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Abstract: To  address  the  challenges  of  harsh  harvesting  environments,  high  labor  intensity,  and  low  picking  efficiency  in
tomato harvesting, this study investigates the key technologies related to the end-effector design, detection and recognition, and
spatial  localization  of  tomato-picking  robots.  A  non-contact  cavity-type  end-effector  is  designed,  which  effectively  prevents
tomato damage caused by compression during picking while preserving the peduncle. Additionally, the motion of the robotic
arm is  simulated for  performance analysis.  Subsequently,  tomato images are  captured and annotated for  training deep neural
network models. Both the original YOLO v8n and the improved YOLO v8n models are used for tomato image detection, with a
focus  on  the  impact  of  varying  light  intensities  and  different  tomato  maturities  on  recognition  and  localization  accuracy.
Experimental  results  demonstrate  that  the  robot’s  vision  system  achieves  optimal  recognition  and  localization  performance
under  light  intensities  ranging  from  20  000  to  30  000  lx,  with  an  accuracy  of  91.5%,  an  average  image  detection  speed  of
15.1  ms  per  image,  and  an  absolute  localization  error  of  1.55  cm.  Furthermore,  the  prototype  tomato-picking  robot’s  end-
effector successfully performed stable grasping of individual tomatoes without damaging the skin, achieving a picking success
rate of 83.3%, with an average picking time of approximately 9.5 s  per fruit.  This study provides a technical  support  for the
automated harvesting of tomato-picking robots.
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1    Introduction

Tomatoes  are  widely  appreciated  for  their  unique  flavor  and
nutritional  value,  offering  significant  economic  potential.  As  a
major  contributor  to  global  tomato  production,  China  has  become
the largest supplier of raw materials for tomato processing products,
with  an  annual  output  exceeding  one-third  of  the  global  total.  The
industry  continues  to  expand  in  scale[1,2].  To  meet  growing  market
demand,  the  proportion of  greenhouse-grown tomatoes  in  China  is
steadily  increasing,  resulting  in  rising  production  volumes[3,4].  In
tomato  cultivation,  the  picking  stage  accounts  for  40%  to  50%  of
the  labor  input[5].  However,  manual  picking  remains  the
predominant method, which poses challenges such as harsh working
environments, low picking efficiency, and high labor costs[6,7]. With
technological advancements and increasing labor shortages, picking
robots  have  been  introduced  in  agricultural  production,  improving
labor  efficiency  and  reducing  economic  losses  caused  by  delayed
picking[8-10].  However,  the  main  technological  barriers  to  the
development of picking robots lie in target recognition, localization,
and  fruit  separation.  Therefore,  the  design  and  research  of  the
tomato-picking robot provide theoretical support for the automation
of agricultural  production equipment in China’s facility agriculture

and contribute to the development of tomato-picking robots.
In  recent  years,  numerous  studies  on  tomato-picking  robots

have  been  conducted  worldwide,  but  the  picking  performance  still
requires improvement. In the early 1990s, Japan developed a tomato-
picking robot[11],  with a soft-pad end-effector design to reduce fruit
damage.  However,  the picking process required manual  assistance,
achieving  a  success  rate  of  approximately  70%.  At  Jiangsu
University,  Liu  et  al.  developed a  mobile  tomato-picking  robot[12,13]

equipped  with  a  wheeled  chassis,  a  clamping  and  cutting  end-
effector, and a stereo vision system. This robot aimed to collaborate
with  greenhouse  fruit-picking  and  transport  robots  to  achieve  full
automation,  including  tomato  picking,  on-site  grading,  collection,
transportation, and unloading. Yaguchi et al. designed a large-scale
tomato-picking robot[14] with a rotating picking gripper. The average
picking  time  per  fruit  was  about  23  s,  with  a  success  rate  of  only
60%, and the process was easily disrupted. Wang et al. developed a
tomato-picking robot with a sleeve-and-airbag-based end-effector[15],
capable  of  picking  tomatoes  within  24  s  per  fruit,  though  the
harvested  fruit  lacked  peduncles.  Zheng  et  al.  proposed  a  nested
approach to tomato picking[16], simplifying the process and reducing
damage. The improved end-effector achieved a 57.5% success rate
within 14.9 s per fruit. Rong et al. designed an integrated adsorption-
gripping  robotic  hand[17],  optimizing  picking  strategies  to
significantly  reduce  the  impact  of  collisions  on  grasping.  The
tomato  picking  success  rate  increased  to  72.1%,  with  an  average
time  of  14.6  s  per  fruit.  Fujinaga  et  al.  developed  a  suction-based
cutting device for tomato picking[18], achieving a 52.4% success rate.
However,  obstacles  surrounding  the  fruit  presented  significant
challenges.  Overall,  current  tomato-picking  robots  face  limitations
in fruit protection, picking efficiency, and methodology. During the
picking process, tomatoes are prone to mechanical damage, such as
compression  and  scratches,  particularly  for  highly  mature  or  thin-
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skinned  tomatoes.  Existing  end-effector  designs  fail  to  entirely
mitigate  these  issues.  Furthermore,  many  robots  cannot  effectively
preserve peduncles, negatively impacting the fruit’s appearance and
subsequent storage quality.

