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Lightweight pineapple detection framework for agricultural
robots via YOLO-vSsp
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Abstract: Ensuring the accurate detection of pineapple fruits under the high planting density and serious homogenization
represents a current and significant challenge. In this study, an enhanced lightweight detection framework, derived from the
improved You Only Look Once version 5s (YOLOvVS5sp), is investigated in terms of the rapid and precise recognition of
pineapple fruit for the agricultural robot. Three Convolutional Block Attention Module (CBAM) attention modules are
considered the backbone network responsible for feature extraction, and the SIoU loss function is introduced to replace the
CloU loss function to handle the orientation angle and the penalization index. Eventually, the designed YOLOvSsp detection
result of the mAP@0.5 value is 94.5%, which is 6.30% higher than YOLOv4, 1.83% higher than Faster R-CNN, and 6.90%
higher than classical YOLOvVS5s. At the same time, compared with the models SHFP-YOLO and RGDP-YOLOv7-tiny in other
pineapple detection literature, the mAP@O0.5 of the designed model is 4.54% and 3.5% higher, respectively. Furthermore, when
it comes to the agricultural robot operating in diverse natural situations, the YOLOvVS5sp algorithm can maintain a successful
picking rate of 90% with an average time of 15 s, exhibiting the effectiveness of the visual component in engineering scenarios.
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These research results can accelerate the transition of pineapple harvesting from manual to automated operations.
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1 Introduction

Pineapple, a tropical fruit widely consumed both fresh and in
processed forms such as juice, has been extensively studied for its
economic significance and consumption trends'?. Currently,
pineapple harvesting largely depends on manual labor. However,
challenges such as spiny foliage, the limited time window for
optimal harvesting, and the physically strenuous nature of the task
highlight the urgent need for mechanized harvesting solutions. In
this context, automated localization and positioning technologies
have emerged as key areas of focus for the future development of
robotic harvesting systems'*’. Additionally, accurate detection of
fruit targets is crucial for the effective operation of fruit-picking
robots'”, as it directly affects both the success rate and overall
efficiency of the harvesting process. However, pineapples are
cultivated in environments with high planting density and
complexity, which presents further challenges to accurate detection.
Therefore, pineapple detection in robotic harvesting presents several
critical challenges, including occlusion caused by branches or
overlapping fruits within the robot’s field of view!”, and decreased
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accuracy when identifying small, densely clustered fruits. These
issues negatively impact detection speed and precision, hindering
the ability to match the necessities of instant harvesting and
practical deployment.
1.1 Prior work

Currently, the development of vision systems for fruit-picking
robots primarily involves two main approaches: traditional image
processing techniques and deep learning methods!"'"*. Conventional
image processing algorithms typically focus on fruit characteristics
such as color, shape, and texture for recognition purposes'®. These
techniques have been widely applied in agricultural engineering for
an extended period. To illustrate, Zhuang et al.'”? presented a
monocular vision-based method for citrus fruit detection, which
combines multiple color domain features to extract candidate fruit
regions, followed by the use of a support vector machine to analyze
and filter texture characteristics. Similarly, Kim et al."® developed a
detection technique that integrates various object attributes and
encodes them into feature representations. In addition, Liu et al."
introduced a grapefruit maturity assessment approach based on an
elliptical contour modeling framework. Li et al.”*” adopted texture
and hierarchical contour features as the input of the integrated
classifier-RUSBoost and achieved accurate detection of unripe
citrus fruits under various occlusive conditions. Traditional image
processing and machine learning techniques, such as color
segmentation, thresholding, edge detection, and feature-based
classifiers, have demonstrated effectiveness in controlled
environments and for specific fruit types. These methods are
relatively simple, fast, and easy to interpret. However, their
generalizability is limited in unstructured agricultural environments,
where challenges such as uneven lighting, occlusion, and variability
in fruit appearance frequently occur. In contrast, deep learning
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approaches exhibit greater robustness and adaptability in complex
scenes by  automatically learning  hierarchical  feature
representations. Nonetheless, these advantages come at the expense
of increased computational demands and the requirement for large
volumes of annotated training data.

