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Abstract: Accurate detection of citrus can be easily affected by adjacent branches and overlapped fruits in natural orchard
conditions, where some specific information of citrus might be lost due to the resultant complex occlusion. Traditional deep
learning models might result in lower detection accuracy and detection speed when facing occluded targets. To solve this
problem, an improved deep learning algorithm based on YOLOVS, named IYOLOVS, was proposed for accurate detection of
citrus fruits. An innovative Res-CSPDarknet network was firstly employed to both enhance feature extraction performance and
minimize feature loss within the backbone network, which aims to reduce the miss detection rate. Subsequently, the BiFPN
module was adopted as the new neck net to enhance the function for extracting deep semantic features. A coordinate attention
mechanism module was then introduced into the network’s detection layer. The performance of the proposed model was
evaluated on a home-made citrus dataset containing 2000 optical images. The results show that the proposed I'YOLOvV5
achieved the highest mean average precision (93.5%) and F1-score (95.6%), compared to the traditional deep learning models
including Faster R-CNN, CenterNet, YOLOv3, YOLOvVS, and YOLOV7. In particular, the proposed [IYOLOvV5 obtained a
decrease of missed detection rate (at least 13.1%) on the specific task of detecting heavily occluded citrus, compared to other
models. Therefore, the proposed method could be potentially used as part of the vision system of a picking robot to identify the

citrus fruits accurately.
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1 Introduction

Citrus reigns as one of the most prolifically cultivated fruits
across the globe, with an annual production of 140 million tons'.
However, the harvesting for citrus fruits is still a labor-intensive
procedure in China. Recently, with the advancement of computer
vision and deep neural networks, automated intelligent harvesting of
citrus fruits has become feasible”. However, in natural orchard
environments, the accurate detection of citrus fruits is influenced by
the factors such as branch and mutual occlusion between fruits.
These complex environmental factors could lead to the loss of
valuable information for robust target detection using traditional
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deep learning algorithms, which typically exhibit lower detection
accuracy and speed when addressing occluded target detection
problems®.

In recent years, scholars have proposed many target detection
models for different types of fruits. Most object detection
algorithms comprise both one-stage and two-stage algorithms. For
two-stage object detection algorithms, Wan et al.” introduced a
Faster R-CNN for multi-class fruit variety classification. They fine-
tuned the architecture of the model’s convolutional and pooling
layers to effectively identify apples, mangoes, and oranges within
orchard environments. The proposed model achieved 90.72% mAP.
Li et al.”! introduced focal loss in the Region Proposal Network
(RPN) of the Faster R-CNN. This adaptation empowers the network
to tackle the issue of skewed sample distribution in seedling
classification, particularly in cases of complex and easy samples.
The average accuracy of automatic detection of hydroponic lettuce
seedlings reached 86.2%. He et al." introduced a deep boundary
box regression forest detection method for immature fruit, which
assisted in the detection of immature fruits by three different
features: shape, texture, and color. The average accuracy of the
method was 87.6%. Nevertheless, the detection method mentioned
above exhibits a slow processing speed, rendering it unsuitable for
real-time monitoring endeavors. In scenarios requiring real-time
fruit picking surveillance, the detection speed must be maintained at
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a minimum of 10-15 frames per second”. Despite the commendable
detection accuracy exhibited by the two-stage algorithm, its
response speed falls short, thereby posing challenges in meeting the
demands of real-time detection scenarios.