Although  tomato-picking  robots  have  not  yet  been
commercialized,  related  detection  algorithms  have  undergone
extensive research. Early fruit recognition methods primarily relied
on  digital  image  processing  and  machine  learning  techniques[19-22],
which  depended  on  manually  designed  features.  For  instance,
Benavides  et  al.  used  color  segmentation  methods  to  determine
tomato  picking  points[23],  but  the  threshold  settings  required
agricultural  expertise  and  were  inadequate  under  complex  lighting
conditions.  Traditional  fruit  detection  methods  faced  challenges
such  as  semantic  information  extraction  in  complex  backgrounds,
occlusions,  and  uneven  lighting[24-26].  Recently,  deep  learning-based
fruit  recognition  methods  have  become  mainstream[27].
Convolutional  neural  networks  can  automatically  learn  features
from training data, demonstrating superior recognition performance
in  complex  scenarios.  Among  deep  learning  models,  the  YOLO
series  has  gained  attention  for  its  high  accuracy  and  fast  detection
speed[28].  Li  et  al.[29]  proposed  a  YOLO  v4+HSV  (Hue,  Saturation,
Value)  method,  achieving  a  recognition  accuracy  of  94.77%  for
mature  tomatoes  with  a  specific  proportion  of  16% in  the  test  set.
Wang  et  al.[30]  introduced  an  improved  SM-YOLOv5  detection
algorithm,  enhancing  recognition  precision  in  greenhouse
environments  to  97.8% with  a  model  size  of  just  6.33  MB.  Cai  et
al.[31]  utilized  multimodal  RGB-D  perception  and  an  improved
YOLOv7-tiny network for cherry tomato detection, improving real-
time detection accuracy and precision over existing methods. Miao
et  al.[32] proposed a lightweight  YOLO v7 model  for  cherry tomato
maturity  detection,  achieving  precision,  recall,  and  mean  average
precision  rates  of  98.6%,  98.1%,  and  98.2%,  respectively,  with  a
model  memory  footprint  of  66.5  MB.  As  an  advanced  object
detection  model,  YOLO  v8  offers  significant  improvements  in
computational  efficiency  and  detection  accuracy,  making  it  well-
suited for tomato detection tasks.

To address the limitations of existing tomato-picking robots in
terms  of  end-effector  design,  picking  efficiency,  and  visual
detection,  this  study  presents  the  design  of  a  tomato-picking  robot

for  greenhouse  applications.  A  non-contact  end-effector  is
developed  to  reduce  direct  contact  with  tomatoes,  effectively
minimizing  damage  during  the  picking  process  while  successfully
preserving  the  fruit’s  peduncle.  Additionally,  an  improved  YOLO
v8n-based  vision  system is  proposed  for  tomato  detection,  and  the
image recognition performance of both the original YOLO v8n and
the improved YOLO v8n models under different lighting conditions
is  compared.  Finally,  a  series  of  experiments  are  conducted  to
evaluate the robot’s visual system performance in terms of detection
accuracy, localization precision, and picking efficiency. 

2    Materials and methods
 

2.1    Tomato experimental data 

2.1.1    Tomato dataset creation
To  minimize  the  impact  of  scene  variables,  an  experimental

field  measuring  1.20  m×3.00  m×0.35  m  was  established  near  the
laboratory.  An  integrated  meteorological  multi-element  sensor
(Shandong Renke Measurement and Control Technology Co., Ltd.,
Jinan,  China)  was  used  to  measure  light  intensity.  Data  collection
was conducted during the tomato ripening period from May to June,
divided  into  three  time  slots  each  day:  9:00-11:00  AM,
1:00-3:00 PM, and 5:00-7:00 PM. The light intensity during image
capture  was  classified  into  four  levels  based  on  natural  lighting
conditions:  above  30 000  lx,  20 000-30 000  lx,  1000-20 000
lx,  and  0-1000  lx.  When  the  natural  light  intensity  was  below
1000  lx,  supplementary  lighting  equipment  was  used  to  provide  a
light intensity of 15 000-20 000 lx. Images were captured from both
front-lit and backlit angles, with a fixed shooting distance of 50 cm
to  ensure  sufficient  detail  and  comprehensive  coverage.
Additionally, to further enrich the dataset, supplementary data were
collected  from  the  tomato  cultivation  area  at  the  Agricultural
Institute of Wuhan, Hubei Province.

After  excluding  invalid  samples  from  the  raw  images,  1000
images containing tomatoes at varying maturity levels were selected
as  the  initial  dataset.  Data  augmentation  techniques,  such  as
mirroring,  cropping,  rotation,  and  the  addition  of  Gaussian  noise
were  applied  to  expand  the  dataset,  as  shown  in  Figure  1.
Ultimately,  3500  valid  images  were  obtained,  with  80%  used  for
training, 10% for validation, and 10% for testing.

