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Abstract: Accurate  detection  of  citrus  can  be  easily  affected  by  adjacent  branches  and  overlapped  fruits  in  natural  orchard
conditions,  where  some specific  information of  citrus  might  be lost  due to  the  resultant  complex occlusion.  Traditional  deep
learning  models  might  result  in  lower  detection  accuracy  and  detection  speed  when  facing  occluded  targets.  To  solve  this
problem, an improved deep learning algorithm based on YOLOv5, named IYOLOv5, was proposed for accurate detection of
citrus fruits. An innovative Res-CSPDarknet network was firstly employed to both enhance feature extraction performance and
minimize  feature  loss  within  the  backbone  network,  which  aims  to  reduce  the  miss  detection  rate.  Subsequently,  the  BiFPN
module was adopted as the new neck net to enhance the function for extracting deep semantic features. A coordinate attention
mechanism  module  was  then  introduced  into  the  network’s  detection  layer.  The  performance  of  the  proposed  model  was
evaluated  on  a  home-made  citrus  dataset  containing  2000  optical  images.  The  results  show  that  the  proposed  IYOLOv5
achieved the highest mean average precision (93.5%) and F1-score (95.6%), compared to the traditional deep learning models
including  Faster  R-CNN,  CenterNet,  YOLOv3,  YOLOv5,  and  YOLOv7.  In  particular,  the  proposed  IYOLOv5  obtained  a
decrease of missed detection rate (at least 13.1%) on the specific task of detecting heavily occluded citrus, compared to other
models. Therefore, the proposed method could be potentially used as part of the vision system of a picking robot to identify the
citrus fruits accurately.
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1    Introduction
Citrus  reigns  as  one  of  the  most  prolifically  cultivated  fruits

across  the  globe,  with  an  annual  production  of  140  million  tons[1].
However,  the  harvesting  for  citrus  fruits  is  still  a  labor-intensive
procedure  in  China.  Recently,  with  the  advancement  of  computer
vision and deep neural networks, automated intelligent harvesting of
citrus  fruits  has  become  feasible[2].  However,  in  natural  orchard
environments, the accurate detection of citrus fruits is influenced by
the  factors  such  as  branch  and  mutual  occlusion  between  fruits.
These  complex  environmental  factors  could  lead  to  the  loss  of
valuable  information  for  robust  target  detection  using  traditional

deep  learning  algorithms,  which  typically  exhibit  lower  detection
accuracy  and  speed  when  addressing  occluded  target  detection
problems[3].

In  recent  years,  scholars  have  proposed  many  target  detection
models  for  different  types  of  fruits.  Most  object  detection
algorithms  comprise  both  one-stage  and  two-stage  algorithms.  For
two-stage  object  detection  algorithms,  Wan  et  al.[4]  introduced  a
Faster R-CNN for multi-class fruit variety classification. They fine-
tuned  the  architecture  of  the  model’s  convolutional  and  pooling
layers  to  effectively  identify  apples,  mangoes,  and  oranges  within
orchard environments. The proposed model achieved 90.72% mAP.
Li  et  al.[5]  introduced  focal  loss  in  the  Region  Proposal  Network
(RPN) of the Faster R-CNN. This adaptation empowers the network
to  tackle  the  issue  of  skewed  sample  distribution  in  seedling
classification,  particularly  in  cases  of  complex  and  easy  samples.
The average accuracy of automatic detection of hydroponic lettuce
seedlings  reached  86.2%.  He  et  al.[6]  introduced  a  deep  boundary
box  regression  forest  detection  method  for  immature  fruit,  which
assisted  in  the  detection  of  immature  fruits  by  three  different
features:  shape,  texture,  and  color.  The  average  accuracy  of  the
method was  87.6%.  Nevertheless,  the  detection  method mentioned
above exhibits  a slow processing speed, rendering it  unsuitable for
real-time  monitoring  endeavors.  In  scenarios  requiring  real-time
fruit picking surveillance, the detection speed must be maintained at
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a minimum of 10-15 frames per second[7]. Despite the commendable
detection  accuracy  exhibited  by  the  two-stage  algorithm,  its
response speed falls short, thereby posing challenges in meeting the
demands of real-time detection scenarios.

In  contrast,  single-stage  object  detection  algorithms,  notably
the  YOLO  series,  have  gained  significant  traction  in  object
detection applications owing to their rapid detection speed. Tian et
al. introduced an enhanced version of the YOLOv3 model designed
for  identifying  the  growth  stages  of  apples.  This  improved  model
incorporated  a  denser  network  structure,  leading  to  better
propagation and reuse of features. The improved YOLOv3 achieved
an  F1-score  of  0.817[8].  For  rapid  recognition  and  precise
localization  of  fig  fruits  within  intricate  surroundings,  Wu  et  al.[9]

introduced  a  fig  detection  algorithm  that  leverages  YOLOv4  deep
learning  technology.  Acknowledging  the  challenges  posed  by
identifying  numerous  clusters  of  kiwifruit  within  intricate  field
conditions,  Rui  et  al.[10]  presented  an  enhanced  YOLOv4
convolutional  neural  network.  This  improved  model  addresses  the
identification of individual fruits hindered by factors such as leaves,
branches,  overlapping  instances,  and  obscured  views.  Their
recognition  rates  for  separated  fruits  were  90.5%,  85.9%,  93.5%,
and  96.1%,  respectively.  To  detect  litchi  and  its  stalks  at  night,
Liang  et  al.[11]  improved  YOLOv3  with  U-Net.  Used  in  different
lighting  conditions,  the  algorithm  achieved  96.1%  accuracy  and
89.0% recall.  However, the method was not tested in daylight. Xia
et  al.[12]  used  an  attention  mechanism  to  improve  YOLOv7  by
increasing visual features’ weight while suppressing invalid features’
weight.  The  proposed  method  had  93.1%  accuracy  on  their  kiwi
dataset.  Wu  et  al.[13]  introduced  a  YOLOv7  network  along  with
several data augmentation techniques to detect camellia fruits within
intricate  field  settings.  The  fusion  of  the  YOLOv7  network  and
diverse  data  augmentation  approaches  led  to  a  heightened  mean
average  precision  (mAP)  of  96.0%.  Chen  et  al.[14]  introduced  a
technique based on YOLOv5 to identify varying levels  of  ripeness
in  citrus  fruits.  Wang  et  al.[15]  selected  the  YOLOv5  algorithm  to
identify  the  stem  and  calyx  of  an  apple  in  real  time.  Through  the
application  of  exploration  of  detection  heads,  layer  trimming,  and
channel reduction techniques, accurate detection of apple varieties’
stems  and  calyxes  achieved  an  impressive  93.89%  accuracy  rate.
Qian et al.[16] pre-trained the YOLOv5 model by converting the RGB
image dataset to a pseudo-color dataset of the selected channel (Cr
channel), resulting in an 8% improvement in the final experimental
results over the mean of the original YOLOv5 mAP. Zhang et al.[17]

