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Key technologies of tomato-picking robots based on machine vision
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Abstract: To address the challenges of harsh harvesting environments, high labor intensity, and low picking efficiency in
tomato harvesting, this study investigates the key technologies related to the end-effector design, detection and recognition, and
spatial localization of tomato-picking robots. A non-contact cavity-type end-effector is designed, which effectively prevents
tomato damage caused by compression during picking while preserving the peduncle. Additionally, the motion of the robotic
arm is simulated for performance analysis. Subsequently, tomato images are captured and annotated for training deep neural
network models. Both the original YOLO v8n and the improved YOLO v8n models are used for tomato image detection, with a
focus on the impact of varying light intensities and different tomato maturities on recognition and localization accuracy.
Experimental results demonstrate that the robot’s vision system achieves optimal recognition and localization performance
under light intensities ranging from 20 000 to 30 000 Ix, with an accuracy of 91.5%, an average image detection speed of
15.1 ms per image, and an absolute localization error of 1.55 c¢cm. Furthermore, the prototype tomato-picking robot’s end-
effector successfully performed stable grasping of individual tomatoes without damaging the skin, achieving a picking success
rate of 83.3%, with an average picking time of approximately 9.5 s per fruit. This study provides a technical support for the
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automated harvesting of tomato-picking robots.
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1 Introduction

Tomatoes are widely appreciated for their unique flavor and
nutritional value, offering significant economic potential. As a
major contributor to global tomato production, China has become
the largest supplier of raw materials for tomato processing products,
with an annual output exceeding one-third of the global total. The
industry continues to expand in scale!”. To meet growing market
demand, the proportion of greenhouse-grown tomatoes in China is
steadily increasing, resulting in rising production volumes®™*. In
tomato cultivation, the picking stage accounts for 40% to 50% of
the labor input®. However, manual picking remains the
predominant method, which poses challenges such as harsh working
environments, low picking efficiency, and high labor costs'*”. With
technological advancements and increasing labor shortages, picking
robots have been introduced in agricultural production, improving
labor efficiency and reducing economic losses caused by delayed
picking®".  However, the main technological barriers to the
development of picking robots lie in target recognition, localization,
and fruit separation. Therefore, the design and research of the
tomato-picking robot provide theoretical support for the automation
of agricultural production equipment in China’s facility agriculture

Received date: 2024-03-24  Accepted date: 2025-03-01

Biographies: Zirui Yin, Graduate students, research interest: machine vision,
Email: 2177105922@qq.com; Zhijiang Zuo, Professor, research interest:
machine vision, Email: zzjdfcy@163.com; Zhaoxin Guan, Graduate students,
research interest: visual control, route planning, Email: 929691569@qq.com.
*Corresponding author: Han Li, Lecturer, research interest: visual sevoing
control. College of Intelligent Manufacturing, Jianghan University, P.O. Box 47,
Jianghan University, No. 8, Sanjiaohu Rd., Wuhan Economic & Technological
Development Zone, Hubei, 430056, China. Tel: +86-27-84226912, Email:
gracelihan@jhun.edu.cn.

and contribute to the development of tomato-picking robots.

In recent years, numerous studies on tomato-picking robots
have been conducted worldwide, but the picking performance still
requires improvement. In the early 1990s, Japan developed a tomato-
picking robot!"!, with a soft-pad end-effector design to reduce fruit
damage. However, the picking process required manual assistance,
achieving a success rate of approximately 70%. At Jiangsu
University, Liu et al. developed a mobile tomato-picking robot!'>"!
equipped with a wheeled chassis, a clamping and cutting end-
effector, and a stereo vision system. This robot aimed to collaborate
with greenhouse fruit-picking and transport robots to achieve full
automation, including tomato picking, on-site grading, collection,
transportation, and unloading. Yaguchi et al. designed a large-scale
tomato-picking robot"* with a rotating picking gripper. The average
picking time per fruit was about 23 s, with a success rate of only
60%, and the process was easily disrupted. Wang et al. developed a
tomato-picking robot with a sleeve-and-airbag-based end-effector!',
capable of picking tomatoes within 24 s per fruit, though the
harvested fruit lacked peduncles. Zheng et al. proposed a nested
approach to tomato picking!®, simplifying the process and reducing
damage. The improved end-effector achieved a 57.5% success rate
within 14.9 s per fruit. Rong et al. designed an integrated adsorption-
gripping hand"”, optimizing picking strategies to
significantly reduce the impact of collisions on grasping. The

robotic

tomato picking success rate increased to 72.1%, with an average
time of 14.6 s per fruit. Fujinaga et al. developed a suction-based
cutting device for tomato picking®, achieving a 52.4% success rate.
However, obstacles surrounding the fruit presented significant
challenges. Overall, current tomato-picking robots face limitations
in fruit protection, picking efficiency, and methodology. During the
picking process, tomatoes are prone to mechanical damage, such as
compression and scratches, particularly for highly mature or thin-
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skinned tomatoes. Existing end-effector designs fail to entirely
mitigate these issues. Furthermore, many robots cannot effectively
preserve peduncles, negatively impacting the fruit’s appearance and
subsequent storage quality.