 
 

a. Original image b. Flipped image c. Cropped image

d. Rotated image e. Image with added Gaussian noise

Figure 1    Tomato dataset augmentation results
 
 

2.1.2    Classification of tomato maturity levels
The  target  objects  of  the  tomato-picking  robot  are  fruits  that

meet  the  conditions  for  picking,  necessitating  the  classification  of
fruit  maturity  levels.  According  to  the  “National  Standards  of  the
People’s Republic of China-Tomato”[33,34], tomatoes in the immature

and green ripening stages are categorized as raw tomatoes; those in
the  turning  stage,  early  red  ripening  stage,  and  mid-red  ripening
stage are categorized as transitional tomatoes; while those in the late
red ripening and overripe stages are categorized as mature tomatoes.
The specific growth stages of tomatoes are shown in Figure 2. The
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labelme tool was then used to annotate tomatoes in the images, and
their maturity levels were classified based on this standard.
  

a. Raw stage b. Transition stage c. Mature stage

Figure 2    Tomato growth stages
  

2.2    Tomato-picking robot structural design 

2.2.1    Prototype construction
An  experimental  platform  for  the  tomato-picking  robot  was

built.  The robot  is  equipped with two differential  motors,  powered
by electricity,  with performance capabilities that  meet  the mobility
requirements in a greenhouse environment. The chassis is designed
as  a  box  structure,  housing  the  main  control  computer  and
communication equipment, with sealed gaps to meet the operational
needs of high temperature and high humidity in the greenhouse. The
prototype  of  the  tomato-picking  robot  is  shown  in  Figure  3.  The
robot  mainly  consists  of  the  following  key  components:  1)  UR3
robotic  arm,  responsible  for  precise  operations  and  fruit  picking;
2) Vision system, used for real-time tomato detection and providing
positioning information; 3) End effector, responsible for cutting the
tomato  peduncle;  4)  Mobile  chassis  system,  ensuring  autonomous
movement of the robot within the greenhouse; 5) Main control unit,
acting  as  the  control  center  of  the  entire  system,  coordinating  the
operation of each module. 

2.2.2    End effector design
Considering  the  large  size  and  delicate,  scratch-sensitive  skin

of tomatoes, a cavity-type constraining method was selected, which
fixes  the  tomato  peduncle  for  forceful  shearing.  The  process  for

cutting the peduncle with the designed end effector is as follows:
 
 

1

2

3

4

5

Figure 3    Overall structure of the tomato-picking robot
 

1)  Utilizing  the  space  beneath  the  tomato  fruit,  the  target  is
looped from below, and the end effector halts horizontally above the
peduncle;

2)  The  end  effector  is  then  moved  horizontally,  placing  the
peduncle into the gradually narrowing cutting slot;

3)  The  motor  begins  to  rotate,  pulling  the  connecting  wire
around the coil,  and the L-shaped blade starts  rotating to sever the
peduncle in the cutting slot;

4)  After  cutting,  the  motor  reverses,  and  the  spring  retracts  to
return the blade to its original position.

The  end  effector,  as  shown  in  Figure  4,  is  designed  with  an
outer  fixed frame that  isolates leaves and non-target  fruits  to resist
interference.  The  clamping  cutting  slot  prevents  the  fruit  peduncle
from  slipping  out  of  the  cutting  position.  The  L-shaped  blade  is
embedded to prevent fruit damage during movement, and its cutting
edge is parallel to the horizontal plane of the end effector, providing
greater effective cutting force. The guide post provides a consistent
and  stable  pulling  force  in  the  same  direction  for  the  force  end  of
the  L-shaped  blade.  The  stopper  pin  ensures  that  the  opening  and
closing motion of the L-shaped blade during operation stays within
the effective return range.

 
 

Electric motor Connection base

Winding coil Wire pillar

Cylindrical pin

Fixed pin

Blade

Spring

Fixed column

Nylon connecting wire Main shaft groove

Fruit stem

Main stem

a. End effector in preparation state b. End effector in cutting state

Figure 4    The end effector
 
 

2.2.3    Robotic arm simulation motion analysis
The  picking  experiment  uses  the  UR3  robotic  arm  (Universal

Robots  A/S,  Odense,  Denmark),  which  is  widely  used  and
manufactured  by  Universal  Robots.  The  robotic  arm  features  six
degrees  of  freedom,  with  a  flexible  and  stable  design  that  can
sensitively  detect  changes  in  motor  torque.  In  the  event  of  a
collision  or  obstruction,  the  arm  automatically  triggers  a  self-
locking  mechanism,  halting  movement  promptly  to  ensure  the
safety of the robot, greenhouse facilities, and operators. The robotic
arm weighs  only  11.2  kg  and  can  carry  an  effective  load  of  up  to
3 kg, with motion precision down to the millimeter level, making it
well-suited  for  the  precise  movements  required  in  tomato
harvesting. The detailed performance parameters of the robotic arm
are listed in Table 1.

