of
resistance and inductance in the biological equivalent composite
circuit composed of resistance, capacitance, and inductance.

Note: 1. Fine adjustment hand wheel; 2. Force sensor; 3. Shielded box; 4. Test
bridge; 5. Loading motor; 6. Support; 7. Force controller
Figure 3  Electrical properties detection system

2.4 Scanning electron microscopy
2.4.1 Sample preparation

One damaged position of each fragrant pear was chosen as the
sample collection position. The pericarp was removed using a
scalpel, and a cubic sample of subcutaneous pulp tissue (1x1x1
cm’) was collected and placed in glutaraldehyde solution. The
samples were put in a refrigerator (4°C) for 24 h before follow-up
testing.
2.4.2  Gradient dehydration:

(1) 30% ethyl alcohol: fragrant pear samples were immersed
for 40 min.

(2) 50% ethyl alcohol: fragrant pear samples were immersed
for 40 min.

(3) 70% ethyl alcohol: fragrant pear samples were immersed
for 40 min.

(4) 90% ethyl alcohol: fragrant pear samples were immersed
for 40 min.

(5) 95% ethyl alcohol: fragrant pear samples were immersed
for 40 min.

(6) 100% ethyl alcohol: fragrant pear samples were immersed
for 40 min.

(7) 100% ethyl alcohol: fragrant pear samples were immersed
for 40 min.

(8) 100% ethyl alcohol: 100% acetone (1:1): fragrant pear
samples were immersed for 40 min.

(9) 100% acetone: fragrant pear samples were immersed for
40 min.

(10) 100% acetone: fragrant pear samples were immersed for
40 min.
2.43 CO, replacement of acetone

The chosen fragrant pear samples were dried using a critical
point dryer.
2.4.4 Metal spraying

The dried fragrant pear samples were coated with a consistent
thickness of film using an ion sputter coater.
2.4.5 Scanning electron microscopy

Scanning electron microscopy (SEM) was used to observe and
capture images of the tissue structures of the fragrant pear samples.
2.5 Modeling method

This study used three modeling methods: PLSR, SVR, and PSO-
LSSVR. Detection models for the damage area to fragrant pears
during ripening periods were constructed. The model inputs were
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Cp, Rp, and Z. The model outputs were the damaged areas of
fragrant pears.
2.5.1 PLSR model

PLSR is the most extensively used linear modeling technique.
It integrates the advantages of typical correlation analysis, multi-
variant linear regression analysis, and principal component analysis
(PCA)™!. Given the unified algorithm framework, PLSR results in a
comprehensive factor with the strongest interpretation capacity for
dependent variables through information decomposition. It also
eliminates relevant disturbance factors, thereby producing
regression results with strong robustness and high accuracy. PLSR
modeling allows the sample size to be smaller than the variable
quantity. It has a very good identification ability for eigenvectors
and effectively eliminates multiple correlations. The PLSR model
can provide a good summary of dependent variable information.
2.5.2  SVR model

SVR is an application branch of support vector machine (SVM)
in the regression field. SVM is mainly used to solve pattern
recognition problems, while SVR is applied for data fitting®’.
Similar to the SVM classification model, SVR is a non-probabilistic
algorithm. It maps data onto a high-dimensional space by using the
kernel function. The maximum interval between the optimal hyper-
plane and the training data is searched in this high-dimensional
space, producing the regression model. Different from traditional
regression models, SVR transforms the regression problem into a
function that approaches the real function. In practical applications,
the model can be adjusted by using different kernel functions and
hyper-parameters to improve the fitting effect. SVR can process non-
linear problems. With high-dimensional data processing capacity
and outstanding generalization ability, it has robustness to outliers.
Hence, the SVR model achieves a high prediction accuracy.

2.5.3 PSO-LSSVR model

The least squares support vector regression (LSSVR) algorithm
is the least squares support vector machine for regression
prediction. Scholars have applied the LSSVR algorithm to non-
linear prediction modeling and achieved the thinning of solutions to
the LSSVR algorithm by using pruning technology. The main idea
of LSSVR is to map data non-linearity into a high-dimensional
feature space through the mapping function and then solve the
regression problem in the high-dimensional feature space.