introduced  the  grape  cluster  detection  algorithm  named  YOLOv5-
GAP,  which  integrated  a  transformer  module  to  enhance  the
backbone  network.  Experimental  findings  demonstrated  that  the
average  accuracy  of  YOLOv5-GAP  is  increased  by  4.34%
compared  with  YOLOv5.  Gao  et  al.[18]  introduced  a  multi-class
detection  approach  utilizing  fast  regional  convolutional  neural
networks.  This  method  can  effectively  detect  apples  in  various
occlusion  scenarios,  encompassing  scenarios  without  occlusion,
apples  obscured  by  leaves,  and  those  partially  hidden  by  branches
and  other  fruits.  The  achieved  mapping  accuracy  for  these  four
classes was 0.879,  and the average image processing time stood at
0.241 s.  Li et al.[19] devised a hierarchical positive sample selection
mechanism to enhance the YOLOv5 model’s  fitting capacity.  This
innovation  resulted  in  an  impressive  12.47%  increase  in  the  F1-
score for the enhanced YOLOv5 variant.

Chen  et  al.[20]  proposed  an  improved  multi-task  deep
convolutional  neural  network  detection  model,  MD-YOLOv7,  for
the detection of cherry and tomato fruit ripeness. The total score in

multi-task learning was 86.6%, and the average reasoning time was
4.9  ms.  Nan  et  al.[21]  developed  a  new  WGB-YOLO  network  and
used  it  for  dragon  fruit  multi-category  detection.  WGB-YOLO
showed  a  good  detection  effect  in  the  orchards  of  dragon  fruit
intensive planting, and the mAP value was 86.0%.

In  summary,  the  improvements  made  to  YOLO-based  models
in  recent  years  primarily  fall  into  several  core  directions:
1)  enhancing  multi-scale  feature  fusion  to  improve  detection  in
complex  environments  (e.g.,  BiFPN,  PANet);  2)  reducing  model
complexity  to  enable  real-time  deployment  in  resource-limited
scenarios  (e.g.,  lightweight  backbones  and  pruning  strategies);
3) improving detection accuracy through the integration of attention
mechanisms and transformer modules; and 4) incorporating domain-
specific  enhancements  for  agricultural  tasks  such  as  occlusion
handling  and  color-based  segmentation.  Despite  these  advances,
challenges such as performance trade-offs, increased model size, or
poor  generalizability  under  varying  environmental  conditions
remain.  These  issues  underscore  the  necessity  of  further  research
into  models  tailored  for  occlusion-heavy,  natural  orchard
environments.

Although  many  improved  YOLO-based  object  detection
models  have been developed for  various  fruit  detection tasks,  they
often  focus  on  general  detection  performance  under  specific
conditions.  As  summarized  above,  these  improvements  target
aspects  such  as  feature  fusion,  model  efficiency,  and  attention
mechanisms.  However,  little  emphasis  has  been  placed  on  the
problem  of  object  detection  where  significant  information  loss  is
caused  by  fruit  and  branch  occlusions.  Therefore,  it  is  essential  to
investigate  appropriate  deep  learning-based  architecture  to
accurately  and  rapidly  detect  occluded  citrus  fruits  in  natural
orchard  environments.  In  this  study,  an  improved  deep  learning
algorithm based on YOLOv5, named IYOLOv5, is proposed for the
detection of citrus fruits.  The main contributions are as follows: 1)
an  innovative  Res-CSPDarknet  network  is  employed  to  enhance
feature  extraction  and  minimize  feature  loss  within  the  backbone
network;  2)  the  BiFPN  module  is  adopted  as  the  new  neck  net  to
extract  deep  semantic  features;  and  3)  a  coordinate  attention
mechanism module is introduced into the network’s detection layer
to improve the detection accuracy. 

2    Data collection and processing
A variety  of  citrus  fruits  named “Tangerine” was  investigated

in  collaboration  with  Guangzhou  Conghua  Hualong  Fruit  &
Vegetable Freshness Co. Ltd. (113°39′2.38″E, 23°33′12.48″N). To
verify  the  validity  of  the  newly  proposed  citrus  detection  method,
this study used digital cameras to take 4239 images in natural citrus
orchards over a period of about two weeks in late December 2021,
covering different conditions on sunny and cloudy days. All of these
images  have  a  resolution  of  3000×4000  pixels,  and  the  camera
position  is  about  30-100  cm  away  from  the  citrus  fruit.  The  RGB
images of citrus fruits are shown in Figure 1.

To  ensure  data  quality  and  enhance  the  robustness  of  the
detection model, this study excluded images that were out of focus
or contained partially damaged citrus fruits. In the selection process,
this study prioritized images with occlusions caused by branches or
overlapping fruits, as well as samples captured from diverse angles
and distances, to improve the model’s generalization ability.

