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Abstract: Ensuring  the  accurate  detection  of  pineapple  fruits  under  the  high  planting  density  and  serious  homogenization
represents  a  current  and  significant  challenge.  In  this  study,  an  enhanced  lightweight  detection  framework,  derived  from the
improved  You  Only  Look  Once  version  5s  (YOLOv5sp),  is  investigated  in  terms  of  the  rapid  and  precise  recognition  of
pineapple  fruit  for  the  agricultural  robot.  Three  Convolutional  Block  Attention  Module  (CBAM)  attention  modules  are
considered  the  backbone  network  responsible  for  feature  extraction,  and  the  SIoU  loss  function  is  introduced  to  replace  the
CIoU loss function to handle the orientation angle and the penalization index. Eventually, the designed YOLOv5sp detection
result  of the mAP@0.5 value is 94.5%, which is 6.30% higher than YOLOv4, 1.83% higher than Faster R-CNN, and 6.90%
higher than classical YOLOv5s. At the same time, compared with the models SHFP-YOLO and RGDP-YOLOv7-tiny in other
pineapple detection literature, the mAP@0.5 of the designed model is 4.54% and 3.5% higher, respectively. Furthermore, when
it  comes to  the agricultural  robot  operating in  diverse natural  situations,  the YOLOv5sp algorithm can maintain a  successful
picking rate of 90% with an average time of 15 s, exhibiting the effectiveness of the visual component in engineering scenarios.
These research results can accelerate the transition of pineapple harvesting from manual to automated operations.
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1    Introduction
Pineapple,  a  tropical  fruit  widely  consumed  both  fresh  and  in

processed forms such as  juice,  has  been extensively studied for  its
economic  significance  and  consumption  trends[1-3].  Currently,
pineapple  harvesting  largely  depends  on  manual  labor.  However,
challenges  such  as  spiny  foliage,  the  limited  time  window  for
optimal  harvesting,  and the  physically  strenuous nature  of  the  task
highlight  the  urgent  need  for  mechanized  harvesting  solutions.  In
this  context,  automated  localization  and  positioning  technologies
have  emerged  as  key  areas  of  focus  for  the  future  development  of
robotic  harvesting  systems[4,5].  Additionally,  accurate  detection  of
fruit  targets  is  crucial  for  the  effective  operation  of  fruit-picking
robots[6-9],  as  it  directly  affects  both  the  success  rate  and  overall
efficiency  of  the  harvesting  process.  However,  pineapples  are
cultivated  in  environments  with  high  planting  density  and
complexity, which presents further challenges to accurate detection.
Therefore, pineapple detection in robotic harvesting presents several
critical  challenges,  including  occlusion  caused  by  branches  or
overlapping fruits within the robot’s field of view[10], and decreased

accuracy  when  identifying  small,  densely  clustered  fruits.  These
issues  negatively  impact  detection  speed  and  precision,  hindering
the  ability  to  match  the  necessities  of  instant  harvesting  and
practical deployment. 

1.1    Prior work
Currently,  the  development  of  vision systems for  fruit-picking

robots  primarily  involves  two  main  approaches:  traditional  image
processing techniques and deep learning methods[11-15]. Conventional
image processing algorithms typically focus on fruit characteristics
such as color, shape, and texture for recognition purposes[16].  These
techniques have been widely applied in agricultural engineering for
an  extended  period.  To  illustrate,  Zhuang  et  al.[17]  presented  a
monocular  vision-based  method  for  citrus  fruit  detection,  which
combines  multiple  color  domain  features  to  extract  candidate  fruit
regions, followed by the use of a support vector machine to analyze
and filter texture characteristics. Similarly, Kim et al.[18] developed a
detection  technique  that  integrates  various  object  attributes  and
encodes  them into  feature  representations.  In  addition,  Liu  et  al.[19]