In contrast, single-stage object detection algorithms, notably
the YOLO series, have gained significant traction in object
detection applications owing to their rapid detection speed. Tian et
al. introduced an enhanced version of the YOLOvV3 model designed
for identifying the growth stages of apples. This improved model
incorporated a denser network structure, leading to better
propagation and reuse of features. The improved YOLOvV3 achieved
an Fl-score of 0.817®. For rapid recognition and precise
localization of fig fruits within intricate surroundings, Wu et al.”)
introduced a fig detection algorithm that leverages YOLOv4 deep
learning technology. Acknowledging the challenges posed by
identifying numerous clusters of kiwifruit within intricate field
conditions, Rui et al.'” presented an enhanced YOLOv4
convolutional neural network. This improved model addresses the
identification of individual fruits hindered by factors such as leaves,
branches, overlapping instances, and obscured views. Their
recognition rates for separated fruits were 90.5%, 85.9%, 93.5%,
and 96.1%, respectively. To detect litchi and its stalks at night,
Liang et al.' improved YOLOv3 with U-Net. Used in different
lighting conditions, the algorithm achieved 96.1% accuracy and
89.0% recall. However, the method was not tested in daylight. Xia
et al.' used an attention mechanism to improve YOLOvV7 by
increasing visual features’ weight while suppressing invalid features’
weight. The proposed method had 93.1% accuracy on their kiwi
dataset. Wu et al.l'”! introduced a YOLOvV7 network along with
several data augmentation techniques to detect camellia fruits within
intricate field settings. The fusion of the YOLOV7 network and
diverse data augmentation approaches led to a heightened mean
average precision (mAP) of 96.0%. Chen et al.' introduced a
technique based on YOLOVS to identify varying levels of ripeness
in citrus fruits. Wang et al.'" selected the YOLOVS algorithm to
identify the stem and calyx of an apple in real time. Through the
application of exploration of detection heads, layer trimming, and
channel reduction techniques, accurate detection of apple varieties’
stems and calyxes achieved an impressive 93.89% accuracy rate.
Qian et al.' pre-trained the YOLOvV5 model by converting the RGB
image dataset to a pseudo-color dataset of the selected channel (Cr
channel), resulting in an 8% improvement in the final experimental
results over the mean of the original YOLOvVS mAP. Zhang et al.l'”
introduced the grape cluster detection algorithm named YOLOVS-
GAP, which integrated a transformer module to enhance the
backbone network. Experimental findings demonstrated that the
average accuracy of YOLOVS5-GAP is increased by 4.34%
compared with YOLOVS. Gao et al.'¥ introduced a multi-class
detection approach utilizing fast regional convolutional neural
networks. This method can effectively detect apples in various
occlusion scenarios, encompassing scenarios without occlusion,
apples obscured by leaves, and those partially hidden by branches
and other fruits. The achieved mapping accuracy for these four
classes was 0.879, and the average image processing time stood at
0.241 s. Li et al." devised a hierarchical positive sample selection
mechanism to enhance the YOLOvV5 model’s fitting capacity. This
innovation resulted in an impressive 12.47% increase in the F1-
score for the enhanced YOLOVS variant.

Chen et alP proposed an improved multi-task deep
convolutional neural network detection model, MD-YOLOvV7, for
the detection of cherry and tomato fruit ripeness. The total score in

multi-task learning was 86.6%, and the average reasoning time was
4.9 ms. Nan et al.?" developed a new WGB-YOLO network and
used it for dragon fruit multi-category detection. WGB-YOLO
showed a good detection effect in the orchards of dragon fruit
intensive planting, and the mAP value was 86.0%.

In summary, the improvements made to YOLO-based models
in recent years primarily fall into several core directions:
1) enhancing multi-scale feature fusion to improve detection in
complex environments (e.g., BiFPN, PANet); 2) reducing model
complexity to enable real-time deployment in resource-limited
scenarios (e.g., lightweight backbones and pruning strategies);
3) improving detection accuracy through the integration of attention
mechanisms and transformer modules; and 4) incorporating domain-
specific enhancements for agricultural tasks such as occlusion
handling and color-based segmentation. Despite these advances,
challenges such as performance trade-offs, increased model size, or
poor generalizability under varying environmental conditions
remain. These issues underscore the necessity of further research
into models tailored for occlusion-heavy, natural orchard
environments.