1600  images  were  randomly  selected  for  the  training  set,
another  200  for  validation,  and  another  200  for  the  test  set.
Labelimg software was used to manually draw boundary boxes for
citrus  fruits  in  the  dataset.  For  specific  operations,  please  refer  to
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Figure  2.  The  bounding  boxes  delineating  the  labeled  citrus  fruits
are  annotated  with  red  rectangles,  serving  as  the  foundation  for
generating  ground  truth.  Meanwhile,  the  bounding  boxes
encompassing  labeled  occluding  objects  are  annotated  with  blue
rectangles. The area ratio of the blue rectangle to the red rectangle is
used to define the degree of occlusion of citrus fruits.

The  lightly  occluded  samples  (L)  are  those  with  an  average
occlusion of less than 30%. The moderately occluded samples (M)

are  those  with  an  average  occlusion  of  greater  than  30%  and  less
than  60%.  The  heavily  occluded  samples  (H)  have  an  average
occlusion of greater than 60% and less than 90%. The samples with
occlusion  degrees  more  than  90%  were  not  considered  in  the
experiment due to their feature information being almost completely
lost. The number of citrus fruits with different occlusion degrees is
listed in Table 1. The citrus fruit samples with different degrees of
occlusion are shown in Figure 3.
 
 

Table 1    Number of citrus fruits with different occlusion
degrees in the dataset

Dataset Number
of images

Lightly
occluded (L)

Moderately
occluded (M)

Heavily
occluded (H) Total

Train 1600 7308 4002 3789 15 099

Val 200 1089 613 450 2152

Test 200 1112 599 479 2190
 

 

Figure 1    RGB images of citrus fruits

 

a. b. c.

Figure 2    Citrus fruits data annotation diagram

 

a. L

b. M

c. H

Figure 3    Citrus fruits samples with different degrees of occlusion
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3    The proposed method
An  improved  deep  learning  algorithm  based  on  YOLOv5,

named  IYOLOv5,  is  proposed  for  the  detection  of  citrus  fruits  in
natural orchard environments. The overall structure of the proposed
model  is  illustrated  in  Figure  4.  The  improvements  introduced  in
IYOLOv5 consist  of  three major components:  1)  Residual  connec-
tions  are  integrated  into  the  backbone  network  to  reduce  feature
information  loss  during  training.  This  enhancement  facilitates  the
construction  of  deeper  network  structures  and  helps  mitigate

overfitting.  2)  A  BiFPN  structure  is  adopted  as  the  neck  to  fuse
multi-scale  features  and  assign  adaptive  weights,  enabling  better
feature  representation  across  scales.  3)  A  coordinate  attention  me-
chanism is embedded before the detection layer, which significantly
enhances the model’s ability to localize occluded citrus fruits more
precisely. These design choices are made considering the challenges
posed  by  complex  orchard  conditions,  including  fruit  occlusion,
background  clutter,  and  variable  lighting.  The  details  of  each
component - namely the backbone network, BiFPN module, and de-
tection layer - are presented in Sections 3.1, 3.2, and 3.3, respectively.
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Figure 4    Architecture of improved YOLOv5 network
 
 

3.1    Res-CSPDarknet53
A stronger capability for image feature extraction is achieved in

the  architecture  of  YOLOv5  compared  to  previous  models  in  the
YOLO series by employing a deep backbone network. However, in
the  process  of  information  transmission,  deep  backbone  networks
are  vulnerable  to  information  loss.  This  situation  is  caused  by  the
lack  of  image  information,  which  may  lead  to  the  decrease  of
detection  efficiency,  which  leads  to  the  limitations  of  deep
backbone  networks  in  practical  applications.  In  this  study,  a
backbone  network  named  Res-CSPDarknet53  is  proposed,  and  its
network  structure  is  illustrated  in  Figure  5.  Unlike  the
CSPDarknet53  backbone  network  used  in  the  original  YOLOv5,
improvements  are  made  to  the  existing  C3  layer  by  establishing  a
connection  between  the  adjacent  two  layers,  and  utilizing  a  1×1

convolutional layer for the purpose of modifying the channel count.
During the training phase,  the matrix information post-convolution
is  input  into  the  Block  module.  It  not  only  undergoes  feature
extraction  through  the  C3  module  but  also  undergoes  channel
adjustment  through  the  convolutional  layer.  Here,  unlike  the  3×3
convolutional  layer  used  for  extracting  image  features,  the  1×1
convolutional  layer  maximally  retains  the  matrix’s  feature
information.  The  information  from  both  paths  is  then  fused  into  a
new  matrix  and  input  into  the  next  convolutional  layer  for
integration  and  works  as  the  input  for  the  subsequent  network
modules.  Compared  to  CSPDarknet53,  Res-CSPDarknet53  utilizes
a 1×1 convolutional layer to preserve image feature information and
contribute  to  the  subsequent  network  training,  thereby  reducing
feature  loss  during  the  transmission  of  image  features  in  the
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Figure 5    Network structure of Res-CSPDarknet53
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backbone network.
This  design  helps  Res-CSPDarknet53  retain  fine-grained

feature  information  and  facilitates  smoother  gradient  propagation
during training. A balance between model complexity and inference
speed  is  maintained,  as  supported  by  the  ablation  experiments
presented in Section 4. 

3.2    BiFPN
Although  precise  target  localization  has  been  provided  by  the

backbone-transmitted  feature  map,  the  low-level  feature  map
contains  less  semantic  information  due  to  the  use  of  fewer
convolutional  layers.  In  contrast,  the  high-level  feature  map
encompasses  abundant  semantic  information  following  a  series  of
successive extraction convolutions. Semantic information is used to
determine  the  detection  target  category.  The  feature  fusion
methodology  in  YOLOv5  employs  the  frameworks  of  FPN  and
PANet,  where  FPN is  assigned  with  conveying  profound  semantic
information  from  the  low  layers  to  the  high  layers.  Based  on  the
FPN,  PANet  operates  in  a  reverse  manner,  transmitting  surface-
level  positional  details  from the upper layers  to deeper layers.  The
combination  of  the  two  kinds  of  information  realizes  bidirectional
feature fusion so that the prediction results have both semantic and
location information. However, only simple addition was conducted
during  the  above  procedures  in  YOLOv5,  resulting  in  lower

computational efficiency.
To address the above problem, this study introduces the BiFPN

structure for  effective feature fusion,  which combines bidirectional
cross-connections with weighted feature fusion. An additional path
is  introduced  in  the  feature  extraction  network,  that  is,  an  edge  is
added to the bottom-up path, and the extracted feature is fused with
the corresponding node. The portion in PANet that does not receive
backbone  network  feature  information  has  been  improved.
Meanwhile, BiFPN deletes the nodes with only one input direction
in  the  FPN structure  because  such  nodes  contribute  less  to  feature
fusion, which is also conducive to simplifying the network. BiFPN
provides  a  weight  factor  for  each  feature  branch  and  obtains  the
optimal  weight  through  autonomous  network  learning.  Finally,  the
BiFPN  is  further  optimized  by  reducing  the  input  nodes  to  fit  the
output  of  the effective feature layers of  the backbone,  as  shown in
Figure 6.

