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Abstract: To solve  challenges  in  the  automated  and  rapid,  non-destructive  detection  of  damage  to  Korla  fragrant  pears,  this
study explored the laws influencing the impact of load on damage to fragrant pears during ripening. A comparative analysis of
the external features and microscopic structural changes before and after fragrant pear damage was performed. The electrical
parameters of fragrant pears were collected using the fruit electrical parameter detection system, including parallel equivalent
capacitance  (Cp),  parallel  equivalent  resistance  (Rp),  and  complex  impedance  (Z).  The  correlations  between  the  electrical
parameters of fragrant pears and the degree of damage were analyzed.  A detection model for the degree of damage to Korla
fragrant  pears  was  constructed  using  partial  least  squares  regression  (PLSR),  support  vector  regression  (SVR),  and  particle
swarm  optimization-least  squares  support  vector  regression  (PSO-LSSVR),  and  the  optimal  model  was  determined  and
screened.  The  results  showed  that,  in  the  same  ripening,  the  damaged  area  of  fragrant  pears  increased  as  the  falling  height
increased. Given equal impact loads, the damage area of fragrant pears increased as the picking time increased. Cp, Rp, and Z
were strongly correlated with the damaged area of fragrant pears. When the test frequency was 1 kHz, the PSO-LSSVR model
showed  the  optimal  detection  performance  (R2  =  0.9172,  RMSE  =  117.56)  for  the  damaged  area  of  fragrant  pears.  These
research results provide a theoretical reference for the quality assessment and storage regulation of fragrant pears.
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1    Introduction
The  Korla  fragrant  pear  has  a  thin  pericarp,  crisp  pulp,  rich

juice,  sweet  taste,  and  plentiful  nutrients.  It  has  extremely  strong
growth  regions  and  is  known  as  the  ‘‘treasure  of  pears’’.  The  Korla
fragrant  pear  is  mainly  produced  in  Korla  and  Aksu  in  Xinjiang,
China,  as  it  is  a  protected  product  in  the  national  geographical
region[1-3].  The  Korla  fragrant  pear  suffers  mechanical  damage
during  harvesting,  grading,  packaging,  transportation,  storage,  and
other  processing  stages[4].  Damaged  fragrant  pears  are  discarded
directly  before  storage.  Annually,  more  than  38% of  fragrant  pear
waste  is  caused  by  different  types  of  mechanical  damage,  which
seriously  restricts  the  development  of  the  fragrant  pear  industry[5].
According  to  industrial  standards  and  relevant  studies,  fragrant
pears  with  some  surface  defects  or  damage  still  have  some
marketing value[6,7]. Fragrant pears with different degrees of damage
can  be  used  in  different  processing  channels  or  stored  and  sold  at

different  times.  Therefore,  the  development  of  a  non-destructive
detection  method  to  determine  the  degree  of  damage  of  fragrant
pears  is  urgently  needed  to  enable  the  suitable  use  of  damaged
fragrant  pears,  thereby  decreasing  the  waste,  increasing  the
utilization, and extending the industrial processing chain of fragrant
pears.

Fruit  damage  is  usually  divided  into  explicit  damage  and
implicit  damage[8].  Explicit  damage to fruit  can be observed by the
naked  eye  through  the  brightness,  wrinkles,  and  external  pericarp
features,  enabling  fruit  with  explicit  damage  to  be  distinguished
from normal fruit. The explicit damage of fruit is mainly recognized
by the geometric size of tissue browning. The damage area method,
damage  volume  method,  and  damage  depth  method  are  generally
used  to  measure  and  detect  explicit  damage  to  fruit.  In  these,  the
damaged fruit  is  stored at  room temperature for  more than 24 h to
ensure full browning of the damaged position. The area, volume, or
depth  of  browning  are  measured  to  represent  the  degree  of
damage[9].  However,  this  measurement  method  is  time-consuming,
which  is  disadvantageous  for  the  rapid  detection  of  the  degree  of
damage to fruit. With implicit damage, the fruit cell tissues are more
integral  and  the  oxidation  rate  of  enzymatic  substances  in  fruits  is
relatively low compared to explicit damage[10]. It is very difficult to
observe and distinguish this damage by the naked eye from external
information  and  pericarp  features.  Due  to  its  limitations  in  the
quantitative evaluation of fragrant pear damage, the replacement of
artificial  identification  by  a  reasonable  non-destructive  detection
technology would enable the non-destructive detection of the degree
of damage of fragrant pears before storage, which would enable the
optimal  processing  mode  to  be  selected  after  harvesting.  Such  a
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method would provide theoretical guidance for quality grading and
storage technology regulation.