Although tomato-picking have not yet
commercialized, related detection algorithms have undergone

robots been
extensive research. Early fruit recognition methods primarily relied
on digital image processing and machine learning techniques!**,
which depended on manually designed features. For instance,
Benavides et al. used color segmentation methods to determine
tomato picking points®), but the threshold settings required
agricultural expertise and were inadequate under complex lighting
conditions. Traditional fruit detection methods faced challenges
such as semantic information extraction in complex backgrounds,
occlusions, and uneven lighting®***. Recently, deep learning-based
fruit  recognition become  mainstream®”.
Convolutional neural networks can automatically learn features

methods  have
from training data, demonstrating superior recognition performance
in complex scenarios. Among deep learning models, the YOLO
series has gained attention for its high accuracy and fast detection
speed®. Li et al.” proposed a YOLO v4+HSV (Hue, Saturation,
Value) method, achieving a recognition accuracy of 94.77% for
mature tomatoes with a specific proportion of 16% in the test set.
Wang et al.®” introduced an improved SM-YOLOvVS detection
algorithm, enhancing recognition precision in greenhouse
environments to 97.8% with a model size of just 6.33 MB. Cai et
al.t" utilized multimodal RGB-D perception and an improved
YOLOvV7-tiny network for cherry tomato detection, improving real-
time detection accuracy and precision over existing methods. Miao
et al.”” proposed a lightweight YOLO v7 model for cherry tomato
maturity detection, achieving precision, recall, and mean average
precision rates of 98.6%, 98.1%, and 98.2%, respectively, with a
model memory footprint of 66.5 MB. As an advanced object
detection model, YOLO v8 offers significant improvements in
computational efficiency and detection accuracy, making it well-
suited for tomato detection tasks.

To address the limitations of existing tomato-picking robots in
terms of end-effector design, picking efficiency, and visual
detection, this study presents the design of a tomato-picking robot

d. Rotated image
Figure 1

2.1.2 Classification of tomato maturity levels

The target objects of the tomato-picking robot are fruits that
meet the conditions for picking, necessitating the classification of
fruit maturity levels. According to the “National Standards of the
People’s Republic of China-Tomato”*, tomatoes in the immature

for greenhouse applications. A non-contact end-effector is
developed to reduce direct contact with tomatoes, effectively
minimizing damage during the picking process while successfully
preserving the fruit’s peduncle. Additionally, an improved YOLO
v8n-based vision system is proposed for tomato detection, and the
image recognition performance of both the original YOLO v8n and
the improved YOLO v8n models under different lighting conditions
is compared. Finally, a series of experiments are conducted to
evaluate the robot’s visual system performance in terms of detection
accuracy, localization precision, and picking efficiency.

2 Materials and methods

2.1 Tomato experimental data
2.1.1 Tomato dataset creation

To minimize the impact of scene variables, an experimental
field measuring 1.20 mx3.00 mx0.35 m was established near the
laboratory. An integrated meteorological multi-element sensor
(Shandong Renke Measurement and Control Technology Co., Ltd.,
Jinan, China) was used to measure light intensity. Data collection
was conducted during the tomato ripening period from May to June,
divided into three time slots each day: 9:00-11:00 AM,
1:00-3:00 PM, and 5:00-7:00 PM. The light intensity during image
capture was classified into four levels based on natural lighting
conditions: above 30000 Ix, 20 000-30 000 Ix, 1000-20 000
Ix, and 0-1000 1x. When the natural light intensity was below
1000 1x, supplementary lighting equipment was used to provide a
light intensity of 15 000-20 000 I1x. Images were captured from both
front-lit and backlit angles, with a fixed shooting distance of 50 cm
sufficient detail and comprehensive coverage.
Additionally, to further enrich the dataset, supplementary data were
collected from the tomato cultivation area at the Agricultural
Institute of Wuhan, Hubei Province.