In recent years, the rapid advancement of deep learning has
positioned it as the dominant approach for fruit detection®'*!. Deep
learning-based object detection algorithms can be broadly
categorized into two types: one-stage and two-stage models™. Each
approach has its distinct strengths and limitations. While two-stage
models generally offer higher accuracy, they are typically slower in
detection speed compared to one-stage models. In the context of
fruit harvesting, it is crucial for the detection speed of the vision
system to align with the robot’s picking actions. Consequently,
researchers are investigating deep learning algorithms®" that
balance both detection speed and accuracy. In terms of reducing
model size, Zhu et al.’” developed the YOLO-LM model by
integrating the GSConv™ into the Neck network to replace standard
convolutions, thereby streamlining computational complexity. The
optimized architecture achieved a mAP@0.5 of 93.18% with 10.17
million parameters and a model size of 19.82 MB. Yang et al.’¥
developed the MFD-YOLO model, which reduced computational
complexity by 28% through a lightweight backbone network and
adaptive down sampling techniques. By applying a deep
compression strategy, the model was streamlined to 3.58 MB, while
achieving a mAP of 97.5%, outperforming the baseline model by
6.2% in accuracy. To solve the problem of small target detection,
Wang et al.” proposed DSE-YOLO, which improved the detection
accuracy of young strawberry fruit by combining point-by-point
convolution and extended convolution. Li et al.”*” introduced BiFPN
and dynamic label assignment strategy in pitaya detection,
achieving a detection accuracy of 97.8%. Bai et al.’ integrated
Swin Transformer prediction head in YOLOv7 to build a
lightweight strawberry detection model, achieving 45 FPS and
92.1% mAP. To solve the problem of uneven sample distribution
and complex background interference, Ma et al.*” used WIoU loss
function to replace traditional CloU loss function, and introduced
the dynamic anchor frame quality adjustment strategy to optimize
the bounding box regression performance of apple detection.
However, the above detection methods generally fail to achieve a
balance among recognition accuracy, real-time detection speed, and
lightweight algorithm design, which are critical requirements for
practical robotic harvesting systems that demand high precision,
rapid response to dynamic environments, and deployment on
resource-constrained embedded hardware.

1.2 Motivation and contributions

Based on the previous discussion, a YOLOvSsp lightweight
network of pineapple detection for the agricultural robot is
investigated in this article. The proposed model incorporates an
updated Convolutional Block Attention Module (CBAM) within the
Cross-Stage Partial Darknet 53 (CSP-Darknet53) layers of the
classical YOLOVSs architecture, aiming to reduce irrelevant image
information and enhance detection accuracy. To overcome the
limitations of the Complete Intersection over Union (CloU) loss
function, particularly its inability to account for the directional
alignment between predicted and ground-truth bounding boxes,
which slows convergence, the Scylla Intersection over Union
(SIoU) loss function is introduced. This improvement enhances
angle optimization between predicted and ground-truth bounding
boxes, thereby increasing the efficiency of model training and
detection accuracy. In addition, in order to enhance the robustness

and generalization capability of the model in challenging
agricultural scenarios, image augmentation strategies were adopted
to the dataset. The optimized network was effectively implemented
on a resource-constrained microcontroller, demonstrating its
competence in accurately and swiftly detecting pineapples in
practical field environments.

The main achievements of this study are as below:

1) A high-accuracy, lightweight detection network is explored
for pineapple recognition on agricultural robots. The CBAM
attention module is integrated into the CSP-Darknet53 backbone
network, and the SIoU loss function is utilized for enhanced
detection speed.

2) Comprehensive experiments conducted on mixed pineapple
datasets under various conditions, including different orientations,
lighting, and backgrounds, demonstrate that the YOLOv5sp
algorithm achieves outstanding performance, with an accuracy of
94.5%. This result significantly surpasses the performance of other
object detection networks.

3) The YOLOvSsp model is implemented on the agricultural
robot, achieving a harvest success rate of 90% and an average
processing time of 15 seconds, demonstrating its exceptional
performance in practical engineering applications.

The structure of the following chapters is as follows: Section 2
presents the establishment of a pineapple image dataset and the
development of the pineapple detection network. Section 3 provides
a comparison and analysis of the data collected from both
simulations and experiments. Lastly, Section 4 concludes the paper
and outlines directions for future research.

2 Materials and methods

2.1 Data acquisition

The image dataset used in this study comes from a pineapple
garden located in Xuwen County, Zhanjiang City, Guangdong
Province. The Intel RealSense D435i Camera serves as the image
collection device, capturing images at a resolution of 1920x1080
from various angles, including 45° and 90°. In constructing the
pineapple fruit dataset, environmental factors such as time of day
and weather conditions during actual robotic harvesting operations
were considered to enhance the model’s generalization and
robustness. Lighting conditions on sunny days fluctuate notably
from morning to evening. As illustrated in Figure la, the light is
relatively soft during the morning hours. Under strong sunlight
conditions, the light becomes intense, creating dynamic shadow
patterns, as shown in Figure 1b. In contrast, cloudy days provide
relatively uniform and diffuse lighting, as depicted in Figure lc.
After sunset, light intensity decreases sharply, as shown in

a. Sunny morning b. Sunny noon c. Cloudy

e. Occlusion

d. Evening

Figure I Images of pineapples captured under varying weather

conditions and from multiple viewing angles
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Figure 1d. In robotic vision scenarios, pineapple fruits are often
heavily occluded by surrounding branches and leaves, as illustrated
in Figure le. Additionally, when pineapples are viewed from a
distance, the target appears small, as shown in Figure 1f. The
dataset composition comprehensively accounts for a wide range of
environmental interference factors, ensuring the robot can perform
reliably across diverse natural conditions.
2.2 Image augmentation