To validate the motion behavior of the end-effector of the UR3
robotic arm within its workspace and evaluate whether it meets the

operational  requirements,  this  study  employs  MATLAB  for
simulation  analysis.  By  conducting  a  workspace  analysis  of  the
robotic arm fixed at a certain point in the spatial coordinate system,
as  shown in Figure  5,  it  is  determined  that  the  UR3 robotic  arm’s
 

Table 1    Performance parameters of the UR3 robotic arm
Serial
number Item Parameter

1 Effective payload 3 kg

2 Working range Spherical space with a 500 mm radius

3 Joint range +/–360°

4 Speed Wrist joint: 180°/s; TCP: 1 m/s

5 Repeatability +/–0.03 mm with effective payload

6 I/O power Control box: 24 V 2 A; Tool side: 12 V/24 V, 600
mA short-term 2 A

7 Communication Control frequency: 500 Hz; ModbusTCP: signal
frequency 500 Hz
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workspace  is  distributed  in  a  spherical  shape  with  a  radius  of  500
mm.  The  density  of  points  within  the  workspace  reflects  the
probability  that  the  arm’s  end-effector  can  reach  those  points.  The

region  closer  to  the  robotic  arm’s  body  has  a  higher  density  of
points,  indicating  that  the  arm’s  mobility  is  more  flexible  in  this
area, with more potential solutions for movement paths.
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Figure 5    Workspace of the UR3 robotic arm
 

Two  points  (–100,–100,–100)  and  (260,360,160)  within  the
workspace  were  selected  for  motion  planning  research.  Five-point
function  interpolation  was  performed  for  joint  space  motion
planning, and then Cartesian space motion planning was carried out
using  the  ‘ctraj’,  ‘jtraj’,  and  ‘trinterp’  functions.  The  two  motion
trajectories are shown in Figure 6. Analysis of the trajectories shows
that motion planning in joint space involves identical steps for each
joint,  indicating  synchronized  driving.  This  means  that  each  joint
consumes the same amount of time in its respective path to ensure
smooth motion. However, this planning method makes it difficult to
effectively  control  the  position  of  the  end  effector  in  real  time,
resulting  in  a  large  sweeping  motion  that  does  not  meet  the
application  requirements  of  tomato-picking  robots  in  greenhouse
facilities. The analysis results of the end effector’s motion state are
visualized.  In  contrast,  using  Cartesian  space  motion  planning
ensures  the  constraint  of  the  end  effector’s  position  change.  The
analysis of its spatial position over time is shown in Figure 7.

Based on the generated graphs, the UR3 robotic arm performs
trapezoidal  interpolation  for  speed  in  the  Cartesian  coordinate
system, ensuring that  the position of the end effector changes over
time.  The  motion  trajectory  in  three-dimensional  space  forms  a

straight line, and the speed curve exhibits a trapezoidal shape, with
smooth  transitions  at  the  corners,  indicating  a  steady  change
between acceleration, constant speed, and deceleration states. After
startup, the angular change curves of certain joints show noticeable
inflection  points,  likely  occurring  near  singularities  in  the  motion
trajectory.  However,  overall,  the  analysis  indicates  that  the  motion
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path after the end effector is mounted meets the required operational
path. 

2.3    Tomato fruit detection and localization 

2.3.1    Detection
YOLO  v8,  as  a  one-stage  object  detection  algorithm,  offers

advantages in both speed and accuracy. It can learn the color, shape,
and  texture  features  of  objects  by  combining  feature  maps  of
different  scales,  which  helps  achieve  high  precision  in  close-range
object  detection  tasks.  Considering  the  intelligent  recognition
application  on  agricultural  machinery,  emphasis  is  placed  on  the
real-time  detection  capability  and  the  lightweight  nature  of  the
model. Therefore, the YOLO v8n network model is chosen. YOLO
v8n  is  the  smallest  model  in  the  YOLO  v8  series,  featuring  a
smaller  network  depth  and  feature  map  size.  It  achieves  faster
detection  speed  while  maintaining  detection  accuracy,  with  lower
model  memory  consumption,  making  it  suitable  for  lightweight,
high-precision, and real-time tomato fruit detection. The YOLO v8n
model  consists  of  four  main  parts:  Input,  Backbone,  Neck,  and
Head.  The  Input  part  is  responsible  for  receiving  raw  image  data
and preprocessing it to provide suitable input for subsequent feature
extraction  and  object  detection.  The  Backbone  part  extracts  multi-
level  semantic  features  from  the  input  image  using  convolutional
layers  and  other  feature  extraction  modules.  The  Neck  part  uses  a
feature  fusion  module  to  effectively  combine  feature  maps  from
different  scales,  enabling  more  precise  localization  and
identification  of  objects  at  multiple  scales.  The  Head  part  is
primarily  responsible  for  classifying  the  objects  and  predicting  the
bounding box coordinates of the objects.

To ensure the performance of the original YOLO v8n model in
object  detection  while  reducing  network  model  parameters  and
improving  the  detection  accuracy  for  tomato  fruits,  this  study
introduces  the  following  improvements  to  the  original  YOLO v8n
model.  The  entire  Backbone  network  in  the  original  model  is
replaced  with  the  ShuffleNetV2  structure,  which  reduces  the
number of parameters during network deployment and training, thus
achieving  a  lightweight  network  design.  Additionally,  the  CBAM
(Convolutional  Block  Attention  Module)  attention  mechanism  is
introduced into the Neck network detection head to reduce network
complexity  while  ensuring  the  accuracy  of  tomato  fruit  detection.
The improved YOLO v8n network structure is shown in Figure 8.
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Figure 8    The improved YOLO v8n network architecture 