This structural enhancement is particularly beneficial for citrus
fruit  detection  under  natural  orchard  conditions,  where  fruit  size
varies significantly, and occlusions caused by branches and overlapp-
ing fruits are frequent. By adaptively weighting multi-scale features,
BiFPN  helps  the  model  focus  on  the  most  informative  scales,
improving detection accuracy for both small and partially obscured
fruits, which are common in real-world orchard environments.
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3.3    Coordinated attention mechanism
In  order  to  elevate  the  object  detection  network’s  detection

precision,  this  study  introduces  a  novel  and  lightweight  attention
mechanism  termed  as  coordinate  attention[22].  In  comparison  to
previous  attention  mechanisms  such  as  squeeze-and-excitation
(SE)[23]  and  convolutional  block  attention  module  (CBAM)[24],
coordinate  attention  demonstrates  superior  efficiency  and  reduced
computational burden.

The coordinate attention mechanism is  particularly well-suited
for  fruit  detection  tasks  under  natural  orchard  conditions.  Due  to
frequent  occlusion  by  branches  and  overlapping  fruits,  as  well  as
background clutter  from foliage and varying lighting,  conventional
attention  mechanisms  may  struggle  to  capture  precise  spatial
dependencies.  By  encoding  positional  information  along  both
spatial  directions  while  preserving  channel  dependencies,
coordinate  attention  helps  the  model  concentrate  on  relevant  fruit
regions,  thereby  improving  localization  accuracy  in  cluttered  and
occluded scenarios.

In  particular,  coordinate  attention  combines  spatial  position
information  with  channel  weights,  enabling  the  network  to  obtain
both  channel  weights  and  spatial  position  information
simultaneously,  which  helps  the  target  detection  network  return
more  accurate  location  results.  In  the  computation  of  coordinate

attention,  the  traditional  attention  mechanism  usually  adopts  the
method of global pooling, which compresses the information of the
whole  space  into  a  single  scalar  value.  For  a  given  input  X,  the
compression step of channel cth can be expressed as:

zc =
1

H×W

H∑
i=1

W∑
i=1

xc(i, j) (1)

where,  zc  is  the  output  associated  with  the  cth  channel  and X=[x1,
x2, ..., xC] is intermediate feature tensor.

In  contrast,  the  coordinate  attention  method  transforms  the
global  pooling  step  into  a  coding  operation  involving  two  one-
dimensional  vectors.  In  this  approach,  for  the  given  input  X,
horizontal  features  are  encoded  by  pooling  kernels  (H,  1),  and
vertical features are encoded by pooling kernels (1, W), resulting in
a  c-dimensional  feature  output  as  described  by  Equations  (2)  and
(3):

zh
c(h) =

1
W

∑
0≤i<w

xc(h, i) (2)

zw
c (w) =

1
H

∑
0≤ j<h

xc( j,w) (3)

zh
cwhere,   represents the output of channel cth in the feature diagram
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zw
cwhen  the  vertical  height  is  h;  while    represents  the  output  of

channel cth  in  the  feature  diagram when  the  horizontal  width  is w.
The  integration  of  feature  information  from  distinct  directions
generates a pair of directional feature maps. This alternative method
helps  improve  the  accuracy  of  detection  by  acquiring  remote
correlations along one direction while retaining spatial  information
in the other direction.

The  generation  of  coordinate  attention  involves  concatenating
the outputs from Equations (2)  and (3),  followed by a sequence of
transformations, as outlined in Equation (4):

f = δ(F1([zh,zw])), f ∈ RC/r×(H+W) (4)

f h f w

where,  δ  is  a  nonlinear  activation  function  and F1  is  a  transform
function.  The intermediate  feature  f,  encompassing both  horizontal
and  vertical  spatial  details,  is  divided  into  two  separate  features:

∈RC/r×H and  ∈RC/r×W. Additional 1×1 convolutions and sigmoid

functions align the dimensions of fh and fw with the input X, detailed
in Equations (5) and (6):

gh = δ(Fh( f h)) (5)

gw = δ(Fw( f w)) (6)

The fusion of gh and gw results in the formation of a weighting
matrix. Fh and Fw are transform functions employed to calculate the
output yc(i, j), as exemplified in Equation (7):

yc(i, j) = xc(i, j) ×gh
c(i)×gw

c ( j) (7)

In  this  investigation,  this  study  integrates  the  coordinate
attention  mechanism  ahead  of  the  convolutional  layer  within  the
detect layer to enhance the object detection network’s focus on the
regions  depicting  fruit  images. Figure  7  shows  the  structure  in  the
detect layer.
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4    Experimental results and analysis
 

4.1    Implementation setup
All  the  models  were  trained  and  tested  on  a  workstation

featuring  dual  Intel  Xeon  Silver  4210R  processors,  and  a  total  of
256  GB  memory.  The  framework  for  the  experiments  was
Pytorch1.9.0,  and  the  CUDA11.5  parallel  computing  framework
was used in conjunction with the CUDNN8.3.0 deep neural network
acceleration  library.  The  proposed  IYOLOv5  network  conducted
end-to-end  federated  training  using  stochastic  gradient  descent
(SGD),  where  the  training  process  employed  a  batch  size  of  32,
incorporating  batch  normalization  for  regularization  during  weight
updates. The initial attenuation parameter was 0.01, the attenuation
rate  was  0.9,  and  the  training  epochs  were  600.  Meanwhile,  the
default values were assigned to other parameters during the training
process.  Frames  Per  Second  (FPS),  depicted  in  Equation  (8),  was
adopted to assess the pace of model inference:

FPS = N
tN

(8)

where,  tN  signifies  the  cumulative  time  spent  by  the  model  for
detection across all images, and N denotes the total image count.