introduced  a  grapefruit  maturity  assessment  approach  based  on  an
elliptical  contour  modeling  framework.  Li  et  al.[20]  adopted  texture
and  hierarchical  contour  features  as  the  input  of  the  integrated
classifier-RUSBoost  and  achieved  accurate  detection  of  unripe
citrus  fruits  under  various  occlusive  conditions.  Traditional  image
processing  and  machine  learning  techniques,  such  as  color
segmentation,  thresholding,  edge  detection,  and  feature-based
classifiers,  have  demonstrated  effectiveness  in  controlled
environments  and  for  specific  fruit  types.  These  methods  are
relatively  simple,  fast,  and  easy  to  interpret.  However,  their
generalizability is limited in unstructured agricultural environments,
where challenges such as uneven lighting, occlusion, and variability
in  fruit  appearance  frequently  occur.  In  contrast,  deep  learning
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approaches  exhibit  greater  robustness  and  adaptability  in  complex
scenes  by  automatically  learning  hierarchical  feature
representations. Nonetheless, these advantages come at the expense
of  increased  computational  demands  and  the  requirement  for  large
volumes of annotated training data.

In  recent  years,  the  rapid  advancement  of  deep  learning  has
positioned it as the dominant approach for fruit detection[21-25]. Deep
learning-based  object  detection  algorithms  can  be  broadly
categorized into two types: one-stage and two-stage models[26]. Each
approach has its distinct strengths and limitations. While two-stage
models generally offer higher accuracy, they are typically slower in
detection  speed  compared  to  one-stage  models.  In  the  context  of
fruit  harvesting,  it  is  crucial  for  the  detection  speed  of  the  vision
system  to  align  with  the  robot’s  picking  actions.  Consequently,
researchers  are  investigating  deep  learning  algorithms[27–31]  that
balance  both  detection  speed  and  accuracy.  In  terms  of  reducing
model  size,  Zhu  et  al.[32]  developed  the  YOLO-LM  model  by
integrating the GSConv[33] into the Neck network to replace standard
convolutions,  thereby  streamlining  computational  complexity.  The
optimized architecture achieved a mAP@0.5 of 93.18% with 10.17
million  parameters  and  a  model  size  of  19.82  MB.  Yang  et  al.[34]

developed  the  MFD-YOLO  model,  which  reduced  computational
complexity  by  28%  through  a  lightweight  backbone  network  and
adaptive  down  sampling  techniques.  By  applying  a  deep
compression strategy, the model was streamlined to 3.58 MB, while
achieving  a  mAP  of  97.5%,  outperforming  the  baseline  model  by
6.2% in  accuracy.  To  solve  the  problem  of  small  target  detection,
Wang et al.[35] proposed DSE-YOLO, which improved the detection
accuracy  of  young  strawberry  fruit  by  combining  point-by-point
convolution and extended convolution. Li et al.[27] introduced BiFPN
and  dynamic  label  assignment  strategy  in  pitaya  detection,
achieving  a  detection  accuracy  of  97.8%.  Bai  et  al.[36]  integrated
Swin  Transformer  prediction  head  in  YOLOv7  to  build  a
lightweight  strawberry  detection  model,  achieving  45  FPS  and
92.1%  mAP.  To  solve  the  problem  of  uneven  sample  distribution
and complex background interference, Ma et al.[37] used WIoU loss
function  to  replace  traditional  CIoU  loss  function,  and  introduced
the  dynamic  anchor  frame  quality  adjustment  strategy  to  optimize
the  bounding  box  regression  performance  of  apple  detection.
However,  the  above  detection  methods  generally  fail  to  achieve  a
balance among recognition accuracy, real-time detection speed, and
lightweight  algorithm  design,  which  are  critical  requirements  for
practical  robotic  harvesting  systems  that  demand  high  precision,
rapid  response  to  dynamic  environments,  and  deployment  on
resource-constrained embedded hardware. 