Deep learning network for target recognition necessitates large
datasets to strengthen the algorithm’s ability to generalize and
improve its robustness. Bailly et al.’ found that a more
comprehensive dataset can enhance the performance of the deep
learning algorithm. Nevertheless, the datasets used in this study
only comprise 1081 pineapple images. To solve the problem of a
limited dataset, this work employs image enhancement methods
such as geometric alterations, color space enhancement, filtering,
and randomization. In addition, incorporating larger-scale training
datasets has the ability to enhance the model’s generalization ability
and help mitigate the risk of overfitting®. Image enhancement is
about improving the visual details of an image to detect objects™’
accurately. To augment the generalization and robustness of the
algorithm in a complex agricultural background, this study employs
the ImgAug library to augment the dataset. ImgAug provides
various augmentation techniques, including the addition of random
pixels, Gaussian noise, random rectangular occlusion, pixel dropout,
motion blur, adaptive histogram equalization, horizontal and
flipping, HSV
adjustment, and average pooling. It supports both single-image and

vertical transformation, random brightness
batch processing, and automatically updates the corresponding label
files with each enhancement. In this study, data augmentation was
performed using image rotation, brightness adjustment, and
adaptive histogram equalization. As shown in Figure 2, Figure 2a is
the original image, Figure 2b is the image after vertical rotation,
Figure 2c¢ is the image after transform brightness, and Figure 2d is
the image after histogram equalization. After image enhancement,
the pineapple image dataset increased to 5190, as shown in Table 1.
The dataset was randomly divided into training, validation, and test
sets in an 8:2:1 ratio. Pineapple fruits were annotated using the open-
source tool Labellmg, with the annotations saved in txt format and
the label assigned as “pineapple”.

a. Original image

c. Brightness transformation

d. Histogram equalization

Figure 2 Image enhancement

2.3 YOLOVS5sp networks development
YOLOVS5, developed by Glenn Jocher, achieves real-time
detection speeds of up to 140 frames per second (FPS) while

maintaining high detection accuracy and a compact model size*".
These
deployment in pineapple harvesting robots operating in real-world

characteristics make it particularly well-suited for
agricultural environments. The official versions of YOLOVS include
YOLOv5s, YOLOv5Sm, YOLOvV51, and YOLOvVSx, all of which
share the same underlying architecture. The primary differences
among them lie in the depth and width multipliers specified in the
“YAML” configuration files.

Table 1 Number of images produced through data
enhancement approaches

Raw image  Equalization  Transform brightness  Image rotation  Total
1038 1038 1038 2076 5190

Given the need for efficient and lightweight models in complex
orchard environments with uneven lighting and variable weather
conditions, this study selects and further optimizes the YOLOvSs
variant by proposing an improved network architecture. The
enhancements include a backbone network with stronger feature
extraction capabilities, an optimized neck for efficient feature
aggregation, and a detection head incorporating a new loss function.
Specifically, the backbone is based on an improved CSP-
Darknet53), where the Convolutional Block Attention Module
(CBAM) is embedded after each CSP Bottleneck with three
convolutions (C3). This addition strengthens the network’s ability to
focus on pineapple-relevant features, assigning higher weights to
semantically important regions and thus improving detection
precision. The extracted features are output as Feature 1, Feature 2,
and Feature 3 and forwarded to the neck for further processing.
Moreover, the SloU loss function replaces the CloU loss function,
enhancing bounding box regression accuracy by aligning predicted
boxes more closely with ground truth and accelerating model
convergence. The complete network architecture is illustrated in
Figure 3.