Non-destructive  detection  technologies  are  reasonably  mature.
With characteristics of non-destructive detection,  simple operation,
high  convenience,  and  high  sensitivity,  electrical  analytical
technologies have been widely applied in the identification of fruit
damage  and  quality[11,12].  Korla  fragrant  pears  have  a  thin  pericarp,
juicy pulp, and contain many charged particles. After the pears are
damaged,  changes  to  their  internal  substances  and  energy  occur,
which  in  turn  influences  the  distribution  and  strength  of  the
bioelectric field[13]. This is macroscopically manifested as changes in
the  electrical  properties.  These  phenomena  lay  a  good  foundation
for  the  detection  of  damage  to  fragrant  pears  based  on  their
electrical  properties  via  an  approach  that  is  rapid,  sensitive,  and
straightforward.  Jiang  et  al.[14-16]  studied  trends  in  the  electrical
parameters  of  fruit  after  damage  and  found  obvious  differences
between undamaged and damaged fruit. Thus, there has been some
exploration  of  the  relationship  between  electrical  parameters  and
fruit damage. An et al.[17] identified internal damage to fragrant pears
based  on  electrical  feature  detection  technology,  but  a  detection
model of the degree of internal damage was not developed. Bian et
al.[18]  predicted  the  browning  area  of  apples  after  injury  based  on
dielectric  properties,  but  failed  to  predict  the  degree  of  damage  to
the  apples.  Fan  et  al.[19]  detected  static  pressure  damage  to  Korla
fragrant  pears  at  three  picking  times  by  using  the  technological
mean  based  on  electrical  properties.  They  built  a  mathematical
model to describe the relationship between the electrical parameters
of  these  three  crops  of  fragrant  pear  and  the  damaged  area.  This
mathematical  model  conformed  to  a  quadratic  equation  with  one
unknown  variable.  However,  since  this  model  was  based  on
electrical  parameter  variations  before  and  after  fragrant  pear
damage, it was not applicable to online detection but only to predict
damage  to  fragrant  pears  from  the  same  maturity.  Based  on  the
above  literature  review,  curve  fitting  was  performed  for  the
electrical  parameters  and  degree  of  damage,  but  this  was  not
applicable to the detection of damage to all fruit. Therefore, there is
an urgent need for a method with a stable modeling effect to enable
the rapid and non-destructive evaluation of fragrant pears.

As  important  artificial  intelligence  algorithms,  machine-
learning  methods  are  developing  rapidly.  Recently,  machine-
learning  methods  like  partial  least  squares  regression  (PLSR),
support  vector  regression (SVR),  and particle  swarm optimization-
least  squares  support  vector  regression  (PSO-LSSVR)  have  been
extensively applied to predict the static pressure damage of fragrant
pears,  the  soluble  solid  content  of  apples,  and  the  price  of
agricultural products due to their quick training and high prediction
accuracy[20-22].  However,  there  has  been  little  research  combining
electrical properties and machine-learning methods for the detection
of fruit damage based on PLSR, SVR, and PSO-LSSVR.

In  this  study,  the  influence  of  impact  loads  on  the  damage  to
fragrant  pears  was  explored.  The  external  features  and
microstructural  changes  of  the  damaged  fragrant  pears  were
analyzed. Electrical parameters of the damaged fragrant pears were
collected  using  the  electrical  parameter  detection  system  for  fruit,
and their  correlations with the degree of  damage were determined.
The  electrical  parameters  were  used  as  the  system  inputs,  and  the
damage  area  was  used  as  the  system  output.  On  this  basis,  some
detection  models  of  the  degree  of  damage  to  Korla  fragrant  pear
were  built  using  PLSR,  SVR,  and  PSO-LSSVR.  The  optimal
detection model was determined and screened to ultimately achieve
the effective prediction of the degree of damage to fragrant pears. 