After excluding invalid samples from the raw images, 1000

to ensure

images containing tomatoes at varying maturity levels were selected
as the initial dataset. Data augmentation techniques, such as
mirroring, cropping, rotation, and the addition of Gaussian noise

were applied to expand the dataset, as shown in Figure 1.
Ultimately, 3500 valid images were obtained, with 80% used for
training, 10% for validation, and 10% for testing.

e. Image with added Gaussian noise

Tomato dataset augmentation results

and green ripening stages are categorized as raw tomatoes; those in
the turning stage, early red ripening stage, and mid-red ripening
stage are categorized as transitional tomatoes; while those in the late
red ripening and overripe stages are categorized as mature tomatoes.
The specific growth stages of tomatoes are shown in Figure 2. The
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labelme tool was then used to annotate tomatoes in the images, and
their maturity levels were classified based on this standard.

b. Transition stage

a. Raw stage c. Mature stage

Figure 2 Tomato growth stages

2.2 Tomato-picking robot structural design
2.2.1 Prototype construction

An experimental platform for the tomato-picking robot was
built. The robot is equipped with two differential motors, powered
by electricity, with performance capabilities that meet the mobility
requirements in a greenhouse environment. The chassis is designed
as a box structure, housing the main control computer and
communication equipment, with sealed gaps to meet the operational
needs of high temperature and high humidity in the greenhouse. The
prototype of the tomato-picking robot is shown in Figure 3. The
robot mainly consists of the following key components: 1) UR3
robotic arm, responsible for precise operations and fruit picking;
2) Vision system, used for real-time tomato detection and providing
positioning information; 3) End effector, responsible for cutting the
tomato peduncle; 4) Mobile chassis system, ensuring autonomous
movement of the robot within the greenhouse; 5) Main control unit,
acting as the control center of the entire system, coordinating the
operation of each module.
2.2.2 End effector design

Considering the large size and delicate, scratch-sensitive skin
of tomatoes, a cavity-type constraining method was selected, which
fixes the tomato peduncle for forceful shearing. The process for

Electric motor

Nylon connecting wire Main shaft groove

a. End effector in preparation state

Connection base

Wire pillar .
Cylindrical pin /

Fixed pin
Blade )
=
\

Spring

Fixed column

cutting the peduncle with the designed end eftector is as follows:

Figure 3 Overall structure of the tomato-picking robot

1) Utilizing the space beneath the tomato fruit, the target is
looped from below, and the end effector halts horizontally above the
peduncle;

2) The end effector is then moved horizontally, placing the
peduncle into the gradually narrowing cutting slot;

3) The motor begins to rotate, pulling the connecting wire
around the coil, and the L-shaped blade starts rotating to sever the
peduncle in the cutting slot;

4) After cutting, the motor reverses, and the spring retracts to
return the blade to its original position.

The end effector, as shown in Figure 4, is designed with an
outer fixed frame that isolates leaves and non-target fruits to resist
interference. The clamping cutting slot prevents the fruit peduncle
from slipping out of the cutting position. The L-shaped blade is
embedded to prevent fruit damage during movement, and its cutting
edge is parallel to the horizontal plane of the end effector, providing
greater effective cutting force. The guide post provides a consistent
and stable pulling force in the same direction for the force end of
the L-shaped blade. The stopper pin ensures that the opening and
closing motion of the L-shaped blade during operation stays within
the effective return range.

— 5 2
— | ]
Fruit stem | ’\
Main stem

b. End effector in cutting state

Figure 4 The end effector

2.2.3 Robotic arm simulation motion analysis

The picking experiment uses the UR3 robotic arm (Universal
Robots A/S, Odense, Denmark), which is widely used and
manufactured by Universal Robots. The robotic arm features six
degrees of freedom, with a flexible and stable design that can
sensitively detect changes in motor torque. In the event of a
collision or obstruction, the arm automatically triggers a self-
locking mechanism, halting movement promptly to ensure the
safety of the robot, greenhouse facilities, and operators. The robotic
arm weighs only 11.2 kg and can carry an effective load of up to
3 kg, with motion precision down to the millimeter level, making it
well-suited for the precise movements required in tomato
harvesting. The detailed performance parameters of the robotic arm
are listed in Table 1.