2.3.1 CBAM attention module

Traditional detection models may have some limitations in
obtaining and representing pineapple fruit characteristics. For
example, they may not be effective at establishing relationships
between channels or perform poorly when dealing with complex
target structures and background noise. Therefore this study
introduced the CBAM attention mechanism to improve this
situation. CBAM is mainly composed of a feed-forward CNN with
a one-way multi-layer structure, making it simple and efficient. It
contains two key components: channel attention (CA) and spatial
attention (SA). The relationship between the different channels on
the feature map is established by CA, which can adjust their
contributions by calculating the weight of each channel. This helps
to highlight the target-related channels and suppress the impact of
irrelevant information. SA is used to establish the relationship
between different spatial locations in the feature map to extract
more effective features. By combining CA and SA, the CBAM
attention mechanism can adaptively adjust the weights of each
channel and spatial position in the feature map to better capture the
characteristics of pineapple fruit. Figure 4 describes the working
process of this module. Initially, the module infers a one-
dimensional CA map F, through the channel sub-module and
multiplies it item by item with the feature map F to obtain F,. Next,
F, is utilized as the input of the SA sub-module to infer the two-
dimensional SA map F,, multiplied by F, item by item, to obtain
an adaptive refinement feature map F,. Figure 5 describes the
calculation process of the CA sub-module. The details of the two
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Figure 5 Schematic diagram of CA sub-module

sub-modules are described below.

The intermediate feature map F of an image is chosen as the
CBAM input feature map. First, the CA sub-module of CBAM
performs maximum pooling and average pooling on the F,
respectively, which are to congregate the spatial information and

output two various description symbols F., and F.,. Then they are
sent to a shared network comprised of multi-layer perceptions
(MLP). Finally, the feature vectors are combined using the item-by-
item summation approach to produce a CA map F.. F, is obtained
by element-by-element multiplication of F and F,.. Equations (1)-
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(2) depict the CA calculation procedure.

F. = B(MLP(AvgPool(F) + MLP(MaxPool(F))) (1)

F, =F.xF (2)

The spatial attention (SA) sub-module mainly generates a two-
dimensional SA map based on the spatial correlation of features. It
initially performs average and maximum pooling manipulations
along the direction of the channel to generate two 2D maps: F,, and
F,. They represent the average and maximum pool features
through the channel, respectively. Then the convolution layer joins
and convolves these two features to generate a two-dimensional SA
graph F,. Finally, the final refined output F, can be obtained by
multiplying F, and F, element by element. Figure 6 describes the
calculation process of the SA sub-module. The calculation of SA is
shown in Equations (3)-(4).

F, = B(C(MLP(AvgPool(F,) + MLP(MaxPool(F,))))  (3)

F,=F,xF, (4)

2.3.2 Improvement of loss function

An accurate loss function is a fundamental component for
evaluating and optimizing the performance of a detection model. In
the original YOLOVS algorithm, the position loss function is

|
|
|
|
Conv
|
[ layer 4
|
|
|
I J
: Maxpool
: Channel-Refined Avgpool
| feature
b h
|

implemented using the CloU loss function, which examines
differences in length and width, implying that a prediction box
closer to the ground truth corresponds to higher accuracy. However,
the aspect ratio represents a more ambiguous metric, and CloU does
not address the varying challenges in detecting pineapple fruits. For
the first time, the SIoU function, proposed by Zhora*", considers the
direction of the mismatch between the prediction box and the
ground truth by redefining the penalty mechanism. Incorporating
the vector angle between regressions enhances detection precision,
as illustrated in Figure 7, with Equations (5) and (6) outlining the
calculation formulas.

Loy =1-ToU + 4+0 (5)
loU = |BNBT| 6
YT BUBY| ©

where, 4 denotes the distance-based loss component, while
signifies the loss associated with shape discrepancies. To reduce the
number of uncertain variables associated with distance, this study
introduced an angle-aware LF component into the loss function.
Figure 7 illustrates the scheme for calculating the angle cost
contribution, and Equations (7)-(10) define the angle cost formula
in detail.

Spatial attention
feature

Figure 6 Schematic diagram of SA sub-module

C

w

Figure 7 Schematic diagram of angle loss calculation

A=1-2xsin’ (arctan (x) - %) (7)
x= c;’ = sin(a) (8)

o=/ (b1=b.) + (b =b.) )
¢, = max (b%,b,, ) —min (b,b,, ) = (10)

where, b and b¥ denote the x and y coordinates of the center point
of the ground-fruth bounding box, respectively. b. and b,
represent the x and y coordinates of the center point of the
predicted bounding box. The parameter £ indicates the minimum

distance between the center points of the predicted and ground-truth
boxes. ¢, refers to the vertical distance, or height difference,
between the center of the ground-truth box and that of the predicted
box. Figure 8 illustrates the scheme for calculating the distance cost
contribution, and Equations (11)-(14) depict the distance cost
definition formula.