The  model  detection  efficacy  was  evaluated  using  average
precision  (AP)  and  F1-score.  AP  and  F1-score  were  calculated
using  precision  (P)  and  recall  (R).  Equations  (9)-(12)  define  the

precision (P), recall (R), F1-score, and AP, respectively:

P =
TP

TP + FP (9)

R =
TP

TP + FN (10)

F1 =
2×P×R

P+R
(11)

AP =
w 1

0
P(R)dR (12)

where,  TP  signifies  the  instances  correctly  identified  as  true,  FP
denotes  the  instances  incorrectly  identified  as  true,  and  FN
represents the instances mistakenly identified as false. 

4.2    Ablation experiment
Three  improved  structures  including  the  Res-CSPDarknet53

backbone, BiFPN structure, and coordinate attention mechanism are
involved  in  the  proposed  IYOLOv5,  as  illustrated  in  Section  3.
Therefore,  ablation  experiments  are  used  to  determine  the
performance gain obtained by the structures. Table 2 shows that the
embedding  of  all  three  improved  structures  brought  obvious
improvement on YOLOv5, in which the values of P, R, AP, and F1-
score  increased  by  2.7%,  4.6%,  3.8%,  and  3.8%,  respectively.
Specifically,  the  introduction  of  BiFPN  obtained  the  best
performance  gain  compared  to  YOLOv5,  where  the  values  of  R,
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AP,  and  F1-score  increased  by  3%,  2%,  and  1.5%,  respectively.
However, the value of P decreased by 0.3%, one possible reason for
which is that the network incorporated with the BiFPN structure is
prone  to  recall  more  potential  bounding  boxes  containing  citrus
fruits,  including the image regions containing only the background
objects,  which  thus  affects  the  detection  accuracy.  On  the  other
hand,  the  embedding  of  the  coordinate  attention  mechanism
obtained an increase of P value by 0.4%. The findings suggest that
the  incorporation  of  the  attention  mechanism  notably  intensified
YOLOv5’s focus on the fruit region within the entire image, which
was verified by the heat map shown in Figure 8.

According  to  the  results  of  ablation  experiments,  the
performance  of  YOLOv5  is  not  significantly  improved  by  Res-
CSPDarknet53 alone. However, when Res-CSPDarknet53 is used in
combination  with  other  structures,  the  performance  of  YOLOv5 is
significantly  improved.  When  combined  with  BiFPN,  P  value,  R
value,  AP  value,  and  F1-score  increased  by  1%,  3.3%,  2.5%,  and
2.3%,  respectively.  After  embedding  the  coordinated  attention
structure,  these  indicators  increased  by  0.9%,  3.4%,  2.7%,  and
2.8%, respectively.  This  indicates  that  the  new Res-CSPDarknet53
backbone  network  is  helpful  in  reducing  the  loss  of  image  feature
information,  which  makes  the  Neck  and  Head  parts  of  YOLOv5
need  to  process  more  information  from  the  backbone  network.
However,  the  original  structure  is  not  sufficient  to  efficiently
process  this  additional  information,  as  demonstrated  by  the  joint

embedding  experiment  of  the  BiFPN  structure  and  coordinated
attention structure.

Figure 9 shows the comparison between the training loss curve
of IYOLOv5 and YOLOv5 in the training process and the progress
curve  of  mAP0.5:0.95.  In  the  first  200  training  steps,  YOLOv5’s
AP0.5:0.95 curve shows the AP it reached compared to IYOLOv5.
In addition, the loss function of YOLOv5 showed more fluctuations,
indicating  that  the  convergence  of  IYOLOv5  was  improved.  At
about  the  400th  step,  the  two  models  tend  to  be  stable,  the  loss
curve  is  consistent,  and  the  model  gradually  converges.  After  the
model converges, the indices of IYOLOv5 are all higher than those
of  YOLOv5.  These  results  indicate  that  IYOLOv5  has  faster
convergence in the training process.
 
 

Table 2    Results of the ablation experiment
Coordination
attention BiFPN Res-CSP

Darknet53 P R AP F1-score

- - - 0.960 0.881 0.897 0.918
√ - - 0.964 0.896 0.907 0.928
- √ - 0.957 0.911 0.917 0.933
- - √ 0.954 0.903 0.905 0.927
√ √ - 0.961 0.912 0.919 0.935
- √ √ 0.970 0.914 0.922 0.941
√ - √ 0.969 0.915 0.924 0.946
√ √ √ 0.987 0.927 0.935 0.956

 
 

a. No embedded coordinate attention

b. Embedded coordinate attention

Figure 8    Heat map in the head
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4.3    Comparison with other algorithms
Experiments using five other target detection models including

YOLOv3[25],  YOLOv5,  YOLOv7[26],  CenterNet[27],  and  Faster  R-
CNN[28] were  conducted  to  further  evaluate  the  performance  of  the
proposed IYOLOv5. The experimental results are listed in Table 3.