2    Materials and methods
 

2.1    Test materials
Korla  fragrant  pear  samples:  High-quality  fragrant  pears  from

Southern  Xinjiang,  China  were  collected  from  the  Shituan
Conventional  Management  Pear  Garden  in  Alaer  City.  The  trees
were  12  years  old.  Samples  were  collected  every  four  days  from
September  1-29,  2019,  resulting  in  eight  sampling  times.  The
average weight of the chosen fragrant pears was 125±3 g. For each
sampling,  70  fragrant  pears  were  collected,  resulting  in  a  total  of
560  fragrant  pear  samples.  These  were  carried  to  the  laboratory
immediately  after  picking  for  the  impact  damage  test.  The
experiment required the selection of Korla fragrant pears of similar
shape  and  size,  without  distortion,  implicit  damage,  disease  or
insect damage, and with uniform color at the same picking time. 

2.2    Impact damage test
The impact damage test for fragrant pears in different ripening

periods was implemented using a self-made impact damage testbed.
Corrugated  boards  were  paved  on  the  testbed,  onto  which  the
fragrant  pears  fell.  The  testbed  was  divided  into  the  hoisting  gear
and adsorption device (Figure 1). The adsorption device comprised
a vacuum generator,  a sucker,  and an air  compressor.  The hoisting
gear  consisted  of  a  lead  screw,  a  linear  guideway,  a  pneumatic
motor, and an extending arm. The operational steps were as follows.
The sucker was lifted to the appointed height by the hoisting gear,
and a sample was adsorbed onto the sucker through the adsorption
device. The suction was turned off, causing the fragrant pear to fall
onto the contact material of the platform surface, resulting in impact
damage  on  the  testbed.  First,  the  falling  height  was  adjusted.
Fragrant  pears  were  damaged  when  the  falling  height  was  30  cm.
The pericarp  of  the  fragrant  pear  broke  and juice  leaked out  when
the  falling  height  was  150  cm.  At  this  point,  the  falling  test  was
terminated. Finally, the falling height was set to 30, 50, 70, 90, 110,
130, and 150 cm. Ten repetitions were performed in each group of
tests. The electrical parameters of each fragrant pear were measured
immediately  after  the  impact  damage  test.  Finally,  the  degree  of
damage  was  measured.  Test  data  were  recorded  and  the  mean
values  were  calculated.  The  surface  damage  area  of  fragrant  pears
could  be  recognized  by  the  naked  eye,  which  was  conducive  to
judging  damage  degrees.  This  also  was  used  as  a  major  index  to
evaluate apparent quality of fruits[5]. Hence, the degree of damage of
fragrant pears was determined from the damage area.
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1.  Air  compressor;  2.  Engine  body;  3.  Vacuum  generator;  4.  Linear  guideway;
5. Cantilever arm; 6. Sucker; 7. Leading screw; 8. Pneumatic motor

Figure 1    Self-made testbed for impact damage
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After the Korla fragrant pears were damaged, they were kept at
room temperature to allow them to fully brown. The pericarp at the
damaged position was removed using a knife. The major semi-axis
(a) and the minor semi-axis (b) of the damaged area were measured
(Figure  2).  The  damaged  area  was  calculated  using  the
measurement  method  proposed  by  Zhang[23]  and  Komarnicki[24]

[Equation (1)].

S = πab (1)

where, S  is  damaged area of  fragrant  pears,  mm2; a  is  major semi-
axis of the oval damaged area, mm; b is minor semi-axis of the oval
damaged area, mm.
  