Although many improved YOLO-based object detection
models have been developed for various fruit detection tasks, they
often focus on general detection performance under specific
conditions. As summarized above, these improvements target
aspects such as feature fusion, model efficiency, and attention
mechanisms. However, little emphasis has been placed on the
problem of object detection where significant information loss is
caused by fruit and branch occlusions. Therefore, it is essential to
investigate appropriate deep learning-based architecture to
accurately and rapidly detect occluded citrus fruits in natural
orchard environments. In this study, an improved deep learning
algorithm based on YOLOvVS5, named I['YOLOVS, is proposed for the
detection of citrus fruits. The main contributions are as follows: 1)
an innovative Res-CSPDarknet network is employed to enhance
feature extraction and minimize feature loss within the backbone
network; 2) the BiFPN module is adopted as the new neck net to
extract deep semantic features; and 3) a coordinate attention
mechanism module is introduced into the network’s detection layer
to improve the detection accuracy.

2 Data collection and processing

A variety of citrus fruits named “Tangerine” was investigated
in collaboration with Guangzhou Conghua Hualong Fruit &
Vegetable Freshness Co. Ltd. (113°39'2.38"E, 23°33'12.48"N). To
verify the validity of the newly proposed citrus detection method,
this study used digital cameras to take 4239 images in natural citrus
orchards over a period of about two weeks in late December 2021,
covering different conditions on sunny and cloudy days. All of these
images have a resolution of 3000%4000 pixels, and the camera
position is about 30-100 cm away from the citrus fruit. The RGB
images of citrus fruits are shown in Figure 1.

To ensure data quality and enhance the robustness of the
detection model, this study excluded images that were out of focus
or contained partially damaged citrus fruits. In the selection process,
this study prioritized images with occlusions caused by branches or
overlapping fruits, as well as samples captured from diverse angles
and distances, to improve the model’s generalization ability.

1600 images were randomly selected for the training set,
another 200 for validation, and another 200 for the test set.
Labelimg software was used to manually draw boundary boxes for
citrus fruits in the dataset. For specific operations, please refer to
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Figure 1

Figure 2. The bounding boxes delineating the labeled citrus fruits
are annotated with red rectangles, serving as the foundation for
generating ground truth. Meanwhile, the bounding boxes
encompassing labeled occluding objects are annotated with blue
rectangles. The area ratio of the blue rectangle to the red rectangle is
used to define the degree of occlusion of citrus fruits.

The lightly occluded samples (L) are those with an average
occlusion of less than 30%. The moderately occluded samples (M)

RGB images of citrus fruits

[HaR L,

are those with an average occlusion of greater than 30% and less
than 60%. The heavily occluded samples (H) have an average
occlusion of greater than 60% and less than 90%. The samples with
occlusion degrees more than 90% were not considered in the
experiment due to their feature information being almost completely
lost. The number of citrus fruits with different occlusion degrees is
listed in Table 1. The citrus fruit samples with different degrees of
occlusion are shown in Figure 3.

Table 1 Number of citrus fruits with different occlusion
degrees in the dataset

Dataset oI}hilnTz:)ge;s ociiigcllég};L) oﬁ?jgéztf(ﬁ) ocgsg‘e/jil}EH) Total
Train 1600 7308 4002 3789 15099
Val 200 1089 613 450 2152
Test 200 1112 599 479 2190

Figure 3  Citrus fruits samples with different degrees of occlusion
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3 The proposed method

An improved deep learning algorithm based on YOLOVS,
named IYOLOVS, is proposed for the detection of citrus fruits in
natural orchard environments. The overall structure of the proposed
model is illustrated in Figure 4. The improvements introduced in
IYOLOVS consist of three major components: 1) Residual connec-
tions are integrated into the backbone network to reduce feature
information loss during training. This enhancement facilitates the
construction of deeper network structures and helps mitigate

Focus Data enhancement module

@®  Channel concatenation

[ca) Coordinate attention module

Block

Upsample
*

overfitting. 2) A BiFPN structure is adopted as the neck to fuse
multi-scale features and assign adaptive weights, enabling better
feature representation across scales. 3) A coordinate attention me-
chanism is embedded before the detection layer, which significantly
enhances the model’s ability to localize occluded citrus fruits more
precisely. These design choices are made considering the challenges
posed by complex orchard conditions, including fruit occlusion,
background clutter, and variable lighting. The details of each
component - namely the backbone network, BiFPN module, and de-
tection layer - are presented in Sections 3.1, 3.2, and 3.3, respectively.