To validate the motion behavior of the end-effector of the UR3
robotic arm within its workspace and evaluate whether it meets the

operational requirements, this study employs MATLAB for
simulation analysis. By conducting a workspace analysis of the
robotic arm fixed at a certain point in the spatial coordinate system,
as shown in Figure 5, it is determined that the UR3 robotic arm’s

Table 1 Performance parameters of the UR3 robotic arm

Serial
number

1 Effective payload 3 kg

Item Parameter

2 Working range Spherical space with a 500 mm radius

3 Joint range +/-360°

4 Speed Wrist joint: 180°/s; TCP: 1 m/s

5 Repeatability +/-0.03 mm with effective payload

6 1/O power Control box: 24 V 2 A; Tool side: 12 V/24 V, 600
mA short-term 2 A

7 Communication Control frequency: 500 Hz; ModbusTCP: signal

frequency 500 Hz
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workspace is distributed in a spherical shape with a radius of 500
mm. The density of points within the workspace reflects the
probability that the arm’s end-effector can reach those points. The
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a. Axial side view

region closer to the robotic arm’s body has a higher density of
points, indicating that the arm’s mobility is more flexible in this
area, with more potential solutions for movement paths.
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Figure 5 Workspace of the UR3 robotic arm

Two points (-100,-100,-100) and (260,360,160) within the
workspace were selected for motion planning research. Five-point
function interpolation was performed for joint space motion
planning, and then Cartesian space motion planning was carried out
using the ‘ctraj’, ‘jtraj’, and ‘trinterp’ functions. The two motion
trajectories are shown in Figure 6. Analysis of the trajectories shows
that motion planning in joint space involves identical steps for each
joint, indicating synchronized driving. This means that each joint
consumes the same amount of time in its respective path to ensure
smooth motion. However, this planning method makes it difficult to
effectively control the position of the end effector in real time,
resulting in a large sweeping motion that does not meet the
application requirements of tomato-picking robots in greenhouse
facilities. The analysis results of the end effector’s motion state are
visualized. In contrast, using Cartesian space motion planning
ensures the constraint of the end effector’s position change. The
analysis of its spatial position over time is shown in Figure 7.

Based on the generated graphs, the UR3 robotic arm performs
trapezoidal interpolation for speed in the Cartesian coordinate
system, ensuring that the position of the end effector changes over
time. The motion trajectory in three-dimensional space forms a
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c. Joint angles from initial to target position over time

straight line, and the speed curve exhibits a trapezoidal shape, with
smooth transitions at the corners, indicating a steady change
between acceleration, constant speed, and deceleration states. After
startup, the angular change curves of certain joints show noticeable
inflection points, likely occurring near singularities in the motion
trajectory. However, overall, the analysis indicates that the motion
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Figure 6 Two trajectories planned using two different
planning methods
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Figure 7 Cartesian space motion planning analysis
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path after the end effector is mounted meets the required operational
path.

2.3 Tomato fruit detection and localization

2.3.1 Detection

YOLO v8, as a one-stage object detection algorithm, offers
advantages in both speed and accuracy. It can learn the color, shape,
and texture features of objects by combining feature maps of
different scales, which helps achieve high precision in close-range
object detection tasks. Considering the intelligent recognition
application on agricultural machinery, emphasis is placed on the
real-time detection capability and the lightweight nature of the
model. Therefore, the YOLO v8n network model is chosen. YOLO
v8n is the smallest model in the YOLO v8 series, featuring a
smaller network depth and feature map size. It achieves faster
detection speed while maintaining detection accuracy, with lower
model memory consumption, making it suitable for lightweight,
high-precision, and real-time tomato fruit detection. The YOLO v8n
model consists of four main parts: Input, Backbone, Neck, and
Head. The Input part is responsible for receiving raw image data
and preprocessing it to provide suitable input for subsequent feature
extraction and object detection. The Backbone part extracts multi-
level semantic features from the input image using convolutional
layers and other feature extraction modules. The Neck part uses a
feature fusion module to effectively combine feature maps from
different scales, enabling more precise localization and
identification of objects at multiple scales. The Head part is
primarily responsible for classifying the objects and predicting the
bounding box coordinates of the objects.

To ensure the performance of the original YOLO v8n model in
object detection while reducing network model parameters and
improving the detection accuracy for tomato fruits, this study
introduces the following improvements to the original YOLO v8n
model. The entire Backbone network in the original model is
replaced with the ShuffleNetV2 structure, which reduces the
number of parameters during network deployment and training, thus
achieving a lightweight network design. Additionally, the CBAM
(Convolutional Block Attention Module) attention mechanism is
introduced into the Neck network detection head to reduce network
complexity while ensuring the accuracy of tomato fruit detection.
The improved YOLO v8n network structure is shown in Figure 8.