1.2    Motivation and contributions
Based  on  the  previous  discussion,  a  YOLOv5sp  lightweight

network  of  pineapple  detection  for  the  agricultural  robot  is
investigated  in  this  article.  The  proposed  model  incorporates  an
updated Convolutional Block Attention Module (CBAM) within the
Cross-Stage  Partial  Darknet  53  (CSP-Darknet53)  layers  of  the
classical  YOLOv5s architecture,  aiming to reduce irrelevant  image
information  and  enhance  detection  accuracy.  To  overcome  the
limitations  of  the  Complete  Intersection  over  Union  (CIoU)  loss
function,  particularly  its  inability  to  account  for  the  directional
alignment  between  predicted  and  ground-truth  bounding  boxes,
which  slows  convergence,  the  Scylla  Intersection  over  Union
(SIoU)  loss  function  is  introduced.  This  improvement  enhances
angle  optimization  between  predicted  and  ground-truth  bounding
boxes,  thereby  increasing  the  efficiency  of  model  training  and
detection  accuracy.  In  addition,  in  order  to  enhance  the  robustness

and  generalization  capability  of  the  model  in  challenging
agricultural  scenarios,  image augmentation strategies were adopted
to the dataset. The optimized network was effectively implemented
on  a  resource-constrained  microcontroller,  demonstrating  its
competence  in  accurately  and  swiftly  detecting  pineapples  in
practical field environments.

The main achievements of this study are as below:
1)  A high-accuracy,  lightweight  detection  network is  explored

for  pineapple  recognition  on  agricultural  robots.  The  CBAM
attention  module  is  integrated  into  the  CSP-Darknet53  backbone
network,  and  the  SIoU  loss  function  is  utilized  for  enhanced
detection speed.

2)  Comprehensive  experiments  conducted on mixed pineapple
datasets  under  various  conditions,  including  different  orientations,
lighting,  and  backgrounds,  demonstrate  that  the  YOLOv5sp
algorithm  achieves  outstanding  performance,  with  an  accuracy  of
94.5%. This result significantly surpasses the performance of other
object detection networks.

3)  The  YOLOv5sp  model  is  implemented  on  the  agricultural
robot,  achieving  a  harvest  success  rate  of  90%  and  an  average
processing  time  of  15  seconds,  demonstrating  its  exceptional
performance in practical engineering applications.

The structure of the following chapters is as follows: Section 2
presents  the  establishment  of  a  pineapple  image  dataset  and  the
development of the pineapple detection network. Section 3 provides
a  comparison  and  analysis  of  the  data  collected  from  both
simulations and experiments. Lastly, Section 4 concludes the paper
and outlines directions for future research. 

2    Materials and methods
 

2.1    Data acquisition
The  image  dataset  used  in  this  study  comes  from  a  pineapple

garden  located  in  Xuwen  County,  Zhanjiang  City,  Guangdong
Province.  The  Intel  RealSense  D435i  Camera  serves  as  the  image
collection  device,  capturing  images  at  a  resolution  of  1920×1080
from  various  angles,  including  45°  and  90°.  In  constructing  the
pineapple  fruit  dataset,  environmental  factors  such  as  time  of  day
and weather  conditions  during actual  robotic  harvesting  operations
were  considered  to  enhance  the  model’s  generalization  and
robustness.  Lighting  conditions  on  sunny  days  fluctuate  notably
from  morning  to  evening.  As  illustrated  in  Figure  1a,  the  light  is
relatively  soft  during  the  morning  hours.  Under  strong  sunlight
conditions,  the  light  becomes  intense,  creating  dynamic  shadow
patterns,  as  shown  in  Figure  1b.  In  contrast,  cloudy  days  provide
relatively  uniform  and  diffuse  lighting,  as  depicted  in  Figure  1c.
After  sunset,  light  intensity  decreases  sharply,  as  shown  in
 

a. Sunny morning b. Sunny noon c. Cloudy

d. Evening e. Occlusion f. Small target

Figure 1    Images of pineapples captured under varying weather
conditions and from multiple viewing angles
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Figure  1d.  In  robotic  vision  scenarios,  pineapple  fruits  are  often
heavily occluded by surrounding branches and leaves, as illustrated
in  Figure  1e.  Additionally,  when  pineapples  are  viewed  from  a
distance,  the  target  appears  small,  as  shown  in  Figure  1f.  The
dataset  composition comprehensively accounts  for  a  wide range of
environmental  interference  factors,  ensuring  the  robot  can  perform
reliably across diverse natural conditions. 