Maxpool (1x1)
Maxpool (5x5)
Maxpool (9x9)

Maxpool (13x13)

Res-CSP module

BiFPN weighet module

T

Upsample

Backbone

Detect

Figure 4 Architecture of improved YOLOVS network

3.1 Res-CSPDarknet53

A stronger capability for image feature extraction is achieved in
the architecture of YOLOvVS compared to previous models in the
YOLO series by employing a deep backbone network. However, in
the process of information transmission, deep backbone networks
are vulnerable to information loss. This situation is caused by the
lack of image information, which may lead to the decrease of
detection efficiency, which leads to the limitations of deep
backbone networks in practical applications. In this study, a
backbone network named Res-CSPDarknetS3 is proposed, and its
network structure is illustrated in Figure 5. Unlike the
CSPDarknet53 backbone network used in the original YOLOVS,
improvements are made to the existing C3 layer by establishing a
connection between the adjacent two layers, and utilizing a 1x1

convolutional layer for the purpose of modifying the channel count.
During the training phase, the matrix information post-convolution
is input into the Block module. It not only undergoes feature
extraction through the C3 module but also undergoes channel
adjustment through the convolutional layer. Here, unlike the 3x3
convolutional layer used for extracting image features, the 1x1
layer feature
information. The information from both paths is then fused into a

convolutional maximally retains the matrix’s
new matrix and input into the next convolutional layer for
integration and works as the input for the subsequent network
modules. Compared to CSPDarknet53, Res-CSPDarknet53 utilizes
a 1x1 convolutional layer to preserve image feature information and
contribute to the subsequent network training, thereby reducing

feature loss during the transmission of image features in the

1024
SPP

1024

Figure 5 Network structure of Res-CSPDarknet53
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backbone network.

This design helps Res-CSPDarknet53 retain fine-grained
feature information and facilitates smoother gradient propagation
during training. A balance between model complexity and inference
speed is maintained, as supported by the ablation experiments
presented in Section 4.

3.2 BiFPN

Although precise target localization has been provided by the
backbone-transmitted feature map, the low-level feature map
contains less semantic information due to the use of fewer
convolutional layers. In contrast, the high-level feature map
encompasses abundant semantic information following a series of
successive extraction convolutions. Semantic information is used to
determine the detection target category. The feature fusion
methodology in YOLOVS employs the frameworks of FPN and
PANet, where FPN is assigned with conveying profound semantic
information from the low layers to the high layers. Based on the
FPN, PANet operates in a reverse manner, transmitting surface-
level positional details from the upper layers to deeper layers. The
combination of the two kinds of information realizes bidirectional
feature fusion so that the prediction results have both semantic and
location information. However, only simple addition was conducted
during the above procedures in YOLOVS, resulting in lower

» Concat D

Backbone Neck

N4

Figure 6 Network structure

3.3 Coordinated attention mechanism

In order to elevate the object detection network’s detection
precision, this study introduces a novel and lightweight attention
mechanism termed as coordinate attention®. In comparison to
previous attention mechanisms such as squeeze-and-excitation
(SE)*! and convolutional block attention module (CBAM)®,
coordinate attention demonstrates superior efficiency and reduced
computational burden.