The results show that IYOLOv5 has the best performance in R
value, AP score, and F1-score, which are 92.7%, 93.5%, and 95.6%,
respectively.  It  can  be  concluded  that  the  network  structure
methodology  proposed  in  this  paper  demonstrates  effectiveness  in
accurately  detecting  citrus  fruits  within  intricate  natural
environments. On the other hand, Faster R-CNN had the highest P-
value  (99.6%),  followed  by  improved  YOLOv5  (98.7%).  One
possible  reason  is  that  the  Faster  R-CNN  is  a  two-stage  target
detection  network  with  a  built-in  RPN  structure  that  guarantees
accuracy.  However,  the  RPN  structure  is  to  propose  the
recommended region in the picture, and then judge the category of
the  target  in  the  region  through  the  subsequent  structure  of  the
network,  which  is  easy  to  miss  the  overlapping  citrus  fruit.  The
Faster R-CNN’s lower R-value (62.1%) could validate this claim. In
terms  of  FPS,  IYOLOv5  (35.9)  is  lower  than  YOLOv5  (46.9),
which is  better  than the other  four  target  detection models.  This  is
due to the fact that IYOLOv5 has embedded the Res-CSPDarknet53
and  BiFPN structures  to  increase  the  number  of  parameters  in  the
network,  thus  increasing  the  time  consumed  by  the  network
calculation.

To ascertain the detection capabilities of IYOLOv5 concerning
citrus fruits  with varying degrees of occlusion,  this study collected
the above five object  detection models  and the detection results  of
IYOLOv5  on  citrus  fruits  with  different  occlusion  degrees.  The
statistical results are shown in Table 4. The partial detection results
are shown in Figure 10, with each detected object presented in the

form of a bounding box determined by the smallest closed rectangle
containing  the  visible  portion  of  the  citrus  fruit.  For  citrus  fruits
with  lightly  occluded  and  clear  features,  all  six  networks  can
accurately  detect  citrus  fruits.  According  to  the  statistical  results,
IYOLOv5  detected  32  more  targets  than  YOLOv7,  which  had  the
best  performance  in  the  comparison  algorithm,  and  the  missed
detection rate decreased by 2%. IYOLOv5 has the best performance
in  boundary  box  positioning  accuracy,  with  a  confidence  of  more
than  90%.  This  enhancement  may  be  due  to  the  spatial  coordinate
weighted  information  brought  by  the  coordinate  attention
mechanism, which makes the bounding box more accurate.
  

Table 3    Results of comparison with other
algorithms

Method P R AP F1-score FPS
Faster R-CNN 0.996 0.621 0.842 0.765 3.0
CenterNet 0.978 0.701 0.814 0.816 32.5
YOLOv3 0.968 0.809 0.905 0.881 6.9
YOLOv5 0.960 0.881 0.897 0.918 46.9
YOLOv7 0.958 0.882 0.918 0.914 11.2
IYOLOv5 0.987 0.927 0.935 0.956 35.9

  
Table 4    Detection results of different methods for citrus fruits

with different levels of occlusion
Number of
citrus fruits

Test
set

Faster R-
CNN CenterNet YOLOv3 YOLOv5 YOLOv7 IYOLOv5

L 1112 976 955 1001 1008 1050 1082

M 599 398 375 431 482 499 550

H 479 221 192 243 230 312 375

Total 2190 1595 1522 1675 1720 1819 2007
 

 
 

YOLOv3 YOLOv5 YOLOv7

Faster R-CNN CenterNet IYOLOv5

Figure 10    Detection of citrus fruits with occluded branches and leaves
 

For  citrus  fruits  with  occluded  branches  and  leaves,  the
detection results are shown by the green arrows in Figure 10. Citrus
fruits show a small number of visible features, which puts forward
higher  requirements  for  feature  extraction  capability  of  target

detection  networks.  Experimental  results  show  that  IYOLOv5  can
successfully  detect  more  citrus  fruits  obscured  by  branches  and
leaves than other target detection models.

For  multiple  citrus  fruits  with  similar  backgrounds  that  are
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occluded  from  each  other,  some  targets  are  heavily  occluded,  the
detection  results  of  which  are  as  shown  by  the  blue  arrows  in
Figure 11. The effective features of citrus fruits are few and overlap
each other, which makes it difficult for the object detection network
to  distinguish  the  target  and  increases  the  missed  detection  rate.

Other  target  detection  models  are  not  effective  in  detecting  citrus
fruits that are occluded from each other. In contrast,  the IYOLOv5
successfully detected heavily occluded citrus fruits, even when they
were  mutually  occluded  and  surrounded  by  complex  background
interference.

 
 

YOLOv3 YOLOv5 YOLOv7

Faster R-CNN CenterNet IYOLOv5

Figure 11    Detection of mutually occluded citrus fruits
 

According  to  the  statistical  results  in  Table  4,  IYOLOv5
detected the most heavily occluded citrus fruits,  detecting 63 more
objects  than  YOLOv7,  and  the  missed  detection  rate  decreased  by
13.1%.  Therefore,  the  detection  effect  of  IYOLOv5  on  heavily
occluded  citrus  in  natural  environment  is  superior  to  other  target
detection  models.  This  may  be  due  to  the  fact  that  Res-
CSPDarknet53  backbone  can  effectively  reduce  the  loss  of  image
feature  information,  so  that  IYOLOv5  has  enough  feature
information to distinguish citrus fruits in complex environments.

Generally,  the  IYOLOv5  model  proposed  in  this  study
demonstrates  strong  generalization  and  robustness,  enabling
accurate  citrus  fruit  detection  across  various  levels  of  occlusion.
Especially in the background of similar color texture, the detection
of heavily occluded and overlapping target objects is good. 

5    Conclusions
In  this  study,  enhancements  were  made  to  the  architecture  of

YOLOv5,  leading  to  the  proposal  of  an  IYOLOv5  model  tailored
for  precise  detection  of  citrus  fruits  within  orchard  environments.
Based  on  the  findings  from  this  study,  the  subsequent  specific
conclusions can be delineated:

1)  The IYOLOv5 proposed by this  study includes  three  major
improvements:  (1)  a  new  backbone  network  Res-CSPDarknet
network is used; (2) BiFPN is adopted as a new neck network; and
(3) the coordinate attention mechanism is embedded. The conducted
ablation  experiment  corroborated  a  notable  enhancement  in  the
performance  metrics  of  IYOLOv5.  Specifically,  there  was  an
increase of 2.7% in accuracy, 4.6% in recall rate, 3.8% in AP, and a
commensurate  rise  of  3.8%  in  the  F1-score  when  juxtaposed  with

the original YOLOv5 model.
2) IYOLOv5 outperformed five other commonly used networks

in  comparative  experiments,  including  YOLOv7,  YOLOv5,
YOLOv3,  Faster  R-CNN,  and  CenterNet.  The  experimental
findings  underscore  the  notable  advantages  of  the  IYOLOv5
algorithm in target detection accuracy, showcasing the attainment of
the  highest  average  detection  accuracy  (93.5%).  In  particular,  for
heavily  obscured  citrus  fruits,  IYOLOv5  showed  at  least  a  13.1%
reduction in missed detection compared to other models.