A:Z(l—e’””) (11)
b —b, \’
px:(ifr ) (12)
c,
b b, \’
o= (P (13)
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Figure 8 Schematic diagram of distance loss calculation
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y=2-A (14)
where o approaches 0, the influence of the distance cost on the
results becomes negligible. On the other hand, when a is closer to
3
7 » the effect of distance cost on the result is becoming significant.

However, as the angle increases, the problem becomes more
serious. As a result, when the angle grows, y is a distance value
given priority in time. The shape cost function is defined in
Equations (15)-(17).

5= (-e™y (15)

t=hw

[w—w*|
= 1
" max (w,w#) (16)
=k
“= max (h, ) 17

where, & is used to denote the height of the prediction box, and w is
used to represent the width of the prediction box. The model’s
attention to shape loss is defined by 7, which is unique for each
dataset.

By incorporating the direction problem between the prediction
box and the authentic box in the loss function, SIoU significantly
decreases the degree of freedom. Compared with the CloU function,
it can achieve faster convergence during the training phase and
better inference performance. It is effective for improving the
precision of the algorithm for real-time detection of pineapple fruit
and reducing the time required for detection.

2.4 Model evaluation

In this study, five evaluation metrics are utilized to
comprehensively assess the real-time detection performance of the
enhanced pineapple fruit detection model. The first metric,
precision (P), represents the proportion of correct positive
predictions among all positive predictions. The second metric, recall
(R), denotes the proportion of correctly predicted pineapple fruit
instances relative to all actual pineapple fruit instances in the
dataset. The third evaluation metric, average precision (AP),
quantifies the area under the precision-recall (P-R) curve
specifically for the pineapple category. The fourth metric, F1 score,
represents the harmonic mean of precision and recall, providing a
comprehensive measure that balances both aspects. The fifth and
final metric, frames per second (FPS), indicates the model’s
processing speed by measuring how many images it can analyze per
second. A model is generally considered capable of real-time
detection when its FPS exceeds 30; otherwise, detection latency
may result in information loss. These metrics comprehensively
evaluate the network’s detection performance and are calculated as
shown in Equations (18)-(22).

TP

Precision = FPLTP (18)
TP
Recall = W (19)
1
AP = jo P(R)dR (20)
Fl- 2PXR @1
P+R
FPS = % 22)

where, TP (True Positive) refers to the accurate prediction of

labeled pineapple fruits, while FP (False Positive) represents the
number of images incorrectly predicted as containing pineapples.
FN (False Negative) indicates the number of pineapple targets that
were not detected, and TN (True Negative) refers to instances where
pineapples are not present in the image and were correctly noted as
not being present. The symbol y denotes the average detection time
per image. Table 2 depicts the confusion matrix for categorization
outcomes.

Table 2 Confusion matrix for categorization outcomes

Authentic Predicted Confusion Matrix

Negative Positive False Positive (FP)

Positive Positive True Positive (TP)

Negative Negative True Negative (TN)

Positive Negative False Negative (FN)
3 Results

3.1 Network training

The study is conducted on a Dellg3 3579 laptop. It is mainly
equipped with an Intel (R) Core (TM) i5-8300H CPU with a central
frequency of 2.30 GHz and a 4 GB GTX 1050 graphics card. Under
the Windows 10 system, Anaconda3 is installed to build the
PyTorch deep learning framework. During model training, libraries
such as Opencv4.6, CUDA11.3, and Tensorboard2.10 are called. In
addition, Visual Studio (VS) 2022 and Pycharm2022 are used in the
experiment. To ensure the reliability of the experiment, the
following experiments are carried out with the same training
parameters and hyperparameters. This study set the batch size to 8,
weight decay to 0.0005, momentum value to 0.937, learning rate to
0.01, and training epoch to 300.
3.2 Comparison experiments of different attention
mechanisms in the backbone network

To enhance the capacity of YOLOvVSs to obtain pineapple
feature information, a CBAM attention module is inserted after the
C3 module. In this experiment, the Squeeze-and-Excitation network
(SEnet), CBAM, Coordinate Attention network (CAnet), and
Efficient Channel Attention network (ECAnet) are added to the
same position in the backbone network of YOLOvS5s for
comparative experiments.