Particle swarm optimization (PSO) is a global random
searching algorithm based on swarm intelligence that simulates the
migration and bunching behaviors of bird flocks during hunting®'.
The PSO algorithm searches for the optimal solution from candidate
solutions through a global searching strategy and displacement
velocity mode of particles, obtaining the optimal solution of particle
and particle swarm by updating the particle state continuously. This
algorithm has a strong searching ability and it is easy to execute,
requiring minimal parameter adjustments. For LSSVR parameter
optimization, the parameter space full searching method is usually
used, so it is very difficult to determine a reasonable parameter
range. PSO can generate swarm intelligence through the
cooperation and competition of particles to guide optimal
searching®™. The principle is simple. Additionally, PSO requires
few parameters and has a high convergence speed. Its global
searching ability can effectively offset difficulties in LSSVR
parameter optimization. Therefore, PSO and LSSVR were
combined in this study to increase the learning and generalization
abilities of the model, increasing its prediction accuracy.

2.5.4 Determination of the optimal prediction model
To select the optimal prediction model, the prediction

performance of the models was evaluated according to their root-
mean-square error (RMSE) and coefficient of determination of the
linear regression line (R*). Generally, a high-accuracy model has a
low RMSE and high R*. RMSE and R* were calculated according to
Equations (2)-(3).

@)

N
> -1y
S
> (M-Ty
i=1

where, M; and T; are the measured values and prediction values of

R=1 3)

data j, respectively; 7, is the mean of the measured values; N is the
total number of data.

3 Results and analysis

3.1 Effects of impact load on fragrant pear damage

The variation in the damaged area of fragrant pears with
different falling heights in different ripening periods is shown in
Figure 4. Given the same ripening, the damaged area of fragrant
pears increased as the falling height increased. Given the same
falling height, the damaged area of fragrant pears increased as the
ripening increased. A greater falling height increased the impact
speed and impact energy of the fragrant pears, resulting in a larger
damage area. At the beginning and end of fragrant pear ripening,
there was a relatively close relationship between falling height and
damaged area. In the middle of ripening, the relationship between
the falling height and the damaged area was not close. When the
falling height was 30 cm, the fragrant pears in the ripening period of
September 1-17 were not damaged. However, fragrant pears picked
after September 21 were damaged, which could not be recognized
by the naked eye. When the falling height was less than 110 cm, the
fragrant pear pericarp was not damaged yet. When the falling height
was 130 cm, the pericarp of fragrant pears from September 1-13
was not damaged, but the pericarp of fragrant pears from September
17-29 began to be damaged. When the falling height was 150 cm,
the pericarp of fragrant pears from all ripening periods was
damaged: fruits were fully cracked, accompanied by collapsed pulp
and the leakage of juice (Figure 5).
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Figure 4 Relationship between falling height and damage area of
fragrant pears during different ripening periods

3.2 Microstructure of damaged fragrant pears
To reveal the mechanism of mechanical damage to fragrant
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Figure 5 External characteristics of damage on fragrant pear skin
when falling height was 150 cm