2a

2
b

Figure 2    Measurement diagram of damaged area of fragrant pears
  

2.3    Measurement  test  of  electrical  parameters  of  fragrant
pears

Electrical  parameters  of  fragrant  pears  were  collected  using  a
self-made electrical property detection system (Figure 3). The LCR
test  bridge  was  preheated  for  1  h  before  use.  Subsequently,  a
zeroing  operation  was  performed  to  decrease  errors.  After
preheating, the shielded box was opened. The lifting and falling of
the upper parallel electrode plate were controlled by a motor for the
rough adjustment of their distance so the two electrode plates were
in  contact  with  the  fragrant  pear.  Next,  the  fine  adjustment  of  the
upper  parallel  electrode  plate  was  performed  by  rotating  the  hand
wheel to ensure that the electrodes were in contact with two relative
vertical  points  on  the  surface  equator  regions  of  the  fragrant  pear.
The  orientation  of  the  fragrant  pear  in  the  shielded  box  was  kept
consistent.  The  conductive  sponge  was  pasted  onto  the  electrode
surface,  and  the  air  space  was  eliminated  after  contact  with  the
fragrant  pear.  At  this  moment,  the  fragrant  pear  sample  was
clamped  into  copper  electrode  plates  (diameter:  30  mm)  with  a
fixed  pre-tightening  force  of  0.7  N,  and  the  shielded  box  was
closed.  The  electrode  plates  were  connected  to  the  external
mechanical  structure  by  insulating  bars.  They  were  put  in  the
shielded  case  with  the  fragrant  pear  to  measure  the  electrical
parameters  and  prevent  errors  caused  by  external  magnetic
disturbances.  The  electrical  parameters  of  each  fragrant  pear  were
measured under a test voltage of 1 V and different test frequencies
(1 MHz, 100 kHz, 10 kHz, 1 kHz, and 100 Hz). Parallel equivalent
capacity  (Cp),  parallel  equivalent  resistance  (Rp),  and  complex
impedance (Z) are relatively sensitive to fruit damage and are often
used to evaluate the degree of damage to fruit[25].  In this study, Cp,
Rp,  and Z were chosen as major electrical parameters for damaged
fragrant  pears. Cp  reflects  the  charge  storage  capacity  at  a  given
potential  difference.  Generally,  charges  move  in  an  electric  field
due  to  the  influences  of  stresses.  The  presence  of  media  between
conductors  hinders  the  movement  of  charges,  resulting  in  their
accumulation  on  the  conductor.  As  a  result,  the  charges  are
accumulated  and  stored[26]. Rp  is  relative  to  alternating  signals  at  a
certain  frequency.  In  an  alternating  electric  field,  resistance,
capacitance, and inductance may hinder the flow of current. Hence,

Rp  is  the  vector  sum  of  resistance,  capacitive  resistance,  and
inductive reactance[27]. Z reflects the hindering effects of resistance,
inductance, and capacitance against a current. It refers to the sum of
resistance  and  inductance  in  the  biological  equivalent  composite
circuit composed of resistance, capacitance, and inductance[28].
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Note:  1.  Fine  adjustment  hand  wheel;  2.  Force  sensor;  3.  Shielded  box;  4.  Test
bridge; 5. Loading motor; 6. Support; 7. Force controller

Figure 3    Electrical properties detection system
  

2.4    Scanning electron microscopy 

2.4.1    Sample preparation
One damaged position of each fragrant pear was chosen as the

sample  collection  position.  The  pericarp  was  removed  using  a
scalpel,  and  a  cubic  sample  of  subcutaneous  pulp  tissue  (1×1×1
cm3)  was  collected  and  placed  in  glutaraldehyde  solution.  The
samples were put  in a  refrigerator  (4°C) for  24 h before follow-up
testing. 

2.4.2    Gradient dehydration:
(1)  30%  ethyl  alcohol:  fragrant  pear  samples  were  immersed

for 40 min.
(2)  50%  ethyl  alcohol:  fragrant  pear  samples  were  immersed

for 40 min.
(3)  70%  ethyl  alcohol:  fragrant  pear  samples  were  immersed

for 40 min.
(4)  90%  ethyl  alcohol:  fragrant  pear  samples  were  immersed

for 40 min.
(5)  95%  ethyl  alcohol:  fragrant  pear  samples  were  immersed

for 40 min.
(6)  100% ethyl  alcohol:  fragrant  pear  samples  were  immersed

for 40 min.
(7)  100% ethyl  alcohol:  fragrant  pear  samples  were  immersed

for 40 min.
(8)  100%  ethyl  alcohol:  100%  acetone  (1:1):  fragrant  pear

samples were immersed for 40 min.
(9)  100%  acetone:  fragrant  pear  samples  were  immersed  for

40 min.
(10)  100%  acetone:  fragrant  pear  samples  were  immersed  for

40 min. 

2.4.3    CO2 replacement of acetone
The  chosen  fragrant  pear  samples  were  dried  using  a  critical

point dryer. 

2.4.4    Metal spraying
The dried fragrant  pear  samples were coated with a  consistent

thickness of film using an ion sputter coater. 