According to Table 3, the number of Floating-point Operations
Per Second (FLOPs) and parameters increased slightly after adding
the attention mechanism, but the detection performance was
enhanced to some degree. Among them, the CBAM attention
mechanism had the most significant improvement on model
performance, with mAP@0.5 value maintained at 91.28%, which
was 4.35% higher than before. By comparison, adding SEnet,
ECAnet, and CAnet modules resulted in 1.40%, 1.90%, and 2.39%
increments of mAP@0.5 values, respectively. However, their
FLOPs and Params were only slightly different. Obviously, CBAM
performs better than other attention mechanisms. The experimental
finding demonstrates that adding a CBAM attention module to the
backbone network can significantly enhance the attention degree of
the detection model to pineapple fruit and inhibit the interference of
a sophisticated agricultural environment background, which can
significantly increase the model’s detection performance for
pineapple fruit.
3.3 The influence of data expansion method

In this section, image enhancement techniques such as image
rotation, brightness adjustment, and adaptive histogram equalization
are employed to augment the dataset. A controlled variable method
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is used to explore the impact of each enhancement approach on the
performance of the YOLOvSs model. Initially, the model is trained
using the fully enhanced dataset. Subsequently, each enhancement
method is individually removed during training to evaluate its effect
on precision and F1 score. The experiment also investigates the
influence of multi-angle image acquisition, which simulates the
varied perspectives encountered by the picking robot during
operation. After data augmentation and multi-angle photography,
the dataset size increased to 5190 images.

Table 3 Result comparison of performance across various
attention mechanisms integrated into the backbone network

Model Recall ~ Precision mAP@0.5 FLOPs/G Params/M
YOLOvS5s 85.64%  87.37% 88.43% 15.94 6.69
Within CBAM  89.15%  91.43% 91.28% 16.71 6.75
Within SEnet  86.56%  88.49% 89.67% 16.63 7.21
Within ECAnet  87.61%  89.18% 90.11% 16.62 7.15
Within CAnet  88.04%  90.13% 89.97% 16.78 6.92

The experimental results, as summarized in Table 4, indicate
that multi-angle image acquisition significantly improves model
performance, as its removal causes the F1 score to decrease by
1.36% and the precision by 0.85%. Removing adaptive histogram
equalization leads to a 1.48% reduction in precision, suggesting its
importance in enhancing image contrast and detection accuracy.
Similarly, brightness adjustment simulates illumination variability
in natural environments and effectively improves model robustness
and generalization, as its removal results in a decrease of 1.67% in
F1 score and 1.06% in precision. In contrast, the vertical rotation
method contributes relatively little to performance improvement,
with only a 0.32% decrease in accuracy and a 0.94% drop in F1
score observed when it is excluded. These findings demonstrate the
effectiveness of specific image enhancement techniques and
acquisition strategies in improving the robustness and accuracy of
the pineapple fruit detection model in complex field background.

Table 4 F1 score and mAP@0.5 value obtained by different
image enhancement methods

Data enhancement method Flscore  mAP@O0.5
All dataset 95.7% 94.5%
Remove multi-angle viewing method 94.4% 93.7%
Remove vertical rotation method 94.8% 94.2%
Remove brightness transformation method 94.1% 93.4%
Remove adaptive histogram equalization method 93.7% 93.1%

3.4 Ablation experiments

To evaluate the effectiveness of the proposed pineapple
detection algorithm, a series of ablation experiments were
conducted to examine the individual contributions of the CBAM
attention module, the SIoU loss function, and the image
augmentation techniques. As listed in Table 5, the various
enhancements to the model structure and algorithm strategy yield
significant improvements. Specifically, the mAP@0.5 for
YOLOVS5sp increased by 6.9% compared to the original YOLOVSs,
while the FLOPs and Params saw relatively modest increases of
4.83% and 0.9%, Incorporating an attention
mechanism strengthens the network’s feature extraction capabilities,
enabling it to effectively reduce interference and enhance the
model’s detection accuracy in challenging environments. The
mAP@0.5 improved by 4.35%, while FLOPs and Params increased
by 4.83% and 0.90%, respectively. Simultaneously, by refining the

respectively.

loss function to account for the vector angle in the expected
regression and redefining the penalty criteria, the overall degree of
freedom in the loss is significantly reduced. This adjustment
facilitates both the converging process and the detection accuracy
during training. Without affecting the complexity of the model and
the amount of computation, the mAP@0.5 further improves by
0.50%. Furthermore, the application of image enhancement
techniques helps to expand the dataset, boosting the robustness of
the detection model and leading to a further increase in pineapple
detection accuracy by 1.93%. As demonstrated in Table 5, the
mAP@0.5 of the network shows a gradual improvement as a result
of the enhancements implemented using the aforementioned
methods.