2.3.2    Localization
Based on the camera imaging model, stereo vision involves the

pixel  coordinate  system,  image  coordinate  system,  camera
coordinate  system,  and  world  coordinate  system,  as  shown  in
Figure  9. Ow-XwYwZw  describes  the  position  of  the  camera  in  the
world  coordinate  system;  Oc-XcYcZc  represents  the  coordinate
system of the Realsense D435 camera installation,  with the optical
center  as  the  origin; O-XY  refers  to  the  tomato  image  coordinate
system, with the optical  center at  the center of the image; Oo-uv  is
the pixel coordinate system, with the origin at the top-left corner; Pw

is a point on the tomato, with its coordinates in the image coordinate
system denoted as Pd. The focal length of the camera is the distance
between O and Oc, f=‖O-Oc‖.of the camera is the distance between O
and Oc, f=‖O-Oc‖.
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Figure 9    Camera model coordinate system transformation model
 

Through the transformation model relationship in Figure 9, the
position  of  the  tomato  fruit  in  the  world  coordinate  system  is
converted to the pixel point position in the pixel coordinate system,
as shown in Formula 1.
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òIn  the  formula,   denotes  the  camera

intrinsic parameters, while  denotes the camera extrinsic

parameters.
The  above  model  can  only  describe  the  ideal  geometric

relationship.  However,  in  practical  applications,  there  are  often
assembly  errors  during  the  installation  and  production  of  the
camera,  which  lead  to  optical  distortion  and  image  distortion.  To
address this issue, it is necessary to calibrate and correct the camera
to  eliminate  the  distortion  and  recompute  accurate  spatial
coordinates. In the calibration process, the Realsense D435 camera
is  used,  which  provides  two  calibration  methods:  rectification
calibration  and  depth  scale  calibration.  The  depth  scale  calibration
method  is  equipped  with  a  graphical  user  interface  (GUI)  that
simplifies  the  calibration  process  and  enhances  operational
convenience. During the calibration process, the calibration board is
kept at an appropriate distance from the camera to ensure the board
is  fully  displayed  within  the  camera’s  field  of  view.  When  the
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camera  in  calibration  mode  detects  the  calibration  board,  it  will
display  corresponding  guidance  prompts  through  the  GUI.  The
board  is  then  moved  until  the  blue  area  in  the  camera  image
disappears.  At  this  point,  the  camera  automatically  performs  the
scale calibration, and the RGB image is also recalibrated, as shown
in  Figure  10.  If  both  calibration  steps  are  successfully  completed,
the  system  will  prompt  to  exit  the  guidance  process.  If  the
calibration  fails,  the  system will  re-enter  the  guidance  prompts  for
adjustments.  If  the  expected  accuracy  is  not  achieved,  the
calibration process will be repeated.

The  camera’s  intrinsic  and  extrinsic  parameters  were  obtained
through  calibration  and  then  used  in  the  calculation  as  shown  in
Formula 1. The extrinsic parameter matrix of the camera is:

0.999 794 492 5 −0.020 103 978 6 0.002 608 214 238 −0.033 137 568 29
0.020 096 246 71 0.999 793 675 6 0.002 957 532 592 −0.095 621 702 14
−0.002 667 134 272 −0.002 904 509 48 0.999 992 225 1 0.046 786 798 83

0 0 0 1

。
 

3    Results and discussion
 

3.1    Tomato fruit detection performance
The experimental setup for tomato target detection in this study

is as follows: the operating system is Ubuntu 16.04, and the neural
network training is conducted in the Anaconda3 virtual environment
using  Python  3.9.  For  hardware  acceleration,  the  GPU  parallel
computing  architecture  utilizes  CUDA  11.7,  and  the  deep  neural
network  acceleration  library  is  cuDNN  11.2.  During  network
training, the image resolution is set to 640×640, the initial learning
rate is set to 0.01, the batch size is 16, the momentum is 0.937, the
weight  decay is  0.0005,  and the number of  training epochs is  200.
The optimizer used is Stochastic Gradient Descent (SGD). Some of
the  detection  results  are  shown  in  Figure  11.  Overall,  the  model
demonstrates  good  adaptability  to  different  scenarios,  with  high
accuracy in target detection.
 
 

a. Single fruit b. Multiple fruits

c. Sufficient lighting d. Under supplementary lighting

Figure 11    Tomato fruit detection cases
 

To  evaluate  the  impact  of  different  lighting  conditions  on
tomato  detection  performance,  both  the  improved  YOLO  v8n
network  and  the  original  YOLO  v8n  network  were  used  to  test
tomato images under five different lighting conditions in the test set.
The  results  showed  that  the  average  recognition  accuracy  for  the
four  natural  light  intensity  images  using  the  improved  YOLO v8n
network  was  84.3%,  88.3%,  85%,  and  81.6%,  with  an  average
recognition  accuracy  of  84.3%  under  supplementary  lighting
conditions, and a detection speed of 15.1 ms per image. In contrast,
the  original  YOLO  v8n  network  achieved  an  average  recognition

accuracy  of  82.3%,  85.3%,  83%,  and  80.6%,  with  an  average
recognition  accuracy  of  83.3%  under  supplementary  lighting
conditions,  and  a  detection  speed  of  18.3  ms  per  image.  The
detection results  were recorded and averaged,  and the statistics are
shown  in  Table  2.  The  experimental  results  indicate  that  the
improved  YOLO  v8n  network  performed  best  in  tomato  image
recognition under lighting conditions of 20 000-30 000 lx, showing
stronger  robustness,  and  the  improved  YOLO  v8n  network  also
exhibited faster detection speed.
 