The coordinate attention mechanism is particularly well-suited
for fruit detection tasks under natural orchard conditions. Due to
frequent occlusion by branches and overlapping fruits, as well as
background clutter from foliage and varying lighting, conventional
attention mechanisms may struggle to capture precise spatial
dependencies. By encoding positional information along both
spatial preserving
coordinate attention helps the model concentrate on relevant fruit
regions, thereby improving localization accuracy in cluttered and
occluded scenarios.

directions  while channel dependencies,

In particular, coordinate attention combines spatial position
information with channel weights, enabling the network to obtain
both  channel
simultaneously, which helps the target detection network return

weights and spatial position information

more accurate location results. In the computation of coordinate

computational efficiency.

To address the above problem, this study introduces the BiFPN
structure for effective feature fusion, which combines bidirectional
cross-connections with weighted feature fusion. An additional path
is introduced in the feature extraction network, that is, an edge is
added to the bottom-up path, and the extracted feature is fused with
the corresponding node. The portion in PANet that does not receive
backbone network feature information has been improved.
Meanwhile, BiFPN deletes the nodes with only one input direction
in the FPN structure because such nodes contribute less to feature
fusion, which is also conducive to simplifying the network. BiFPN
provides a weight factor for each feature branch and obtains the
optimal weight through autonomous network learning. Finally, the
BiFPN is further optimized by reducing the input nodes to fit the
output of the effective feature layers of the backbone, as shown in
Figure 6.

This structural enhancement is particularly beneficial for citrus
fruit detection under natural orchard conditions, where fruit size
varies significantly, and occlusions caused by branches and overlapp-
ing fruits are frequent. By adaptively weighting multi-scale features,
BiFPN helps the model focus on the most informative scales,
improving detection accuracy for both small and partially obscured
fruits, which are common in real-world orchard environments.

Inputlxw,

BiFPN &
Input2xw,

Detect

Backbone Neck
of PANet and BiFPN in the Neck

attention, the traditional attention mechanism usually adopts the
method of global pooling, which compresses the information of the
whole space into a single scalar value. For a given input X, the
compression step of channel ¢” can be expressed as:

e I (1)

where, z,. is the output associated with the ¢” channel and X=[x,
X, ..., Xc| 1s intermediate feature tensor.
In contrast, the coordinate attention method transforms the

global pooling step into a coding operation involving two one-
dimensional vectors. In this approach, for the given input X,
horizontal features are encoded by pooling kernels (H, 1), and
vertical features are encoded by pooling kernels (1, W), resulting in
a c-dimensional feature output as described by Equations (2) and

A3):
1
2= 57w 0]

O<i<w
. 1 .
Zw =4 Z x(j,w) (3)
0<j<h

where, z represents the output of channel ¢” in the feature diagram
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when the vertical height is A; while z’ represents the output of
channel ¢” in the feature diagram when the horizontal width is w.
The integration of feature information from distinct directions
generates a pair of directional feature maps. This alternative method
helps improve the accuracy of detection by acquiring remote
correlations along one direction while retaining spatial information
in the other direction.

The generation of coordinate attention involves concatenating
the outputs from Equations (2) and (3), followed by a sequence of
transformations, as outlined in Equation (4):

f = 6(F1([Zh,ZW])), f € RC/VX(H+W) (4)

where, 0 is a nonlinear activation function and F; is a transform
function. The intermediate feature f, encompassing both horizontal
and vertical spatial details, is divided into two separate features:
S"ER and f* € R, Additional 1x1 convolutions and sigmoid

functions align the dimensions of f/* and f* with the input X, detailed
in Equations (5) and (6):

8" =d(F.(f") (%)

g" = 0(F.(f") (6)

The fusion of g" and g" results in the formation of a weighting
matrix. F, and F,, are transform functions employed to calculate the
output y(i, ), as exemplified in Equation (7):

Yeli ) = Yooy X 82(0) X 81'(j) (7

In this investigation, this study integrates the coordinate

attention mechanism ahead of the convolutional layer within the

detect layer to enhance the object detection network’s focus on the

regions depicting fruit images. Figure 7 shows the structure in the
detect layer.
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Figure 7 Coordinated attention mechanism in the Head