Table 5 Ablation experiments results

Basic add add add
Tag mAP@0.5 Flops/G Params/M
Model CBAM SIoU Image enhancement
1 v - - - 88.43% 1594 6.69
2 v v - - 92.28%  16.71 6.75
3 v v v - 92.74%  16.71 6.75
4 v v v v 94.53%  16.71 6.75

3.5 Comparison of different algorithms

The whole pineapple dataset is utilized for training the model
and assessing the performance of the improved YOLOvS5s.
Meanwhile, the proposed YOLOvS5sp model is compared against
YOLOv4, YOLOvS5s, and Faster R-CNN to demonstrate its
superiority. Table 6 shows that when combined with AP value, FPS,
FLOPs, and Params, YOLOvVSsp performs most suitably. The AP
value of the YOLOvSsp model is 6.30% and 6.90% higher than
those of YOLOvV4 and YOLOVSs, respectively, when compared to
the one-stage object detection algorithm. Compared with YOLOvA4,
the FLOPs of the YOLOv5sp model decreased by 74.07%. The
parameters of the YOLOv5sp model are 88.76% lower than
YOLOv4. The parameters of YOLOvVSs are lower than those of
YOLOVS5sp, but considering the AP value and the performance of
FLOPs, YOLOVS5sp is still optimal. This shows that YOLOvSsp
performs best in the one-stage object detection algorithm.

Table 6 Comparison of experimental results of
different models
Faster R- SHFP- RGDP-

Model  YOLOv4 CNN  YOLO™ YOLOV7-tiny YOLOvV5s YOLOvVSsp
mAP@0.5/% 88.9 92.8 90.4 91.3 88.4 94.5
FPS 26.7 2.4 38.7 47.4 41.6 40.2
FLOPs/G 64.4 370.2 6.3 4.5 159 16.7
Params/M  60.5 137.1 2.7 2.3 6.7 6.8

Faster R-CNN has excellent detection performance in the two-
stage object detection algorithm. Its FLOPs and Params are much
higher than the one-stage detection model, so it has good detection
performance. However, its AP value is still 1.80% lower than that
of YOLOVS5sp. In addition, compared with the SHFP-YOLO™ and
RGDP-YOLOV7-tiny™ models reported in previous pineapple
detection studies, the proposed model achieves higher mAP@0.5
values, exceeding them by 4.54% and 3.50%, respectively.
Although its detection speed is slightly lower than that of RGDP-
YOLOV7-tiny, the proposed model demonstrates superior detection
accuracy. In summary, the improved model is more suitable for the
pineapple-picking robot to identify pineapples. Figure 9 depicts the
loss values of six models during training. It is evident that the loss
value of the YOLOv5sp model during training decreases faster and
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is lower than that of other detection models. Figure 10 illustrates the
mAP@0.5 value curve of the six models during training. The
mAP@0.5 values of all models rise rapidly in the beginning epochs
and slow down gradually with the increase of epochs. The proposed
YOLOv5sp model finally obtained 94.5% AP values, which
exceeded other models.
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| —— Faster R-CNN
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Figure 9 Loss value curves of six detection models
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Figure 10 Training mAP@0.5 value curve of the six models

3.5.1 Model detection performance analysis

The growth environment of pineapple is complex. There are
many problems, such as the fruit being blocked by branches and
leaves, overlapping between fruits, too small pineapple fruit, and so
on. The YOLOvSsp adds the CBAM attention modules to enhance
the capacity to obtain features of pineapple. Figures 11 and 12 show
that even when the fruit is occluded, overlapped, or the fruit target
is too tiny, YOLOvS5sp can detect the occluded pineapple, while the
original YOLOVS5s has missed detection. By comparing e. and f. of
Figure 13 and Figure 14, it can be seen that YOLOv4 and Faster R-
CNN failed to detect pineapple when the pineapples were obscured
or the pineapple targets were too small. YOLOv5sp pineapple
detection under different light conditions and angles is the most
accurate and comprehensive. As a result, compared with other
algorithms, the detection performance of YOLOvSsp for occluded
or overlapped pineapples has been optimized to a certain extent, and
real-time detection of pineapples in
environments can be realized.
3.6 Model visualization analysis

Convolutional neural networks only deal with object detection
problems, but their interpretability in network processing is not very
good. Therefore, in this study, the visualization effects of YOLOv5s
and the improved YOLOvV5sp model are compared with activation
heat maps, and the features extracted from the final convolution
layer are visualized to facilitate the detection of pineapple fruit. In

complex agricultural

the heat map, the intensity of the red area indicates the level of
influence that specific location has on the model’s final decision,
with darker red areas representing greater influence. Since
YOLOvVSsp adds a CBAM attention mechanism, the model pays
more attention to the pineapple fruit association region, which can
effectively suppress the interference of the environment on its
decision-making, as shown in Figure 15¢ and Figure 16e. Moreover,
compared with the visualization results in Figures 15 and 16, the

feature extraction capability of YOLOVSsp is typically superior to
that of the original YOLOVS5s across various conditions. Therefore,
the proposed lightweight pineapple inspection model, YOLOV5sp,
is better suited for integration into the vision module of the
pineapple-picking robot for effective pineapple inspection.