L pa

Maxpool Cc2f Conv

SPPF I

Backbone Neck Head

Figure 8 The improved YOLO v8n network architecture
2.3.2 Localization
Based on the camera imaging model, stereo vision involves the

pixel coordinate system, image coordinate system, camera
coordinate system, and world coordinate system, as shown in
Figure 9. O,-X,Y,Z, describes the position of the camera in the
world coordinate system; O,-X.Y.Z. represents the coordinate
system of the Realsense D435 camera installation, with the optical
center as the origin; O-XY refers to the tomato image coordinate
system, with the optical center at the center of the image; O,-uv is
the pixel coordinate system, with the origin at the top-left corner; P,
is a point on the tomato, with its coordinates in the image coordinate
system denoted as P, The focal length of the camera is the distance
between O and O, f=10-0,l.of the camera is the distance between O
and O, f~<10-0Ol.

Image plane

Object plane

P (X0 )2,

Y.y ¢Z ¢ ,

Figure 9 Camera model coordinate system transformation model

Through the transformation model relationship in Figure 9, the
position of the tomato fruit in the world coordinate system is
converted to the pixel point position in the pixel coordinate system,
as shown in Formula 1.

-1 ¥
— 0 w
u dx o f 0 0 O R 1 Yo
Z |v|= 0 i Vo 0 f 00 |:0T 1} 7. =
1 dx 0 0 1 0 "
| 0 0 1 1
- X
fi 0 wu O R YW
0 f, vw O { o } ZW (1)
0 0 1 0 "
- 1
fi 0 wu O
In the formula,| O f w O denotes the camera
0O 0 1 o0
R

t
intrinsic parameters, while { o1 } denotes the camera extrinsic

parameters.

The above model can only describe the ideal geometric
relationship. However, in practical applications, there are often
assembly errors during the installation and production of the
camera, which lead to optical distortion and image distortion. To
address this issue, it is necessary to calibrate and correct the camera
to eliminate the distortion and recompute accurate spatial
coordinates. In the calibration process, the Realsense D435 camera
is used, which provides two calibration methods: rectification
calibration and depth scale calibration. The depth scale calibration
method is equipped with a graphical user interface (GUI) that
simplifies the calibration process and enhances operational
convenience. During the calibration process, the calibration board is
kept at an appropriate distance from the camera to ensure the board
is fully displayed within the camera’s field of view. When the
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camera in calibration mode detects the calibration board, it will
display corresponding guidance prompts through the GUI The
board is then moved until the blue area in the camera image
disappears. At this point, the camera automatically performs the
scale calibration, and the RGB image is also recalibrated, as shown
in Figure 10. If both calibration steps are successfully completed,
the system will prompt to exit the guidance process. If the
calibration fails, the system will re-enter the guidance prompts for
adjustments. If the expected accuracy is not achieved, the
calibration process will be repeated.

The camera’s intrinsic and extrinsic parameters were obtained
through calibration and then used in the calculation as shown in

Formula 1. The extrinsic parameter matrix of the camera is:

0.999 794 492 5 —-0.020 103978 6
0.020 096 246 71 0.999 793 675 6
—0.002 667 134 272 —0.002 904 509 48
0 0

3 Results and discussion

3.1 Tomato fruit detection performance

The experimental setup for tomato target detection in this study
is as follows: the operating system is Ubuntu 16.04, and the neural
network training is conducted in the Anaconda3 virtual environment
using Python 3.9. For hardware acceleration, the GPU parallel
computing architecture utilizes CUDA 11.7, and the deep neural
network acceleration library is cuDNN 11.2. During network
training, the image resolution is set to 640x640, the initial learning
rate is set to 0.01, the batch size is 16, the momentum is 0.937, the
weight decay is 0.0005, and the number of training epochs is 200.
The optimizer used is Stochastic Gradient Descent (SGD). Some of
the detection results are shown in Figure 11. Overall, the model
demonstrates good adaptability to different scenarios, with high
accuracy in target detection.

d. Under supplementary lighting

Figure 11 Tomato fruit detection cases

To evaluate the impact of different lighting conditions on
tomato detection performance, both the improved YOLO v8n
network and the original YOLO v8n network were used to test
tomato images under five different lighting conditions in the test set.
The results showed that the average recognition accuracy for the
four natural light intensity images using the improved YOLO v8n
network was 84.3%, 88.3%, 85%, and 81.6%, with an average
recognition accuracy of 84.3% under supplementary lighting
conditions, and a detection speed of 15.1 ms per image. In contrast,
the original YOLO v8n network achieved an average recognition

Detected points
Checkerboard origin
+ Reprojected points

X

Figure 10 Camera calibration through calibration board

0.002 608 214238 —0.033 137 568 29
0.002 957 532592 —-0.095 621 702 14
0.999992 225 1 0.046 786 798 83
0 1

accuracy of 82.3%, 85.3%, 83%, and 80.6%, with an average
recognition accuracy of 83.3% under supplementary lighting
conditions, and a detection speed of 18.3 ms per image. The
detection results were recorded and averaged, and the statistics are
shown in Table 2. The experimental results indicate that the
improved YOLO v8n network performed best in tomato image
recognition under lighting conditions of 20 000-30 000 Ix, showing
stronger robustness, and the improved YOLO v8n network also
exhibited faster detection speed.