4 Experimental results and analysis

4.1 Implementation setup

All the models were trained and tested on a workstation
featuring dual Intel Xeon Silver 4210R processors, and a total of
256 GB memory. The framework for the experiments was
Pytorch1.9.0, and the CUDAI11.5 parallel computing framework
was used in conjunction with the CUDNNS.3.0 deep neural network
acceleration library. The proposed IYOLOvVS5 network conducted
end-to-end federated training using stochastic gradient descent
(SGD), where the training process employed a batch size of 32,
incorporating batch normalization for regularization during weight
updates. The initial attenuation parameter was 0.01, the attenuation
rate was 0.9, and the training epochs were 600. Meanwhile, the
default values were assigned to other parameters during the training
process. Frames Per Second (FPS), depicted in Equation (8), was
adopted to assess the pace of model inference:

Fps = 8)
Iy

where, ¢y signifies the cumulative time spent by the model for
detection across all images, and N denotes the total image count.

The model detection efficacy was evaluated using average
precision (AP) and Fl-score. AP and Fl-score were calculated
using precision (P) and recall (R). Equations (9)-(12) define the

precision (P), recall (R), F1-score, and AP, respectively:

TP
=T 7p ©)
TP
R=7rmN (10)
Fl o 2XPXR a1
P+R
AP= [ 12
P= [ P(R)R (12)

where, TP signifies the instances correctly identified as true, FP
denotes the instances incorrectly identified as true, and FN
represents the instances mistakenly identified as false.
4.2 Ablation experiment

Three improved structures including the Res-CSPDarknet53
backbone, BiFPN structure, and coordinate attention mechanism are
involved in the proposed IYOLOVS, as illustrated in Section 3.
Therefore, ablation experiments are used to determine the
performance gain obtained by the structures. Table 2 shows that the
embedding of all three improved structures brought obvious
improvement on YOLOVS5, in which the values of P, R, AP, and F1-
score increased by 2.7%, 4.6%, 3.8%, and 3.8%, respectively.
Specifically, the introduction of BiFPN obtained the best
performance gain compared to YOLOvVS, where the values of R,
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AP, and Fl-score increased by 3%, 2%, and 1.5%, respectively.
However, the value of P decreased by 0.3%, one possible reason for
which is that the network incorporated with the BiFPN structure is
prone to recall more potential bounding boxes containing citrus
fruits, including the image regions containing only the background
objects, which thus affects the detection accuracy. On the other
hand, the embedding of the coordinate attention mechanism
obtained an increase of P value by 0.4%. The findings suggest that
the incorporation of the attention mechanism notably intensified
YOLOVS5’s focus on the fruit region within the entire image, which
was verified by the heat map shown in Figure 8.

According to the results of ablation experiments, the
performance of YOLOVS is not significantly improved by Res-
CSPDarknet53 alone. However, when Res-CSPDarknet53 is used in
combination with other structures, the performance of YOLOVS is
significantly improved. When combined with BiFPN, P value, R
value, AP value, and Fl-score increased by 1%, 3.3%, 2.5%, and
2.3%, respectively. After embedding the coordinated attention
structure, these indicators increased by 0.9%, 3.4%, 2.7%, and
2.8%, respectively. This indicates that the new Res-CSPDarknet53
backbone network is helpful in reducing the loss of image feature
information, which makes the Neck and Head parts of YOLOvV5
need to process more information from the backbone network.
However, the original structure is not sufficient to efficiently
process this additional information, as demonstrated by the joint

embedding experiment of the BiFPN structure and coordinated
attention structure.

Figure 9 shows the comparison between the training loss curve
of IYOLOvVS and YOLOVS in the training process and the progress
curve of mAP0.5:0.95. In the first 200 training steps, YOLOVS’s
AP0.5:0.95 curve shows the AP it reached compared to I[YOLOVS.
In addition, the loss function of YOLOVS showed more fluctuations,
indicating that the convergence of IYOLOvS was improved. At
about the 400th step, the two models tend to be stable, the loss
curve is consistent, and the model gradually converges. After the
model converges, the indices of [YOLOVS are all higher than those
of YOLOvVS. These results indicate that I'YOLOvS5 has faster
convergence in the training process.