2.2    Image augmentation
Deep learning network for target recognition necessitates large

datasets  to  strengthen  the  algorithm’s  ability  to  generalize  and
improve  its  robustness.  Bailly  et  al.[38]  found  that  a  more
comprehensive  dataset  can  enhance  the  performance  of  the  deep
learning  algorithm.  Nevertheless,  the  datasets  used  in  this  study
only  comprise  1081  pineapple  images.  To  solve  the  problem  of  a
limited  dataset,  this  work  employs  image  enhancement  methods
such  as  geometric  alterations,  color  space  enhancement,  filtering,
and  randomization.  In  addition,  incorporating  larger-scale  training
datasets has the ability to enhance the model’s generalization ability
and  help  mitigate  the  risk  of  overfitting[39].  Image  enhancement  is
about  improving  the  visual  details  of  an  image  to  detect  objects[40]

accurately.  To  augment  the  generalization  and  robustness  of  the
algorithm in a complex agricultural background, this study employs
the  ImgAug  library  to  augment  the  dataset.  ImgAug  provides
various augmentation techniques, including the addition of random
pixels, Gaussian noise, random rectangular occlusion, pixel dropout,
motion  blur,  adaptive  histogram  equalization,  horizontal  and
vertical  flipping,  HSV  transformation,  random  brightness
adjustment, and average pooling. It supports both single-image and
batch processing, and automatically updates the corresponding label
files  with  each enhancement.  In  this  study,  data  augmentation  was
performed  using  image  rotation,  brightness  adjustment,  and
adaptive histogram equalization. As shown in Figure 2, Figure 2a is
the  original  image,  Figure  2b  is  the  image  after  vertical  rotation,
Figure 2c is the image after transform brightness,  and Figure 2d is
the  image  after  histogram  equalization.  After  image  enhancement,
the pineapple image dataset increased to 5190, as shown in Table 1.
The dataset was randomly divided into training, validation, and test
sets in an 8:2:1 ratio. Pineapple fruits were annotated using the open-
source tool LabelImg, with the annotations saved in txt format and
the label assigned as “pineapple”.
  

a. Original image

c. Brightness transformation

b. Vertical rotation

d. Histogram equalization

Figure 2    Image enhancement
  

2.3    YOLOv5sp networks development
YOLOv5,  developed  by  Glenn  Jocher,  achieves  real-time

detection  speeds  of  up  to  140  frames  per  second  (FPS)  while

maintaining  high  detection  accuracy  and  a  compact  model  size[41].
These  characteristics  make  it  particularly  well-suited  for
deployment  in  pineapple  harvesting  robots  operating  in  real-world
agricultural environments. The official versions of YOLOv5 include
YOLOv5s,  YOLOv5m,  YOLOv5l,  and  YOLOv5x,  all  of  which
share  the  same  underlying  architecture.  The  primary  differences
among them lie  in  the depth and width multipliers  specified in the
“YAML” configuration files.
  