Table 2 Detection results of the two detection models under
different light intensities
Recognition targets Proposed model/% YOLO v8n /%

Light intensity level

Raw 84 83
30 000- Transition 82 79
Mature 87 85
Raw 88 85
20 000-30 000 Transition 85 82
Mature 92 89
Raw 85 83
1000-20 000 Transition 84 81
Mature 86 85
Raw 81 80
0-1000 Transition 80 78
Mature 84 84
Raw 83 83
Supplemeptary lighting Transition 84 82
equipment
Mature 86 85
Detection speed (ms/pic) - 15.1 18.3

In order to further verify the effectiveness of the proposed
method in tomato detection, the improved YOLO v8n model is
compared with YOLO v3-tiny, YOLO v5n, YOLO v6n, YOLO v7-
tiny, and YOLO v8n lightweight object detection models. The
performance of each model is evaluated using comprehensive
metrics, including Precision (P), Recall (R), Mean Average
Precision (mAP), Floating Point Operations (FLOPs), the number of
parameters (Param), and model memory usage. The validation set is
used for testing. Precision reflects the accuracy of the model’s
predictions, i.e., the proportion of true positive samples among all
predicted positive samples. Recall reflects the completeness of the
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model’s predictions, i.e., the proportion of true positive samples
correctly predicted by the model. Mean Average Precision considers
both precision and recall and provides a comprehensive evaluation
of the detection algorithm’s performance. FLOPs reflect the
model’s computational complexity, indicating the number of
floating point operations required per second. The number of
parameters is a measure of the model size, with fewer parameters
typically indicating a smaller model and lower computational cost.
Model memory usage reflects the memory requirements of the
model during deployment, with lower memory usage facilitating
efficient operation on resource-constrained devices.

The experimental results of different networks are listed in
Table 3. Compared with other algorithms, the improved YOLO v8n
model exhibits reductions in computational cost and parameter
count to varying degrees, while demonstrating superior performance
in terms of P, R, and mAP@Q0.5, reaching 94.1%, 89%, and 94.8%,
respectively. Compared to the original YOLO v8n, the improved
YOLO v8n model achieves a 34.3% reduction in model size by
introducing lightweight convolutional modules, thus improving
computational efficiency. Overall, the experimental results show
that the improved YOLO v8n algorithm performs excellently and is
particularly suitable for real-time tomato detection. This algorithm
not only achieves higher detection efficiency, but also features a
smaller model size, lower computational cost, and higher detection
accuracy, making it highly suitable for deployment on terminal

devices.
Table 3 Test results of different models
Param/  Model
0, 0, 0,
Model name P/% R/% mAP@50/% GFLOPs M size/MB
Yolo v3-tiny 89.6 88.6 934 18.9 12.12 23.20
Yolo v5n 93.1 86.7 94.5 7.2 2.50 5.02
Yolo v6n 91.3 894 94.5 11.8 4.23 8.28
Yolo v7-tiny 91.1 853 92.8 13.2 6.02 11.60
Yolo v8n 93.7 88.2 93.6 8.2 3.01 5.94
Proposed model 94.1 89.0 94.8 5.2 1.93 3.90

3.2 Localization performance

Based on the prediction boxes detected by the improved YOLO
v8n model and the data from the D435 depth camera, the pixel
values corresponding to the depth distances are extracted and
converted into Cartesian coordinates. The specific steps are as
follows:

1) Using the trained deep learning object detection model,
image features are extracted from the RGB image to detect the
positions of the tomatoes in the image. The boundary box of the
tomato targets in the image is calculated to obtain the coordinates
(cx;,cy;,wi,h;), where cx; and cy, are the X and Y coordinates of the
boundary box center, and w; and A, are the width and height of the
boundary box, respectively.

2) Perform color filtering on the detected tomatoes to confirm
the mature fruits that need to be picked and record the center
coordinates of the selected fruits.