c. Cloudy

d. Evening e. Occlusion f. Small target

Figure 11 Pineapple detection results of YOLOv5sp under

different conditions

a. Sunny morning

b. Sunny noon

c. Cloudy

d. Evening e. Occlusion f. Small target

Figure 12 Pineapple detection results of YOLOvVSs under different
conditions

c. Cloudy

d. Evening e. Occlusion f. Small target
Figure 13  Pineapple detection results of YOLOv4 under different

conditions

3.7 Real-world experimental demonstrations
In the laboratory environment, a picking experiment simulating
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a pineapple-picking robot is carried out. This experiment aims to
explore the precision of the proposed YOLOvSs algorithm in the
actual picking process and to supplement the database simulation
results. The experimental platform is composed of Intel RealSense
Depth Camera D435i, 6-DOF Unitree manipulator, and end
effector, as shown in Figure 17. The experimental steps are as follows:
1) Pineapple plants are placed at a distance of 60 cm from the
platform. The camera collects pineapple images in real time and
performs real-time detection through the YOLOvSsp algorithm to
obtain the specific location of the pineapple. 2) The information
about the pineapple’s position and posture is transmitted to the
robotic arm through the ROS system, the manipulator reaches the
pineapple position autonomously through the path-planning
algorithm, and robust adaptive control*” and fuzzy sliding mode
control®” are used to complete the picking action, as shown in

Figure 18.

a. Sunny morning

d. Evening e. Occlusion f. Small target

Figure 14 Pineapple detection results of Faster R-CNN under
different conditions

a. Sunny morning b. Sunny noon

e. Occlusion

Figure 15 YOLOVS5s heat map

d. Evening f. Small target

a. Sunny morning b. Sunny noon c. Cloudy

e. Occlusion

Figure 16 YOLOVS5sp heat map

d. Evening f. Small target

In the case of hilly areas, it is difficult for conventional crawler
chassis machinery to operate in these areas™. Therefore, a
demonstration using the Unitree robot attempts to evaluate the
in the laboratory
environment, as shown in Figure 19. Experiments demonstrate that
by incorporating the CBAM attention module into the YOLOvSs
model and substituting the CloU function in the detection layer with
the SIoU loss function, the achievement rate of pineapple fruit
harvesting reaches 90%, and the average time consumption is about
15 s. In particular, when branches and leaves block the pineapple,
the position of the pineapple fruit can also be well obtained. As a
result, in robot engineering applications, the designed algorithm of
YOLOVS5s has achieved advanced performance with high-accuracy
detection and strong anti-interference.

picking performance of two pineapples

Real-time
deteetion screen

Figure 18 Demonstration of pineapple picking process
in robot system

[~ a4 =g

Figure 19 Pineapple picking process using the Unitree robot with
manipulator’s arm

4 Conclusion

This study proposes a real-time pineapple fruit detection
approach based on an improved YOLOv5s model, designed to
operate effectively in complex agricultural environments. The
model integrates a CBAM after the C3 module to enhance feature
extraction capabilities, particularly under conditions involving
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occlusion, small targets, and dense fruit clusters, thereby improving
detection accuracy. Furthermore, the CloU loss function in the
detection layer is replaced by the SloU loss function to accelerate
model convergence and enhance detection accuracy. The key
findings are as follows:

1) Ablation studies indicate that the improved YOLOvVSs model
achieves excellent performance. Under the premise of increasing a
small amount of calculation and parameters, the model’s detection
mAP@Q0.5 is increased to 94.5%, which is significantly higher than
the original model (mAP@0.5=88.4%).

2) Evaluation on the custom pineapple fruit dataset shows that
the YOLOv5sp model attains an mAP@0.5 of 94.5%, representing
improvements of 6.30%, 1.83%, 4.54%, 3.50%, and 6.90% over
YOLOv4, YOLOvS5, Faster R-CNN, SHFP-YOLO, and RGDP-
YOLOV7-tiny, respectively.

3) Laboratory-based picking experiments reveal a success rate
of 90% and an average picking time of approximately 15 s,
validating the practical effectiveness of the model.

In conclusion, the proposed YOLOvSsp model effectively
meets the engineering requirements for robotic pineapple
harvesting. However, this study focuses solely on fruit detection and
does not address the classification of fruit maturity levels (e.g.,
immature, green-ripe, or fully ripe). Future research will aim to
expand the model to include maturity level classification while also
enhancing both detection accuracy and processing speed.
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