 

Table 2    Detection results of the two detection models under
different light intensities

Light intensity level Recognition targets Proposed model/% YOLO v8n /%

30 000-
Raw 84 83

Transition 82 79
Mature 87 85

20 000-30 000
Raw 88 85

Transition 85 82
Mature 92 89

1000-20 000
Raw 85 83

Transition 84 81
Mature 86 85

0-1000
Raw 81 80

Transition 80 78
Mature 84 84

Supplementary lighting
equipment

Raw 83 83
Transition 84 82
Mature 86 85

Detection speed (ms/pic) - 15.1 18.3
 

In  order  to  further  verify  the  effectiveness  of  the  proposed
method  in  tomato  detection,  the  improved  YOLO  v8n  model  is
compared with YOLO v3-tiny, YOLO v5n, YOLO v6n, YOLO v7-
tiny,  and  YOLO  v8n  lightweight  object  detection  models.  The
performance  of  each  model  is  evaluated  using  comprehensive
metrics,  including  Precision  (P),  Recall  (R),  Mean  Average
Precision (mAP), Floating Point Operations (FLOPs), the number of
parameters (Param), and model memory usage. The validation set is
used  for  testing.  Precision  reflects  the  accuracy  of  the  model’s
predictions,  i.e.,  the  proportion  of  true  positive  samples  among  all
predicted  positive  samples.  Recall  reflects  the  completeness  of  the
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Figure 10    Camera calibration through calibration board
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model’s  predictions,  i.e.,  the  proportion  of  true  positive  samples
correctly predicted by the model. Mean Average Precision considers
both precision and recall  and provides a  comprehensive evaluation
of  the  detection  algorithm’s  performance.  FLOPs  reflect  the
model’s  computational  complexity,  indicating  the  number  of
floating  point  operations  required  per  second.  The  number  of
parameters  is  a  measure  of  the  model  size,  with  fewer  parameters
typically indicating a smaller  model and lower computational  cost.
Model  memory  usage  reflects  the  memory  requirements  of  the
model  during  deployment,  with  lower  memory  usage  facilitating
efficient operation on resource-constrained devices.

The  experimental  results  of  different  networks  are  listed  in
Table 3. Compared with other algorithms, the improved YOLO v8n
model  exhibits  reductions  in  computational  cost  and  parameter
count to varying degrees, while demonstrating superior performance
in terms of P, R, and mAP@0.5, reaching 94.1%, 89%, and 94.8%,
respectively.  Compared  to  the  original  YOLO  v8n,  the  improved
YOLO  v8n  model  achieves  a  34.3%  reduction  in  model  size  by
introducing  lightweight  convolutional  modules,  thus  improving
computational  efficiency.  Overall,  the  experimental  results  show
that the improved YOLO v8n algorithm performs excellently and is
particularly  suitable  for  real-time  tomato  detection.  This  algorithm
not  only  achieves  higher  detection  efficiency,  but  also  features  a
smaller model size, lower computational cost,  and higher detection
accuracy,  making  it  highly  suitable  for  deployment  on  terminal
devices.
 
 

Table 3    Test results of different models

Model name P/% R/% mAP@50/% GFLOPs Param/
M

Model
size/MB

Yolo v3-tiny 89.6 88.6 93.4 18.9 12.12 23.20
Yolo v5n 93.1 86.7 94.5 7.2 2.50 5.02
Yolo v6n 91.3 89.4 94.5 11.8 4.23 8.28

Yolo v7-tiny 91.1 85.3 92.8 13.2 6.02 11.60
Yolo v8n 93.7 88.2 93.6 8.2 3.01 5.94

Proposed model 94.1 89.0 94.8 5.2 1.93 3.90
  

3.2    Localization performance
Based on the prediction boxes detected by the improved YOLO

v8n  model  and  the  data  from  the  D435  depth  camera,  the  pixel
values  corresponding  to  the  depth  distances  are  extracted  and
converted  into  Cartesian  coordinates.  The  specific  steps  are  as
follows:

cxi cyi wi hi cxi cyi

wi hi

1)  Using  the  trained  deep  learning  object  detection  model,
image  features  are  extracted  from  the  RGB  image  to  detect  the
positions  of  the  tomatoes  in  the  image.  The  boundary  box  of  the
tomato  targets  in  the  image  is  calculated  to  obtain  the  coordinates
( , , , ), where   and   are the X and Y coordinates of the
boundary box center, and   and   are the width and height of the
boundary box, respectively.

2)  Perform color  filtering on the detected tomatoes to  confirm
the  mature  fruits  that  need  to  be  picked  and  record  the  center
coordinates of the selected fruits.