Therefore, the proposed IYOLOv5 model is highly suitable for
detecting  citrus  targets  in  natural  orchard  environments.  In  future
investigations,  the  team  aims  to  explore  the  detection  of  citrus
targets  in  natural  orchard  settings  across  different  scales,  lighting
conditions, and levels of occlusion.

Nevertheless, the proposed model still has some limitations. Its
detection  performance  may  degrade  under  extreme  lighting
conditions such as backlight or nighttime environments. In addition,
while  IYOLOv5  performs  well  on  citrus  fruit  detection,  its
generalizability  to  other  fruit  types  has  not  yet  been  validated.
Future  work  will  focus  on  improving  the  model’s  adaptability
across  a  wider  range  of  orchard  scenarios,  incorporating  more
advanced  attention  mechanisms,  and  optimizing  the  model
architecture for lightweight deployment on edge or mobile devices. 

Acknowledgements
This  work  was  supported  in  part  by  the  Natural  Science

Foundation  of  Guangdong  Province,  China  (Grant  No.
2020B1515120070,  Grant  No.  2022A1515010885),  the  Innovation
Team Project of Universities in Guangdong Province, China (Grant

　184 　 June, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 3　

https://www.ijabe.org


No.  2021KCXTD010),  the  Key  Construction  Discipline  Research
Capacity  Enhancement  Project  of  Guangdong  Province,  China
(Grant  No.  2022ZDJS014),  the  Key  Construction  Discipline
Research  Capacity  Enhancement  Project  of  GPNU,  China  (Grant
No. 22GPNUZDJS11), and the Characteristic Innovation Project of
Universities  in  Guangdong  Province,  China  (Grant  No.
2023KTSCX066).

[References] 

 Liu Y,  Ma X Y,  Shu L,  Hancke G P,  Abu-Mahfouz A M. From industry
4.0 to agriculture 4. 0: Current status, enabling technologies, and research
challenges.  IEEE  Transactions  on  Industrial  Informatics,  2020;  17(6):
4322–4334.

[1]

 Onishi Y, Yoshida T, Kurita H, Fukao T, Arihara H, Iwai A. An automated
fruit harvesting robot by using deep learning. Robomech Journal, 2019; 6:
13.

[2]

 Tang Y, Dananjayan S, Hou C J, Guo Q W, Luo S M, He Y. A survey on
the  5G  network  and  its  impact  on  agriculture:  Challenges  and
opportunities.  Computers  and  Electronics  in  Agriculture,  2021;  180:
105895.

[3]

 Wan S H, Goudos S. Faster R-CNN for multi-class fruit detection using a
robotic vision system. Computer Networks, 2020; 168: 107036.

[4]

 Li Z B, Li Y, Yang Y B, Guo R H, Yang J Q, Yue J, et al. A high-precision
detection method of hydroponic lettuce seedlings status based on improved
Faster  RCNN.  Computers  and  Electronics  in  Agriculture,  2021;  182:
106054.

[5]

 He Z L, Xiong J T, Chen S M, Li Z X, Chen S F, Zhong Z, et al. A method
of  green citrus  detection based on a  deep bounding box regression forest.
Biosystems Engineering, 2020; 193: 206–215.

[6]

 Tu S Q, Pang J, Liu H F, Zhuang N, Chen Y, Zheng C, et al. Passion fruit
detection and counting based on multiple scale faster R-CNN using RGB-D
images. Precision Agriculture, 2020; 21: 1072–1091.

[7]

 Tian Y N, Yang G D, Wang Z, Wang H, Li E, Liang Z Z. Apple detection
during  different  growth  stages  in  orchards  using  the  improved YOLO-V3
model. Computers and Electronics in Agriculture, 2019; 157: 417–426.

[8]

 Wu Y J, Yang Y, Wnag X F, Cui J, Li X Y. Fig fruit recognition method
based on YOLO v4 deep learning. In: 2021 18th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), Chiang Mai, Thailand: IEEE, 2021;
pp.303–306. doi: 10.1109/ECTI-CON51831.2021.9454904.

[9]

 Suo R, Gao F F, Zhou Z X, Fu L S, Song Z Z, Dhupia J, et al. Improved
multi-classes  kiwifruit  detection  in  orchard  to  avoid  collisions  during
robotic  picking.  Computers  and  Electronics  in  Agriculture,  2021;  182:
106052.

[10]

 Liang C X, Xiong J T, Zheng Z H, Zhong Z, Li Z H, Chen S M, et al.  A
visual  detection  method  for  nighttime  litchi  fruits  and  fruiting  stems.
Computers and Electronics in Agriculture, 2020; 169: 105192.

[11]

 Xia  Y,  Nguyen  M,  Yan  W  Q.  A  real-time  kiwifruit  detection  based  on
improved YOLOv7. In: Yan W Q, Nguyen M, Stommel M, editors. Image
and Vision Computing. Cham: Springer. 2022; pp.48–61.

[12]

 Wu  D  L,  Jiang  S,  Zhao  E  L,  Liu  Y  L,  Zhu  H  C,  Wang  W  W,  et  al.
Detection of  Camellia  oleifera fruit  in  complex scenes by using YOLOv7
and data augmentation. Applied Sciences, 2022; 12(22): 11318.

[13]

 Chen S M, Xiong J T, Jiao J M, Xie Z M, Huo Z W, Hu W X. Citrus fruits
maturity  detection  in  natural  environments  based  on  convolutional  neural
networks  and  visual  saliency  map.  Precision  Agriculture,  2022;  23:
1515–1531.