pears, the microstructure at the damaged positions was observed by
SEM and compared with that of undamaged fragrant pears. The
microstructure of pulp tissues of the damaged fragrant pears picked
on September 1, when the falling height was 30, 50, and 70 cm, is
shown in Figure 6. Figure 6a shows that the pulp tissue cell spaces
and cell walls of undamaged fragrant pears were complete,
compact, and had consistent structures, with cells in a networked
regular arrangement. The circles are cell spaces, which were
relatively complete. The fragrant pears developed a small degree of
damage when they fell from a height of 30 cm. This is known as
implicit damage, manifested by mild cell damage to pulp tissues and
local collapse (Figure 6b). As the load increased, there was large-
scale cell damage, resulting in hardly any complete cell structures
(Figure 6¢). When the falling height increased to 70 cm, the
pronounced collapse and folding of whole cell tissues occurred,
accompanied by the disappearance of cell spaces (Figure 6d). As the
load increased, the degree of damage increased and the
microstructure of the fragrant pear pulp was more seriously
damaged. The degree of damage of fragrant pear was proportional
to the collapse and folding of the cell microstructure. This is
consistent with the research conclusions of Li et al*’. The fragrant
pear fruit is rich in water and ionic compounds®™. Combining the
external features and microstructural damage of damaged fragrant
pears, it was found that the cell structure was damaged after the
fragrant pears were impacted, accompanied by the large-scale
leakage of juice that was rich in water and electrolytes. As the
degree of damage increased, the cell damage was more serious and
more water and electrolyte leakage occurred. Therefore, the
macroscopic electrical properties of fragrant pears with different
degrees of damage may differ.

R

c. 50 cm falling height

d. 70 cm falling height

Note: Scale 100 um
Figure 6 Microstructure of fleshy tissue of damaged fragrant pear
under different falling height

3.3 Correlation analysis between electrical parameters and
damage area to fragrant pears

The correlation between the electrical parameters and the
damage area was determined using the Pearson correlation analysis
method. Figure 7 shows that, under five test frequencies, Cp was
proportional to the damage area, while Rp and Z were negatively
correlated to the damage area. Rp showed the strongest correlation
with the damage area. These results confirmed the strong
correlations between the electrical parameters and damage area to
fragrant pears and the potential for the detection of the damage area
to fragrant pears based on a machine-learning method.
3.4 Construction of a damage area detection model for
fragrant pears based on electrical parameters and machine-
learning methods
3.4.1 Detection of damage area in fragrant pear based on PLSR

Cp, Z, and Rp were used as the system inputs, and the damage
area was used as the output. Among 56 datasets, 70% were chosen
as the training set to train the model, while the other 30% were
chosen as the test set and input into the trained prediction model to
obtain the prediction results. A linear fitting was performed on the
prediction results and measurement values (Table 1). R* differed
among the test sets of the PLSR prediction model under different
test frequencies. When the test frequency was 1 MHz, 10 kHz,
100 kHz, and 100 Hz, the R* values for the test set were lower than
0.8, indicating that the PLSR model had a poor prediction effect.
When the test frequency was 1 kHz, the detection model had a good
prediction effect, with R> = 0.8094 and RMSE = 200.49. Therefore,
when the test frequency was 1 kHz, it was feasible to detect the
damage area to fragrant pears by combining electrical parameters
and the PLSR model.

Table1 Damage area prediction results based on

PLSR model
Training set Test set
Frequency

R RMSE R RMSE

1 MHz 0.7360 240.40 0.1958 411.82
100 KHz 0.8108 203.53 0.6068 287.97
10 KHz 0.9145 136.38 0.7196 243.18
1 KHz 0.8799 162.15 0.8094 200.49
100 Hz 0.8196 198.71 0.7942 208.35

3.4.2 Detection of damage area in fragrant pear based on SVR

Cp, Z, and Rp were used as the system inputs, and the damage
area was used as the output. Among 56 groups in the dataset, 70%
were chosen as the training set to train the model, and the other 30%
were chosen as the test set and input into the trained prediction
model to obtain the prediction results. A linear fitting was
performed for the prediction results and measurement values
(Table 2). R* differed among the SVR prediction model test sets
under different test frequencies. When the test frequency was
100 kHz, R* was 0.7969 (<0.8), indicating a poor prediction effect.