3) Based on the center pixel coordinates of the boundary box of
the target tomato fruit, extract the corresponding spatial point depth
value from the depth data, as shown in Formula 2:

depth = scale×Depth× [cxi]× [cyi] (2)

The scale represents the correction factor for the scale.
cxi cyiThe center pixel points ( , )  and depth are substituted into

Formula  2  to  calculate  the  spatial  coordinates  of  the  tomato  fruit

cx′i cy′i cz′i( , , )  in  the  world  coordinate  system.  After  integrating  the
positioning algorithm into the ROS system, field tests are conducted
under  different  lighting  levels.  The  test  process  and  results  are
shown in Figure 12. The distance between the tomato and the depth
camera is fixed at 50 cm as the reference value for the experiment.
Based  on  the  principle  of  stereo  vision  ranging,  the  distance  from
the tomato to the depth camera is obtained by calculation. Each set
of lighting conditions is repeated 10 times, and the average value of
the measurement results is taken as the final data. At the same time,
the  measurement  results  are  compared  with  the  actual  distance
measured  manually,  and  key  indicators  such  as  absolute  error  and
relative  error  are  calculated  to  evaluate  the  distance  measurement
performance  of  the  algorithm  under  different  lighting  conditions.
The experimental results are listed in Table 4.
  

Figure 12    Distance detection results integrated into ROS
  

Table 4    Comparison between localization experimental data
and real data

Light intensity level Tomato-to- camera
actual distance/cm

Measured
average value/cm

Absolute
error/cm

Relative
error/%

≥30 000 50 52.10 2.10 4.2
20 000-30 000 50 51.55 1.55 3.1
1000-20 000 50 51.70 1.70 3.4
0-1000 50 48.65 1.65 3.3

Supplementary lighting
equipment 50 48.05 1.95 3.9

 

The  data  in  the  table  indicate  that  different  light  intensities
interfere  with  depth  distance  measurements.  The  measurement
accuracy  is  optimal  when  the  light  intensity  is  between  20  000-
30  000  lx,  as  the  lighting  is  sufficient  but  not  overly  strong,
providing the best performance of the depth camera. When the light
intensity exceeds 30 000 lx,  issues such as overexposure cause the
absolute  error  to  increase  to  2.1  cm.  When  the  light  intensity  is
between  1000-20  000  lx,  the  measurement  accuracy  is  slightly
lower  than  under  optimal  lighting  conditions.  In  low-light
conditions  (0-1000  lx),  although  the  error  is  relatively  small,  the
performance  of  the  depth  camera  is  limited.  With  supplemental
lighting,  the  performance  improves  compared  to  natural  light
conditions. 

3.3    Picking performance
Field  picking  experiments  were  conducted  in  a  trellis-based

cultivation experimental field where the tomato plants were in good
condition, and obstacles around the experimental area were cleared.
The  experiment  took  place  on  a  sunny  day  with  an  average
temperature of 24°C and no wind, as shown in Figure 13. Real-time
monitoring  of  the  light  intensity  in  the  experimental  field  was
conducted  using  sensors  to  ensure  the  light  intensity  was  between
20 000-30 000 lx.  The tomato detection results  in the experimental
field  are  shown  in  Figure  10,  where  the  YOLO  model  detected
mature  tomatoes  with  confidence  levels  of  89%  and  49%,  with
distances  of  32.7  cm  and  37.3  cm,  respectively.  Additionally,  the
number of tomatoes observed by the tomato- picking robot’s vision
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system  and  the  number  of  tomatoes  detected  and  identified  are
summarized in Table 5.
 
 

Figure 13    Tomato-picking robot testing
 
 

Table 5    Statistics of detected and identified fruit count

Tomato
type

Number of
observable
tomatoes

Number of
tomato

detections

Number of
false

detections

Number of
missed

detections
Mature 72 68 0 4

Transitional 36 29 2 5
Raw 45 41 1 3
Total 153 138 3 12

 

The data in Table 5 show that the tomato recognition accuracy
reaches  91.5%.  Among  them,  mature  tomatoes  have  the  best
recognition accuracy. However, there are two misclassifications for
the  transitional  tomatoes;  specifically,  raw  tomatoes  were
misclassified  as  transitional  tomatoes.  This  occurred  because  the
color and texture features of the transitional tomatoes are similar to
those  of  the  raw  tomatoes,  leading  to  some  confusion  during  the
recognition  process.  One  misclassification  occurred  for  raw
tomatoes, mainly due to the misidentification of green leaves as raw
tomatoes. This was due to the similarity in color and shape features
between the leaves and raw tomatoes, and the complex background
increased  the  difficulty  of  detection.  Tomatoes  that  were  partially
occluded by leaves were still detected, but the confidence decreased
significantly  as  the  area  of  occlusion  increased.  Tomatoes  with  a
larger  area  of  occlusion  and  a  more  complex  position  not  only
introduced high measurement deviations in distance values, but also
hindered  the  subsequent  picking  process  of  the  robot.  Therefore,
setting  the  picking  target  as  tomato  with  a  confidence  above  0.7
helps  to  plan  better  motion  trajectories,  reduce  leaf  interference,
thus  decreasing  the  robot’s  operating  time  while  improving  the
picking success rate.