Table 1    Number of images produced through data
enhancement approaches

Raw image Equalization Transform brightness Image rotation Total
1038 1038 1038 2076 5190

 

Given the need for efficient and lightweight models in complex
orchard  environments  with  uneven  lighting  and  variable  weather
conditions,  this  study  selects  and  further  optimizes  the  YOLOv5s
variant  by  proposing  an  improved  network  architecture.  The
enhancements  include  a  backbone  network  with  stronger  feature
extraction  capabilities,  an  optimized  neck  for  efficient  feature
aggregation, and a detection head incorporating a new loss function.
Specifically,  the  backbone  is  based  on  an  improved  CSP-
Darknet53[42],  where  the  Convolutional  Block  Attention  Module
(CBAM)  is  embedded  after  each  CSP  Bottleneck  with  three
convolutions (C3). This addition strengthens the network’s ability to
focus  on  pineapple-relevant  features,  assigning  higher  weights  to
semantically  important  regions  and  thus  improving  detection
precision. The extracted features are output as Feature 1, Feature 2,
and  Feature  3  and  forwarded  to  the  neck  for  further  processing.
Moreover,  the SIoU loss  function replaces  the CIoU loss  function,
enhancing bounding box regression accuracy by aligning predicted
boxes  more  closely  with  ground  truth  and  accelerating  model
convergence.  The  complete  network  architecture  is  illustrated  in
Figure 3. 

2.3.1    CBAM attention module

Fc

F1

F1

Fs F1

F2

Traditional  detection  models  may  have  some  limitations  in
obtaining  and  representing  pineapple  fruit  characteristics.  For
example,  they  may  not  be  effective  at  establishing  relationships
between  channels  or  perform  poorly  when  dealing  with  complex
target  structures  and  background  noise.  Therefore  this  study
introduced  the  CBAM  attention  mechanism  to  improve  this
situation. CBAM is mainly composed of a feed-forward CNN with
a  one-way  multi-layer  structure,  making  it  simple  and  efficient.  It
contains  two  key  components:  channel  attention  (CA)  and  spatial
attention  (SA).  The  relationship  between  the  different  channels  on
the  feature  map  is  established  by  CA,  which  can  adjust  their
contributions by calculating the weight of each channel. This helps
to  highlight  the  target-related  channels  and  suppress  the  impact  of
irrelevant  information.  SA  is  used  to  establish  the  relationship
between  different  spatial  locations  in  the  feature  map  to  extract
more  effective  features.  By  combining  CA  and  SA,  the  CBAM
attention  mechanism  can  adaptively  adjust  the  weights  of  each
channel and spatial position in the feature map to better capture the
characteristics  of  pineapple  fruit.  Figure  4  describes  the  working
process  of  this  module.  Initially,  the  module  infers  a  one-
dimensional  CA  map    through  the  channel  sub-module  and
multiplies it item by item with the feature map F to obtain  . Next,
  is  utilized  as  the  input  of  the  SA sub-module  to  infer  the  two-

dimensional  SA map  ,  multiplied  by    item by item,  to  obtain
an  adaptive  refinement  feature  map  .  Figure  5  describes  the
calculation  process  of  the  CA  sub-module.  The  details  of  the  two
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sub-modules are described below.
F

F

The  intermediate  feature  map   of  an  image  is  chosen  as  the
CBAM  input  feature  map.  First,  the  CA  sub-module  of  CBAM
performs  maximum  pooling  and  average  pooling  on  the  ,
respectively,  which  are  to  congregate  the  spatial  information  and

Fc1 Fc2

Fc F1

F Fc

output two various description symbols   and  . Then they are
sent  to  a  shared  network  comprised  of  multi-layer  perceptions
(MLP). Finally, the feature vectors are combined using the item-by-
item summation approach to produce a CA map  .   is obtained
by  element-by-element  multiplication  of    and  .  Equations  (1)-
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(2) depict the CA calculation procedure.

Fc = β(MLP(AvgPool(F)+MLP(MaxPool(F))) (1)

F1 = Fc ×F (2)

Fs1

Fs2

Fs F2

Fs F1

The spatial attention (SA) sub-module mainly generates a two-
dimensional SA map based on the spatial correlation of features. It
initially  performs  average  and  maximum  pooling  manipulations
along the direction of the channel to generate two 2D maps:   and

.  They  represent  the  average  and  maximum  pool  features
through the channel, respectively. Then the convolution layer joins
and convolves these two features to generate a two-dimensional SA
graph  .  Finally,  the  final  refined  output    can  be  obtained  by
multiplying   and   element  by element. Figure  6 describes  the
calculation process of the SA sub-module. The calculation of SA is
shown in Equations (3)-(4).