Table 2 Results of the ablation experiment

C‘;‘:trg:;frilon BiFPN ];eri';f; P R AP Fl-score
- - - 0960 0.881 0.897 0918
\ - - 0964 0896 0907  0.928
- \ - 0.957 0911 0917 0933
- - J 0.954 0903 0905  0.927
R \ - 0961 0912 0919 0935
- \ \ 0970 0914 0922  0.941
R - \ 0.969 0915 0924  0.946
R \ \ 0.987 0927 0935  0.956

b. Embedded coordinate attention

Figure 8 Heat map in the head
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Figure 9 Comparison of training curve between YOLOvVS and [YOLOvS
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4.3 Comparison with other algorithms

Experiments using five other target detection models including
YOLOvV3®! YOLOv5, YOLOv7™, CenterNet?”, and Faster R-
CNNP were conducted to further evaluate the performance of the
proposed IYOLOVS. The experimental results are listed in Table 3.

The results show that [YOLOVS5 has the best performance in R
value, AP score, and F1-score, which are 92.7%, 93.5%, and 95.6%,
respectively. It can be concluded that the network structure
methodology proposed in this paper demonstrates effectiveness in
accurately detecting citrus fruits within intricate natural
environments. On the other hand, Faster R-CNN had the highest P-
value (99.6%), followed by improved YOLOV5 (98.7%). One
possible reason is that the Faster R-CNN is a two-stage target
detection network with a built-in RPN structure that guarantees
accuracy. However, the RPN structure is to propose the
recommended region in the picture, and then judge the category of
the target in the region through the subsequent structure of the
network, which is easy to miss the overlapping citrus fruit. The
Faster R-CNN’s lower R-value (62.1%) could validate this claim. In
terms of FPS, IYOLOv5 (35.9) is lower than YOLOVS (46.9),
which is better than the other four target detection models. This is
due to the fact that [YOLOVS has embedded the Res-CSPDarknet53
and BiFPN structures to increase the number of parameters in the
network, thus increasing the time consumed by the network
calculation.

To ascertain the detection capabilities of [YOLOVS concerning
citrus fruits with varying degrees of occlusion, this study collected
the above five object detection models and the detection results of
IYOLOVS on citrus fruits with different occlusion degrees. The
statistical results are shown in Table 4. The partial detection results
are shown in Figure 10, with each detected object presented in the

form of a bounding box determined by the smallest closed rectangle
containing the visible portion of the citrus fruit. For citrus fruits
with lightly occluded and clear features, all six networks can
accurately detect citrus fruits. According to the statistical results,
IYOLOVS detected 32 more targets than YOLOv7, which had the
best performance in the comparison algorithm, and the missed
detection rate decreased by 2%. IYOLOVS has the best performance
in boundary box positioning accuracy, with a confidence of more
than 90%. This enhancement may be due to the spatial coordinate
weighted information brought by the coordinate attention
mechanism, which makes the bounding box more accurate.

Table 3 Results of comparison with other

algorithms

Method P R AP F1-score FPS
Faster R-CNN 0.996 0.621 0.842 0.765 3.0
CenterNet 0.978 0.701 0.814 0.816 32.5
YOLOV3 0.968 0.809 0.905 0.881 6.9
YOLOV5 0.960 0.881 0.897 0.918 46.9
YOLOvV7 0.958 0.882 0.918 0.914 11.2
IYOLOV5 0.987 0.927 0.935 0.956 359

Table 4 Detection results of different methods for citrus fruits
with different levels of occlusion

Number of Test Faster R- . Lo \et YOLOV3 YOLOVS YOLOV7 TYOLOVS
citrus fruits set ~ CNN