2.4.5    Scanning electron microscopy
Scanning electron microscopy (SEM) was used to observe and

capture images of the tissue structures of the fragrant pear samples. 

2.5    Modeling method
This study used three modeling methods: PLSR, SVR, and PSO-

LSSVR.  Detection  models  for  the  damage  area  to  fragrant  pears
during  ripening  periods  were  constructed.  The  model  inputs  were
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Cp,  Rp,  and  Z.  The  model  outputs  were  the  damaged  areas  of
fragrant pears. 

2.5.1    PLSR model
PLSR is  the  most  extensively  used linear  modeling technique.

It  integrates  the  advantages  of  typical  correlation  analysis,  multi-
variant linear regression analysis, and principal component analysis
(PCA)[29]. Given the unified algorithm framework, PLSR results in a
comprehensive  factor  with  the  strongest  interpretation  capacity  for
dependent  variables  through  information  decomposition.  It  also
eliminates  relevant  disturbance  factors,  thereby  producing
regression results  with strong robustness  and high accuracy.  PLSR
modeling  allows  the  sample  size  to  be  smaller  than  the  variable
quantity.  It  has  a  very  good  identification  ability  for  eigenvectors
and  effectively  eliminates  multiple  correlations.  The  PLSR  model
can provide a good summary of dependent variable information. 

2.5.2    SVR model
SVR is an application branch of support vector machine (SVM)

in  the  regression  field.  SVM  is  mainly  used  to  solve  pattern
recognition  problems,  while  SVR  is  applied  for  data  fitting[30].
Similar to the SVM classification model, SVR is a non-probabilistic
algorithm. It maps data onto a high-dimensional space by using the
kernel function. The maximum interval between the optimal hyper-
plane  and  the  training  data  is  searched  in  this  high-dimensional
space,  producing  the  regression  model.  Different  from  traditional
regression  models,  SVR  transforms  the  regression  problem  into  a
function that approaches the real function. In practical applications,
the  model  can  be  adjusted  by  using  different  kernel  functions  and
hyper-parameters to improve the fitting effect. SVR can process non-
linear  problems.  With  high-dimensional  data  processing  capacity
and outstanding generalization ability,  it  has robustness to outliers.
Hence, the SVR model achieves a high prediction accuracy. 

2.5.3    PSO-LSSVR model
The least squares support vector regression (LSSVR) algorithm

is  the  least  squares  support  vector  machine  for  regression
prediction.  Scholars  have  applied  the  LSSVR  algorithm  to  non-
linear prediction modeling and achieved the thinning of solutions to
the LSSVR algorithm by using pruning technology. The main idea
of  LSSVR  is  to  map  data  non-linearity  into  a  high-dimensional
feature  space  through  the  mapping  function  and  then  solve  the
regression problem in the high-dimensional feature space.

Particle  swarm  optimization  (PSO)  is  a  global  random
searching algorithm based on swarm intelligence that simulates the
migration and bunching behaviors  of  bird  flocks  during hunting[31].
The PSO algorithm searches for the optimal solution from candidate
solutions  through  a  global  searching  strategy  and  displacement
velocity mode of particles, obtaining the optimal solution of particle
and particle swarm by updating the particle state continuously. This
algorithm  has  a  strong  searching  ability  and  it  is  easy  to  execute,
requiring  minimal  parameter  adjustments.  For  LSSVR  parameter
optimization,  the  parameter  space  full  searching  method  is  usually
used,  so  it  is  very  difficult  to  determine  a  reasonable  parameter
range.  PSO  can  generate  swarm  intelligence  through  the
cooperation  and  competition  of  particles  to  guide  optimal
searching[32].  The  principle  is  simple.  Additionally,  PSO  requires
few  parameters  and  has  a  high  convergence  speed.  Its  global
searching  ability  can  effectively  offset  difficulties  in  LSSVR
parameter  optimization.  Therefore,  PSO  and  LSSVR  were
combined  in  this  study  to  increase  the  learning  and  generalization
abilities of the model, increasing its prediction accuracy. 

2.5.4    Determination of the optimal prediction model
To  select  the  optimal  prediction  model,  the  prediction

performance  of  the  models  was  evaluated  according  to  their  root-
mean-square  error  (RMSE) and coefficient  of  determination of  the
linear  regression line  (R2).  Generally,  a  high-accuracy model  has  a
low RMSE and high R2. RMSE and R2 were calculated according to
Equations (2)-(3).