Fs = β(C(MLP(AvgPool(F1)+MLP(MaxPool(F1)))) (3)

F2 = Fs ×F1 (4)
 

2.3.2    Improvement of loss function
An  accurate  loss  function  is  a  fundamental  component  for

evaluating and optimizing the performance of a detection model. In
the  original  YOLOv5  algorithm,  the  position  loss  function  is

implemented  using  the  CIoU  loss  function,  which  examines
differences  in  length  and  width,  implying  that  a  prediction  box
closer to the ground truth corresponds to higher accuracy. However,
the aspect ratio represents a more ambiguous metric, and CIoU does
not address the varying challenges in detecting pineapple fruits. For
the first time, the SIoU function, proposed by Zhora[43], considers the
direction  of  the  mismatch  between  the  prediction  box  and  the
ground  truth  by  redefining  the  penalty  mechanism.  Incorporating
the vector  angle  between regressions  enhances  detection precision,
as  illustrated  in Figure  7,  with  Equations  (5)  and  (6)  outlining  the
calculation formulas.

LSIoU = 1− IoU+ ∆+Ω
2

(5)

IoU =
∣∣B∩BGT

∣∣
|B∪BGT| (6)

∆ Ωwhere,    denotes  the  distance-based  loss  component,  while 
signifies the loss associated with shape discrepancies. To reduce the
number  of  uncertain  variables  associated  with  distance,  this  study
introduced  an  angle-aware  LF  component  into  the  loss  function.
Figure  7  illustrates  the  scheme  for  calculating  the  angle  cost
contribution,  and  Equations  (7)-(10)  define  the  angle  cost  formula
in detail.
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where,   and   denote the   and   coordinates of the center point
of  the  ground-truth  bounding  box,  respectively.    and 
represent  the    and    coordinates  of  the  center  point  of  the
predicted  bounding  box.  The  parameter    indicates  the  minimum

ch

distance between the center points of the predicted and ground-truth
boxes.    refers  to  the  vertical  distance,  or  height  difference,
between the center of the ground-truth box and that of the predicted
box. Figure 8 illustrates the scheme for calculating the distance cost
contribution,  and  Equations  (11)-(14)  depict  the  distance  cost
definition formula.

∆ =
∑

t=xy

(1− e−γρt) (11)

ρx =

Å
bgt

cx
−bcx

cw

ã2
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Figure 8    Schematic diagram of distance loss calculation
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γ = 2−Λ (14)

π

4

γ

where  α  approaches  0,  the  influence  of  the  distance  cost  on  the
results  becomes negligible.  On the other  hand,  when α is  closer  to
, the effect of distance cost on the result is becoming significant.

However,  as  the  angle  increases,  the  problem  becomes  more
serious.  As  a  result,  when  the  angle  grows,    is  a  distance  value
given  priority  in  time.  The  shape  cost  function  is  defined  in
Equations (15)-(17).

δ =
∑
t=h,w

(1− e−wt )η (15)

ωw =
|w−wgt |

max(w,wgt)
(16)

ωh =
|h−hgt |

max(h,hgt)
(17)

h w

η

where,   is used to denote the height of the prediction box, and   is
used  to  represent  the  width  of  the  prediction  box.  The  model’s
attention  to  shape  loss  is  defined  by  ,  which  is  unique  for  each
dataset.

By incorporating the direction problem between the prediction
box  and  the  authentic  box  in  the  loss  function,  SIoU  significantly
decreases the degree of freedom. Compared with the CIoU function,
it  can  achieve  faster  convergence  during  the  training  phase  and
better  inference  performance.  It  is  effective  for  improving  the
precision of the algorithm for real-time detection of pineapple fruit
and reducing the time required for detection. 