3) Based on the center pixel coordinates of the boundary box of
the target tomato fruit, extract the corresponding spatial point depth
value from the depth data, as shown in Formula 2:

depth = scale x Depth x [cx;] X [cy;] 2)

The scale represents the correction factor for the scale.
The center pixel points (cx;,cy;) and depth are substituted into
Formula 2 to calculate the spatial coordinates of the tomato fruit

(cxl,cy;,cz)) in the world coordinate system. After integrating the
positioning algorithm into the ROS system, field tests are conducted
under different lighting levels. The test process and results are
shown in Figure 12. The distance between the tomato and the depth
camera is fixed at 50 cm as the reference value for the experiment.
Based on the principle of stereo vision ranging, the distance from
the tomato to the depth camera is obtained by calculation. Each set
of lighting conditions is repeated 10 times, and the average value of
the measurement results is taken as the final data. At the same time,
the measurement results are compared with the actual distance
measured manually, and key indicators such as absolute error and
relative error are calculated to evaluate the distance measurement
performance of the algorithm under different lighting conditions.
The experimental results are listed in Table 4.

Figure 12 Distance detection results integrated into ROS

Table 4 Comparison between localization experimental data
and real data

Tomato-to- camera Measured Absolute Relative

Light intensity level actual distance/cm average value/cm error/cm  error/%

>30 000 50 52.10 2.10 4.2

20 000-30 000 50 51.55 1.55 3.1

1000-20 000 50 51.70 1.70 34

0-1000 50 48.65 1.65 33

Supplemeptary lighting 50 48.05 1.95 39
equipment

The data in the table indicate that different light intensities
interfere with depth distance measurements. The measurement
accuracy is optimal when the light intensity is between 20 000-
30 000 Ix, as the lighting is sufficient but not overly strong,
providing the best performance of the depth camera. When the light
intensity exceeds 30 000 Ix, issues such as overexposure cause the
absolute error to increase to 2.1 cm. When the light intensity is
between 1000-20 000 Ix, the measurement accuracy is slightly
lower than under optimal lighting conditions. In low-light
conditions (0-1000 Ix), although the error is relatively small, the
performance of the depth camera is limited. With supplemental
lighting, the performance improves compared to natural light
conditions.

3.3 Picking performance

Field picking experiments were conducted in a trellis-based
cultivation experimental field where the tomato plants were in good
condition, and obstacles around the experimental area were cleared.
The experiment took place on a sunny day with an average
temperature of 24°C and no wind, as shown in Figure 13. Real-time
monitoring of the light intensity in the experimental field was
conducted using sensors to ensure the light intensity was between
20 000-30 000 1x. The tomato detection results in the experimental
field are shown in Figure 10, where the YOLO model detected
mature tomatoes with confidence levels of 89% and 49%, with
distances of 32.7 cm and 37.3 cm, respectively. Additionally, the
number of tomatoes observed by the tomato- picking robot’s vision
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system and the number of tomatoes detected and identified are
summarized in Table 5.

O

Figure 13 Tomato-picking robot testing

Table 5 Statistics of detected and identified fruit count

Number of Number of Number of Number of
Tomato i
o observable tomato false missed

typ tomatoes detections detections detections
Mature 72 68 0 4
Transitional 36 29 2 5
Raw 45 41 1 3
Total 153 138 3 12

The data in Table 5 show that the tomato recognition accuracy
reaches 91.5%. Among them, mature tomatoes have the best
recognition accuracy. However, there are two misclassifications for
the transitional tomatoes; specifically, raw tomatoes were
misclassified as transitional tomatoes. This occurred because the
color and texture features of the transitional tomatoes are similar to
those of the raw tomatoes, leading to some confusion during the
recognition process. One misclassification occurred for raw
tomatoes, mainly due to the misidentification of green leaves as raw
tomatoes. This was due to the similarity in color and shape features
between the leaves and raw tomatoes, and the complex background
increased the difficulty of detection. Tomatoes that were partially
occluded by leaves were still detected, but the confidence decreased
significantly as the area of occlusion increased. Tomatoes with a
larger area of occlusion and a more complex position not only
introduced high measurement deviations in distance values, but also
hindered the subsequent picking process of the robot. Therefore,
setting the picking target as tomato with a confidence above 0.7
helps to plan better motion trajectories, reduce leaf interference,
thus decreasing the robot’s operating time while improving the
picking success rate.