L 1112 976 955 1001 1008 1050 1082
M 599 398 375 431 482 499 550
H 479 221 192 243 230 312 375

Total 2190 1595 1522 1675 1720 1819 2007

Faster R-CNN

CenterNet

IYOLOvS

Figure 10 Detection of citrus fruits with occluded branches and leaves

For citrus fruits with occluded branches and leaves, the
detection results are shown by the green arrows in Figure 10. Citrus
fruits show a small number of visible features, which puts forward
higher requirements for feature extraction capability of target

detection networks. Experimental results show that [YOLOVS can
successfully detect more citrus fruits obscured by branches and
leaves than other target detection models.

For multiple citrus fruits with similar backgrounds that are
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occluded from each other, some targets are heavily occluded, the
detection results of which are as shown by the blue arrows in
Figure 11. The effective features of citrus fruits are few and overlap
each other, which makes it difficult for the object detection network
to distinguish the target and increases the missed detection rate.

Other target detection models are not effective in detecting citrus
fruits that are occluded from each other. In contrast, the IYOLOv5
successfully detected heavily occluded citrus fruits, even when they
were mutually occluded and surrounded by complex background
interference.

CenterNet

Figure 11

According to the statistical results in Table 4, IYOLOVS
detected the most heavily occluded citrus fruits, detecting 63 more
objects than YOLOv7, and the missed detection rate decreased by
13.1%. Therefore, the detection effect of IYOLOVS on heavily
occluded citrus in natural environment is superior to other target
detection models. This may be due to the fact that Res-
CSPDarknet53 backbone can effectively reduce the loss of image
feature information, so that IYOLOv5 has enough feature
information to distinguish citrus fruits in complex environments.

Generally, the IYOLOv5 model proposed in this study
demonstrates strong generalization and robustness, enabling
accurate citrus fruit detection across various levels of occlusion.
Especially in the background of similar color texture, the detection
of heavily occluded and overlapping target objects is good.

5 Conclusions

In this study, enhancements were made to the architecture of
YOLOVS, leading to the proposal of an IYOLOvS model tailored
for precise detection of citrus fruits within orchard environments.
Based on the findings from this study, the subsequent specific
conclusions can be delineated:

1) The IYOLOVS proposed by this study includes three major
improvements: (1) a new backbone network Res-CSPDarknet
network is used; (2) BiFPN is adopted as a new neck network; and
(3) the coordinate attention mechanism is embedded. The conducted
ablation experiment corroborated a notable enhancement in the
performance metrics of IYOLOVS. Specifically, there was an
increase of 2.7% in accuracy, 4.6% in recall rate, 3.8% in AP, and a
commensurate rise of 3.8% in the Fl-score when juxtaposed with

Detection of mutually occluded citrus fruits

the original YOLOVS model.

2) IYOLOVS outperformed five other commonly used networks
in comparative experiments, including YOLOv7, YOLOVS,
YOLOvV3, Faster R-CNN, and CenterNet. The experimental
findings underscore the notable advantages of the IYOLOvVS
algorithm in target detection accuracy, showcasing the attainment of
the highest average detection accuracy (93.5%). In particular, for
heavily obscured citrus fruits, [YOLOVS showed at least a 13.1%
reduction in missed detection compared to other models.

Therefore, the proposed IYOLOv5 model is highly suitable for
detecting citrus targets in natural orchard environments. In future
investigations, the team aims to explore the detection of citrus
targets in natural orchard settings across different scales, lighting
conditions, and levels of occlusion.

Nevertheless, the proposed model still has some limitations. Its
detection performance may degrade under extreme lighting
conditions such as backlight or nighttime environments. In addition,
while IYOLOvVS performs well on citrus fruit detection, its
generalizability to other fruit types has not yet been validated.
Future work will focus on improving the model’s adaptability
across a wider range of orchard scenarios, incorporating more
advanced attention mechanisms, and optimizing the model
architecture for lightweight deployment on edge or mobile devices.
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