Table 2 Damage area prediction results based on

SVR model
Training set Test set
Frequency

R RMSE R RMSE

IMHz 0.8282 195.40 0.8765 353.29
100KHz 0.8296 208.34 0.7969 209.04
10KHz 0.9465 114.45 0.9258 149.45
1KHz 0.9472 118.81 0.8628 149.13
100Hz 0.8953 166.56 0.8338 224.08
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Figure 7 Correlation between electrical parameters and damage area to fragrant pears

When the test frequency was 1 MHz, 10 kHz, 1 kHz, and 100 Hz, R’
was greater than 0.8, indicating the good prediction effect of the
SVR model. The best prediction effect was when the test frequency
was 10 kHz, with R* = 0.9258 and RMSE = 149.45. By combining
electrical parameters and the SVR method, the detection of the
damage area to the fragrant pears was optimal, with this approach
showing some feasibility.
3.4.3 Detection of damage area in fragrant pear based on PSO-
LSSVR

Cp, Z, and Rp were used as the system inputs, and the damage
area was used as the output. Of 56 groups in the dataset, 70% were
chosen as the training set to train the model, while the other 30%
were chosen as the test set and input into the trained prediction
model to obtain the prediction results. A linear fitting was
performed on the prediction results and measurement values
(Table 3). The PSO-LSSVR detection model showed the optimal
prediction effect under different test frequencies, and the R* (>0.86)
differed slightly among test sets. This revealed that the PSO-
LSSVR model could predict the damage area to fragrant pears well.
When the test frequency was 1 MHz, the R*> of the test model

peaked, but the RMSE was relatively large (300.74). When the test
frequency was 1 kHz, R* was 0.9172, and the goodness of fit of the
model was relatively high. Additionally, the RMSE of the test
model was relatively small (117.56). The PSO-LSSVR model of the
damage area to fragrant pears was compared comprehensively
under different test frequencies, revealing the best prediction effect
when the test frequency was 1 kHz. Therefore, the PSO-LSSVR
method in combination with electrical parameters could detect the
damage area to fragrant pears well.

Table 3 Damage area prediction results based on
PSO-LSSVR model

Training set Test set
Frequency

R RMSE R RMSE

IMHz 0.8680 171.78 0.9293 320.74
100KHz 0.8738 179.29 0.8805 161.88
10KHz 0.9792 72.35 0.9077 137.92
1KHz 0.9692 90.94 0.9172 117.56
100Hz 0.8291 216.37 0.8634 189.63
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3.5 Selection of the optimal prediction model

To select the optimal detection model, the R* and RMSE values
of the PLSR model, SVR model, and PSO-LSSVR model were
compared. It was found that the trained PLSR, SVR, and PSO-
LSSVR models could predict the damage area to fragrant pears by
acquiring Cp, Z, and Rp. Under different electrical test frequencies,
the PLSR model showed a poorer prediction ability than the SVR
and PSO-LSSVR models. When the test frequency was 10 kHz,
R*=0.9258 and RMSE = 149.45 for the SVR model. When the test
frequency was 1 kHz, R* = 0.9172 and RMSE = 117.56 for the PSO-
LSSVR model. The prediction performance of the SVR and PSO-
LSSVR models was comprehensively compared. It was found that
R? differed slightly among test sets, but the RMSE of the PSO-
LSSVR model was far smaller than that of the SVR model. Overall,
the PSO-LSSVR model at a test frequency of 1 kHz achieved the
optimal prediction accuracy for the damage area to fragrant pears
(R*=0.9172 and RMSE = 117.56).

4 Conclusions

Given the same impact load, the damage area to fragrant pears
increased as the ripening period increased. Given the same ripening
time, the damage area to fragrant pears increased as the impact load
increased and the damage to the pulp microstructure was more
serious. The degree of damage to fragrant pears was proportional to
the collapse and folding of the cell microstructure. Cp, Rp, and Z
were strongly correlated with the damage area to fragrant pears,
with Rp showing the strongest correlation. A comparison of the
prediction performance of the PLSR, SVR, and PSO-LSSVR
models revealed that all three trained models could detect the
damage area to fragrant pears under different test frequencies. PSO-
LSSVR was the optimal model for detecting the damage area to
fragrant pears by combining electrical properties and machine-
learning methods when the test frequency was 1 kHz (R* = 0.9172
and RMSE = 117.56). These research results provide theoretical
guidance for quality grading and technological storage regulation
for fragrant pears.
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