In the field picking tests, the robot’s motion mode was set to
trajectory planning mode. During the testing period, 72 mature
tomatoes were picked across five experimental trials. The
experimental results are listed in Table 6, where 60 tomatoes were
successfully picked, resulting in a success rate of 83.3%. The
average picking time per tomato was 9.5 s, and the robotic arm
operated smoothly throughout the picking process. The harvested
fruits exhibited no damage and retained their peduncle, as shown in
Figure 14, without causing any harm to the planting environment. In
failed attempts, 6.9% of the failures were due to the end effector
being blocked by the tomato and unable to reach the target position,
and 9.7% of the failures were due to the tomato’s peduncle being
hidden, leading to fruit damage during peduncle cutting. During the
experiment, the robot’s arm speed was limited to ensure smooth
operation. The results validated the feasibility of the designed end
effector during picking, reducing the mechanical contact pressure

on the tomato skin and increasing the tolerance for positioning
when cutting the peduncle, thus improving the tomato picking
efficiency.

Table 6 Picking test records

Average Number Number Number of Number of

n?lfggsr diameter/ of pi‘cks of targets pedupcles picking ’i\iﬁs/%e
mm required  reached retained  successes
First 63 13 12 12 11 8.3
Second 77 18 16 15 14 10.7
Third 72 15 15 14 13 9.5
Fourth 89 14 14 13 12 10.6
Fifth 85 12 10 10 10 8.6
Total 712 72 67 65 60 9.5

Figure 14 Tomato sample with intact peduncle

Table 7 presents a performance comparison of different picking
methods, evaluated primarily based on two indicators: picking
success rate and picking time. Overall, the rotational picking
method" and nested method"® exhibited lower success rates and
longer picking times, showing certain limitations. The airbag
clamping method™ and suction clamping method"” improved
success rates but still had relatively long picking times. In contrast,
the method proposed in this study demonstrates superior
performance in both success rate and efficiency, with a success rate
of 83.3% and an average picking time of 9.5 seconds, showing
higher efficiency and stability, making it suitable for greenhouse
tomato picking tasks.

Table 7 Performance comparison of picking methods

Picking method Picking success rate/%  Picking time/s

Rotational picking 60.0 23.0

Airbag clamping 83.9 24.0

Nested picking 57.5 14.9

Suction clamping 72.1 14.6

The method proposed in this study 83.3 9.5

4 Conclusion

This study designs a six-degree-of-freedom tomato-picking
greenhouse environments, achieving
autonomous picking operations. To prevent the tomatoes from being
damaged by compression during the picking process and to retain
the fruit peduncle, a non-contact cavity-type end effector is
designed, and the robotic arm’s motion is simulated. Additionally,

robot for cultivation

an improved YOLO v8n tomato detection model is proposed, and a
comparative analysis is conducted between the improved and the
original YOLO v8n models under five different lighting conditions.
Finally, field experiments are carried out to validate the
effectiveness of the robot prototype in tomato picking. The main
conclusions of this study are as follows:
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1) The improved YOLO v8n model demonstrated excellent
performance, achieving precision, recall, and mAP@0.5 metrics of
94.1%, 89%, and 94.8%, respectively. By introducing a lightweight
convolution module, the model size was reduced by 34.3%,
enhancing computational efficiency. Furthermore, under five
different lighting conditions, the improved YOLO v8n model
outperformed the original YOLO v8n model in both average
recognition accuracy and detection speed, with the best recognition
performance under lighting conditions of 20 000-30 000 Ix,
exhibiting strong robustness.

2) Tomato localization tests indicate that different lighting
intensities can interfere with depth distance measurements. The best
measurement accuracy occurs under lighting conditions of 20 000-
30 000 Ix, where the light is sufficient but not overly strong,
optimizing the performance of the depth camera. The test results
show that the absolute error between the stereo depth camera and
the manually measured target tomato is 1.55 cm, with a relative
error of 3.1%.

3) Performance testing for tomato picking was conducted in the
field. The robot first identifies and locates the target tomato using
the stereo depth camera, then moves the robotic arm to the picking
point, and finally controls the end effector to complete the picking
task. Experimental results show that the tomato-picking robot
achieved a success rate of 83.3%, with an average picking time of
9.5 seconds per tomato, outperforming the 80% success rate of most
commercially available picking robots. To further enhance the
performance of the robot, future work will consider the spatial
distribution of tomato peduncles and their spatial posture to assist
the end effector in intelligent obstacle avoidance, thereby improving
overall picking efficiency. Additionally, by incorporating real-time
feedback from the visual system, the robot can intelligently adjust
its path based on environmental changes, minimizing collisions and
improving picking success rates and accuracy. These technologies
will enhance the robot’s adaptability and performance in complex
environments.
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