RMSE =

Õ
N∑

i=1

(
M j −T j

)2

N
(2)

R2 = 1−

N∑
i=1

(M j −T j)2

N∑
i=1

（M j −T j)2

(3)

T j

where, Mj and Tj are  the measured values and prediction values of
data j, respectively;   is the mean of the measured values; N is the
total number of data. 

3    Results and analysis
 

3.1    Effects of impact load on fragrant pear damage
The  variation  in  the  damaged  area  of  fragrant  pears  with

different  falling  heights  in  different  ripening  periods  is  shown  in
Figure  4.  Given  the  same  ripening,  the  damaged  area  of  fragrant
pears  increased  as  the  falling  height  increased.  Given  the  same
falling  height,  the  damaged  area  of  fragrant  pears  increased  as  the
ripening  increased.  A  greater  falling  height  increased  the  impact
speed and impact energy of the fragrant pears, resulting in a larger
damage area[5].  At the beginning and end of fragrant pear ripening,
there was a relatively close relationship between falling height and
damaged  area.  In  the  middle  of  ripening,  the  relationship  between
the  falling  height  and  the  damaged  area  was  not  close.  When  the
falling height was 30 cm, the fragrant pears in the ripening period of
September 1–17 were not damaged. However, fragrant pears picked
after  September  21  were  damaged,  which  could  not  be  recognized
by the naked eye. When the falling height was less than 110 cm, the
fragrant pear pericarp was not damaged yet. When the falling height
was  130  cm,  the  pericarp  of  fragrant  pears  from  September  1–13
was not damaged, but the pericarp of fragrant pears from September
17–29 began to be damaged. When the falling height was 150 cm,
the  pericarp  of  fragrant  pears  from  all  ripening  periods  was
damaged: fruits were fully cracked, accompanied by collapsed pulp
and the leakage of juice (Figure 5).
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Figure 4    Relationship between falling height and damage area of
fragrant pears during different ripening periods

  

3.2    Microstructure of damaged fragrant pears
To  reveal  the  mechanism  of  mechanical  damage  to  fragrant
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pears, the microstructure at the damaged positions was observed by
SEM  and  compared  with  that  of  undamaged  fragrant  pears.  The
microstructure of pulp tissues of the damaged fragrant pears picked
on September 1, when the falling height was 30, 50, and 70 cm, is
shown in Figure 6. Figure 6a shows that the pulp tissue cell spaces
and  cell  walls  of  undamaged  fragrant  pears  were  complete,
compact,  and  had  consistent  structures,  with  cells  in  a  networked
regular  arrangement.  The  circles  are  cell  spaces,  which  were
relatively complete. The fragrant pears developed a small degree of
damage  when  they  fell  from  a  height  of  30  cm.  This  is  known  as
implicit damage, manifested by mild cell damage to pulp tissues and
local  collapse  (Figure  6b).  As  the  load  increased,  there  was  large-
scale  cell  damage,  resulting  in  hardly  any  complete  cell  structures
(Figure  6c).  When  the  falling  height  increased  to  70  cm,  the
pronounced  collapse  and  folding  of  whole  cell  tissues  occurred,
accompanied by the disappearance of cell spaces (Figure 6d). As the
load  increased,  the  degree  of  damage  increased  and  the
microstructure  of  the  fragrant  pear  pulp  was  more  seriously
damaged.  The degree  of  damage of  fragrant  pear  was  proportional
to  the  collapse  and  folding  of  the  cell  microstructure.  This  is
consistent with the research conclusions of Li et  al[33].  The fragrant
pear  fruit  is  rich  in  water  and  ionic  compounds[34].  Combining  the
external  features  and  microstructural  damage  of  damaged  fragrant
pears,  it  was  found  that  the  cell  structure  was  damaged  after  the
fragrant  pears  were  impacted,  accompanied  by  the  large-scale
leakage  of  juice  that  was  rich  in  water  and  electrolytes.  As  the
degree of damage increased, the cell damage was more serious and
more  water  and  electrolyte  leakage  occurred[4].  Therefore,  the
macroscopic  electrical  properties  of  fragrant  pears  with  different
degrees of damage may differ.