In  the  field  picking  tests,  the  robot’s  motion  mode  was  set  to
trajectory  planning  mode.  During  the  testing  period,  72  mature
tomatoes  were  picked  across  five  experimental  trials.  The
experimental  results  are listed in Table 6,  where 60 tomatoes were
successfully  picked,  resulting  in  a  success  rate  of  83.3%.  The
average  picking  time  per  tomato  was  9.5  s,  and  the  robotic  arm
operated  smoothly  throughout  the  picking  process.  The  harvested
fruits exhibited no damage and retained their peduncle, as shown in
Figure 14, without causing any harm to the planting environment. In
failed  attempts,  6.9%  of  the  failures  were  due  to  the  end  effector
being blocked by the tomato and unable to reach the target position,
and  9.7% of  the  failures  were  due  to  the  tomato’s  peduncle  being
hidden, leading to fruit damage during peduncle cutting. During the
experiment,  the  robot’s  arm  speed  was  limited  to  ensure  smooth
operation.  The  results  validated  the  feasibility  of  the  designed  end
effector  during  picking,  reducing  the  mechanical  contact  pressure

on  the  tomato  skin  and  increasing  the  tolerance  for  positioning
when  cutting  the  peduncle,  thus  improving  the  tomato  picking
efficiency.
 
 

Table 6    Picking test records

Group
number

Average
diameter/
mm

Number
of picks
required

Number
of targets
reached

Number of
peduncles
retained

Number of
picking
successes

Average
time/s

First 63 13 12 12 11 8.3
Second 77 18 16 15 14 10.7
Third 72 15 15 14 13 9.5
Fourth 89 14 14 13 12 10.6
Fifth 85 12 10 10 10 8.6
Total 77.2 72 67 65 60 9.5

 
 

Figure 14    Tomato sample with intact peduncle
 

Table 7 presents a performance comparison of different picking
methods,  evaluated  primarily  based  on  two  indicators:  picking
success  rate  and  picking  time.  Overall,  the  rotational  picking
method[14]  and  nested  method[16]  exhibited  lower  success  rates  and
longer  picking  times,  showing  certain  limitations.  The  airbag
clamping  method[15]  and  suction  clamping  method[17]  improved
success rates but still had relatively long picking times. In contrast,
the  method  proposed  in  this  study  demonstrates  superior
performance in both success rate and efficiency, with a success rate
of  83.3%  and  an  average  picking  time  of  9.5  seconds,  showing
higher  efficiency  and  stability,  making  it  suitable  for  greenhouse
tomato picking tasks.
 
 

Table 7    Performance comparison of picking methods
Picking method Picking success rate/% Picking time/s
Rotational picking 60.0 23.0
Airbag clamping 83.9 24.0
Nested picking 57.5 14.9
Suction clamping 72.1 14.6

The method proposed in this study 83.3 9.5
  

4    Conclusion
This  study  designs  a  six-degree-of-freedom  tomato-picking

robot  for  greenhouse  cultivation  environments,  achieving
autonomous picking operations. To prevent the tomatoes from being
damaged  by  compression  during  the  picking  process  and  to  retain
the  fruit  peduncle,  a  non-contact  cavity-type  end  effector  is
designed,  and  the  robotic  arm’s  motion  is  simulated.  Additionally,
an improved YOLO v8n tomato detection model is proposed, and a
comparative  analysis  is  conducted  between  the  improved  and  the
original YOLO v8n models under five different lighting conditions.
Finally,  field  experiments  are  carried  out  to  validate  the
effectiveness  of  the  robot  prototype  in  tomato  picking.  The  main
conclusions of this study are as follows:
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1)  The  improved  YOLO  v8n  model  demonstrated  excellent
performance,  achieving precision,  recall,  and mAP@0.5 metrics of
94.1%, 89%, and 94.8%, respectively. By introducing a lightweight
convolution  module,  the  model  size  was  reduced  by  34.3%,
enhancing  computational  efficiency.  Furthermore,  under  five
different  lighting  conditions,  the  improved  YOLO  v8n  model
outperformed  the  original  YOLO  v8n  model  in  both  average
recognition accuracy and detection speed, with the best recognition
performance  under  lighting  conditions  of  20  000-30  000  lx,
exhibiting strong robustness.

2)  Tomato  localization  tests  indicate  that  different  lighting
intensities can interfere with depth distance measurements. The best
measurement accuracy occurs under lighting conditions of 20 000-
30  000  lx,  where  the  light  is  sufficient  but  not  overly  strong,
optimizing  the  performance  of  the  depth  camera.  The  test  results
show  that  the  absolute  error  between  the  stereo  depth  camera  and
the  manually  measured  target  tomato  is  1.55  cm,  with  a  relative
error of 3.1%.

3) Performance testing for tomato picking was conducted in the
field.  The  robot  first  identifies  and  locates  the  target  tomato  using
the stereo depth camera, then moves the robotic arm to the picking
point,  and finally controls the end effector to complete the picking
task.  Experimental  results  show  that  the  tomato-picking  robot
achieved a success rate  of  83.3%, with an average picking time of
9.5 seconds per tomato, outperforming the 80% success rate of most
commercially  available  picking  robots.  To  further  enhance  the
performance  of  the  robot,  future  work  will  consider  the  spatial
distribution  of  tomato  peduncles  and  their  spatial  posture  to  assist
the end effector in intelligent obstacle avoidance, thereby improving
overall  picking efficiency.  Additionally,  by incorporating real-time
feedback  from the  visual  system,  the  robot  can  intelligently  adjust
its path based on environmental changes, minimizing collisions and
improving  picking  success  rates  and  accuracy.  These  technologies
will  enhance  the  robot’s  adaptability  and  performance  in  complex
environments. 
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