[14]

 Wang  Z  P,  Jin  L  Y,  Wang  S,  Xu  H  R.  Apple  stem/calyx  real-time
recognition using YOLO-v5 algorithm for  fruit  automatic loading system.
Postharvest Biology and Technology, 2022; 185: 111808.

[15]

 Wang  N,  Qian  T  T,  Yang  J,  Li  L  Y,  Zhang  Y  Y,  Zheng  X  G,  et  al. An
enhanced YOLOv5 model for greenhouse cucumber fruit recognition based
on color space features. Agriculture, 2022; 12(10): 1556.

[16]

 Zhang  T,  Wu  F  Y,  Wang  M,  Chen  Z  Y,  Li  L  Y,  Zou  X  J. Grape-bunch
identification and location of picking points on occluded fruit axis based on
YOLOv5-GAP. Horticulturae, 2023; 9(4): 498.

[17]

 Gao F F, Fu L S, Zhang X, Majeed Y, Li R, Karkee M, et al. Multi-class
fruit-on-plant  detection  for  apple  in  SNAP  system  using  Faster  R-CNN.
Computers and Electronics in Agriculture, 2020; 176: 105634.

[18]

 Li Z S, Xie W Q, Zhang L Z, Lu S, Xie L, Su H Y, et al. Toward efficient
safety helmet detection based on YoloV5 with hierarchical positive sample
selection  and  box  density  filtering.  IEEE  transactions  on  instrumentation
and measurement, 2022; 71: 1–14.

[19]

 Chen W B, Liu M C, Zhao C J, Li X X, Wang Y Q. MTD-YOLO: Multi-
task  deep  convolutional  neural  network  for  cherry  tomato  fruit  bunch
maturity  detection. Computers  and  Electronics  in  Agriculture,  2024;  216:
108533.

[20]

 Nan Y L, Zhang H C, Zeng Y, Zheng J Q, Ge Y F. Intelligent detection of
Multi-Class  pitaya  fruits  in  target  picking  row  based  on  WGB-YOLO
network. Computers and Electronics in Agriculture, 2023; 208: 107780.

[21]

 Hou Q B,  Zhou  D Q,  Feng  J  S.  Coordinate  attention  for  efficient  mobile
network design. In: 2021 IEEE/CVF Conference on Computer Vision and
Pattern  Recognition  (CVPR),  Nashville,  TN,  USA:  IEEE.  2021;  pp.
13713–13722.

[22]

 Hu  J,  Shen  L,  Albanie  S,  Sun  G,  Wu  E  H.  Squeeze-and-excitation
networks.  IEEE  Transactions  on  Pattern  Analysis  and  Machine
Intelligence, 2019; 42(8): 2011–2023.

[23]

 Woo S, Park J, Lee J-Y, Kweon I S. Cbam: Convolutional block attention
module.  In:  Ferrari  V,  Hebert  M,  Sminchisescu  C,  Weiss  Y.  editors.
Computer  Vision  - ECCV 2018.  Springer.  2018;  doi: 10.1007/978-3-030-
01234-2_1.

[24]

 Redmon J, Farhadi A. Yolov3: An incremental improvement. arxiv preprint
arxiv: 1804.02767, 2018; In press. doi: 10.48550/arXiv.1804.02767

[25]

 Wang C Y, Bochkovskiy A, Liao H Y. YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. In: 2023 IEEE/CVF
Conference  on  Computer  Vision  and  Pattern  Recognition  (CVPR),
Vancouver, BC, Canada: IEEE, 2023; pp.7464–7475.

[26]

 Zhou  X,  Wang  D,  Krähenbühl  P.  Objects  as  points.  arxiv  preprint  arxiv:
1904.07850. 2019; In press.

[27]

 Ren S  Q,  He K M,  Girshick  R,  Sun J. Faster  R-CNN:  Towards  real-time
object  detection  with  region  proposal  networks.  IEEE  Transactions  on
Pattern Analysis and Machine Intelligence, 2017; 39(6): 1137–1149.

[28]

　June, 2025 Tang Y, et al.　Citrus fruit detection based on an improved YOLOv5 under natural orchard conditions Vol. 18 No. 3 　 185　

https://doi.org/10.1109/TII.2020.3003910
https://doi.org/10.1186/s40648-019-0141-2
https://doi.org/10.1016/j.compag.2020.105895
https://doi.org/10.1016/j.comnet.2019.107036
https://doi.org/10.1016/j.compag.2021.106054
https://doi.org/10.1016/j.biosystemseng.2020.03.001
https://doi.org/10.1007/s11119-020-09709-3
https://doi.org/10.1016/j.compag.2019.01.012
https://doi.org/10.1109/ECTI-CON51831.2021.9454904
https://doi.org/10.1109/ECTI-CON51831.2021.9454904
https://doi.org/10.1109/ECTI-CON51831.2021.9454904
https://doi.org/10.1016/j.compag.2021.106052
https://doi.org/10.1016/j.compag.2019.105192
https://doi.org/10.3390/app122211318
https://doi.org/10.1007/s11119-022-09895-2
https://doi.org/10.1016/j.postharvbio.2021.111808
https://doi.org/10.3390/agriculture12101556
https://doi.org/10.3390/horticulturae9040498
https://doi.org/10.1016/j.compag.2020.105634
https://doi.org/10.1109/TIM.2022.3169564
https://doi.org/10.1109/TIM.2022.3169564
https://doi.org/10.1016/j.compag.2023.108533
https://doi.org/10.1016/j.compag.2023.107780
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031

	1 Introduction
	2 Data collection and processing
	3 The proposed method
	3.1 Res-CSPDarknet53
	3.2 BiFPN
	3.3 Coordinated attention mechanism

	4 Experimental results and analysis
	4.1 Implementation setup
	4.2 Ablation experiment
	4.3 Comparison with other algorithms

	5 Conclusions
	Acknowledgements
	References