  

a. No damage fragrant pear b. 30 cm falling height

d. 70 cm falling heightc. 50 cm falling height

Note: Scale 100 μm
Figure 6    Microstructure of fleshy tissue of damaged fragrant pear

under different falling height 

3.3    Correlation  analysis  between  electrical  parameters  and
damage area to fragrant pears

The  correlation  between  the  electrical  parameters  and  the
damage area was determined using the Pearson correlation analysis
method.  Figure  7  shows  that,  under  five  test  frequencies, Cp  was
proportional  to  the  damage  area,  while Rp  and Z  were  negatively
correlated to the damage area. Rp showed the strongest  correlation
with  the  damage  area.  These  results  confirmed  the  strong
correlations  between  the  electrical  parameters  and  damage  area  to
fragrant pears and the potential for the detection of the damage area
to fragrant pears based on a machine-learning method. 

3.4    Construction  of  a  damage  area  detection  model  for
fragrant  pears  based  on  electrical  parameters  and  machine-
learning methods 

3.4.1    Detection of damage area in fragrant pear based on PLSR
Cp, Z, and Rp were used as the system inputs, and the damage

area was used as the output. Among 56 datasets, 70% were chosen
as  the  training  set  to  train  the  model,  while  the  other  30%  were
chosen as the test set and input into the trained prediction model to
obtain the prediction results.  A linear fitting was performed on the
prediction  results  and  measurement  values  (Table  1).  R2  differed
among  the  test  sets  of  the  PLSR  prediction  model  under  different
test  frequencies.  When  the  test  frequency  was  1  MHz,  10  kHz,
100 kHz, and 100 Hz, the R2 values for the test set were lower than
0.8,  indicating  that  the  PLSR  model  had  a  poor  prediction  effect.
When the test frequency was 1 kHz, the detection model had a good
prediction effect, with R2 = 0.8094 and RMSE = 200.49. Therefore,
when  the  test  frequency  was  1  kHz,  it  was  feasible  to  detect  the
damage  area  to  fragrant  pears  by  combining  electrical  parameters
and the PLSR model.
  

Table 1    Damage area prediction results based on
PLSR model

Frequency
Training set Test set

R2 RMSE R2 RMSE
1 MHz 0.7360 240.40 0.1958 411.82
100 KHz 0.8108 203.53 0.6068 287.97
10 KHz 0.9145 136.38 0.7196 243.18
1 KHz 0.8799 162.15 0.8094 200.49
100 Hz 0.8196 198.71 0.7942 208.35

  

3.4.2    Detection of damage area in fragrant pear based on SVR
Cp, Z, and Rp were used as the system inputs, and the damage

area was used as the output. Among 56 groups in the dataset, 70%
were chosen as the training set to train the model, and the other 30%
were  chosen  as  the  test  set  and  input  into  the  trained  prediction
model  to  obtain  the  prediction  results.  A  linear  fitting  was
performed  for  the  prediction  results  and  measurement  values
(Table  2).  R2  differed  among  the  SVR  prediction  model  test  sets
under  different  test  frequencies.  When  the  test  frequency  was
100 kHz, R2 was 0.7969 (<0.8), indicating a poor prediction effect.
 

Table 2    Damage area prediction results based on
SVR model

Frequency
Training set Test set

R2 RMSE R2 RMSE
1MHz 0.8282 195.40 0.8765 353.29
100KHz 0.8296 208.34 0.7969 209.04
10KHz 0.9465 114.45 0.9258 149.45
1KHz 0.9472 118.81 0.8628 149.13
100Hz 0.8953 166.56 0.8338 224.08

 

Figure 5    External characteristics of damage on fragrant pear skin
when falling height was 150 cm
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When the test frequency was 1 MHz, 10 kHz, 1 kHz, and 100 Hz, R2

was  greater  than  0.8,  indicating  the  good  prediction  effect  of  the
SVR model. The best prediction effect was when the test frequency
was 10 kHz, with R2 = 0.9258 and RMSE = 149.45. By combining
electrical  parameters  and  the  SVR  method,  the  detection  of  the
damage  area  to  the  fragrant  pears  was  optimal,  with  this  approach
showing some feasibility. 

3.4.3    Detection  of  damage  area  in  fragrant  pear  based  on  PSO-
LSSVR

Cp, Z, and Rp were used as the system inputs, and the damage
area was used as the output. Of 56 groups in the dataset, 70% were
chosen  as  the  training  set  to  train  the  model,  while  the  other  30%
were  chosen  as  the  test  set  and  input  into  the  trained  prediction
model  to  obtain  the  prediction  results.  A  linear  fitting  was
performed  on  the  prediction  results  and  measurement  values
(Table  3).  The  PSO-LSSVR  detection  model  showed  the  optimal
prediction effect under different test frequencies, and the R2 (>0.86)
differed  slightly  among  test  sets.  This  revealed  that  the  PSO-
LSSVR model could predict the damage area to fragrant pears well.
When  the  test  frequency  was  1  MHz,  the  R2  of  the  test  model

peaked, but the RMSE was relatively large (300.74). When the test
frequency was 1 kHz, R2 was 0.9172, and the goodness of fit of the
model  was  relatively  high.  Additionally,  the  RMSE  of  the  test
model was relatively small (117.56). The PSO-LSSVR model of the
damage  area  to  fragrant  pears  was  compared  comprehensively
under different test frequencies, revealing the best prediction effect
when  the  test  frequency  was  1  kHz.  Therefore,  the  PSO-LSSVR
method  in  combination  with  electrical  parameters  could  detect  the
damage area to fragrant pears well.
 
 

Table 3    Damage area prediction results based on
PSO-LSSVR model

Frequency
Training set Test set

R2 RMSE R2 RMSE

1MHz 0.8680 171.78 0.9293 320.74

100KHz 0.8738 179.29 0.8805 161.88

10KHz 0.9792 72.35 0.9077 137.92

1KHz 0.9692 90.94 0.9172 117.56
100Hz 0.8291 216.37 0.8634 189.63
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Figure 7    Correlation between electrical parameters and damage area to fragrant pears
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3.5    Selection of the optimal prediction model
To select the optimal detection model, the R2 and RMSE values

of  the  PLSR  model,  SVR  model,  and  PSO-LSSVR  model  were
compared.  It  was  found  that  the  trained  PLSR,  SVR,  and  PSO-
LSSVR models could predict the damage area to fragrant pears by
acquiring Cp, Z, and Rp. Under different electrical test frequencies,
the  PLSR model  showed  a  poorer  prediction  ability  than  the  SVR
and  PSO-LSSVR  models.  When  the  test  frequency  was  10  kHz,
R2 = 0.9258 and RMSE = 149.45 for the SVR model. When the test
frequency was 1 kHz, R2 = 0.9172 and RMSE = 117.56 for the PSO-
LSSVR model.  The  prediction  performance  of  the  SVR and  PSO-
LSSVR models  was  comprehensively  compared.  It  was  found that
R2  differed  slightly  among  test  sets,  but  the  RMSE  of  the  PSO-
LSSVR model was far smaller than that of the SVR model. Overall,
the  PSO-LSSVR model  at  a  test  frequency  of  1  kHz  achieved  the
optimal  prediction  accuracy  for  the  damage  area  to  fragrant  pears
(R2 = 0.9172 and RMSE = 117.56). 

4    Conclusions
Given the same impact load, the damage area to fragrant pears

increased as the ripening period increased. Given the same ripening
time, the damage area to fragrant pears increased as the impact load
increased  and  the  damage  to  the  pulp  microstructure  was  more
serious. The degree of damage to fragrant pears was proportional to
the  collapse  and  folding  of  the  cell  microstructure. Cp, Rp,  and Z
were  strongly  correlated  with  the  damage  area  to  fragrant  pears,
with  Rp  showing  the  strongest  correlation.  A  comparison  of  the
prediction  performance  of  the  PLSR,  SVR,  and  PSO-LSSVR
models  revealed  that  all  three  trained  models  could  detect  the
damage area to fragrant pears under different test frequencies. PSO-
LSSVR  was  the  optimal  model  for  detecting  the  damage  area  to
fragrant  pears  by  combining  electrical  properties  and  machine-
learning methods when the test  frequency was 1 kHz (R2 = 0.9172
and  RMSE  =  117.56).  These  research  results  provide  theoretical
guidance  for  quality  grading  and  technological  storage  regulation
for fragrant pears. 
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