2.4    Model evaluation
In  this  study,  five  evaluation  metrics  are  utilized  to

comprehensively  assess  the  real-time  detection  performance  of  the
enhanced  pineapple  fruit  detection  model.  The  first  metric,
precision  (P),  represents  the  proportion  of  correct  positive
predictions among all positive predictions. The second metric, recall
(R),  denotes  the  proportion  of  correctly  predicted  pineapple  fruit
instances  relative  to  all  actual  pineapple  fruit  instances  in  the
dataset.  The  third  evaluation  metric,  average  precision  (AP),
quantifies  the  area  under  the  precision-recall  (P-R)  curve
specifically for the pineapple category. The fourth metric, F1 score,
represents  the  harmonic  mean  of  precision  and  recall,  providing  a
comprehensive  measure  that  balances  both  aspects.  The  fifth  and
final  metric,  frames  per  second  (FPS),  indicates  the  model’s
processing speed by measuring how many images it can analyze per
second.  A  model  is  generally  considered  capable  of  real-time
detection  when  its  FPS  exceeds  30;  otherwise,  detection  latency
may  result  in  information  loss.  These  metrics  comprehensively
evaluate the network’s detection performance and are calculated as
shown in Equations (18)-(22).

Precision = TP
FP+TP (18)

Recall = TP
FN+TP (19)

AP =
w 1

0
P (R)dR (20)

F1 =
2P×R
P+R

(21)

FPS = 1
ȳ

(22)

where,  TP  (True  Positive)  refers  to  the  accurate  prediction  of

labeled  pineapple  fruits,  while  FP  (False  Positive)  represents  the
number  of  images  incorrectly  predicted  as  containing  pineapples.
FN (False Negative) indicates the number of pineapple targets that
were not detected, and TN (True Negative) refers to instances where
pineapples are not present in the image and were correctly noted as
not being present. The symbol y̅ denotes the average detection time
per  image. Table  2 depicts  the  confusion  matrix  for  categorization
outcomes.
  

Table 2    Confusion matrix for categorization outcomes
Authentic Predicted Confusion Matrix
Negative Positive False Positive (FP)
Positive Positive True Positive (TP)
Negative Negative True Negative (TN)
Positive Negative False Negative (FN)

  

3    Results
 

3.1    Network training
The  study  is  conducted  on  a  Dellg3  3579  laptop.  It  is  mainly

equipped with an Intel (R) Core (TM) i5-8300H CPU with a central
frequency of 2.30 GHz and a 4 GB GTX 1050 graphics card. Under
the  Windows  10  system,  Anaconda3  is  installed  to  build  the
PyTorch deep learning framework. During model training, libraries
such as Opencv4.6, CUDA11.3, and Tensorboard2.10 are called. In
addition, Visual Studio (VS) 2022 and Pycharm2022 are used in the
experiment.  To  ensure  the  reliability  of  the  experiment,  the
following  experiments  are  carried  out  with  the  same  training
parameters and hyperparameters. This study set the batch size to 8,
weight decay to 0.0005, momentum value to 0.937, learning rate to
0.01, and training epoch to 300. 

3.2    Comparison  experiments  of  different  attention
mechanisms in the backbone network

To  enhance  the  capacity  of  YOLOv5s  to  obtain  pineapple
feature information, a CBAM attention module is inserted after the
C3 module. In this experiment, the Squeeze-and-Excitation network
(SEnet),  CBAM,  Coordinate  Attention  network  (CAnet),  and
Efficient  Channel  Attention  network  (ECAnet)  are  added  to  the
same  position  in  the  backbone  network  of  YOLOv5s  for
comparative experiments.

According to Table 3, the number of Floating-point Operations
Per Second (FLOPs) and parameters increased slightly after adding
the  attention  mechanism,  but  the  detection  performance  was
enhanced  to  some  degree.  Among  them,  the  CBAM  attention
mechanism  had  the  most  significant  improvement  on  model
performance,  with  mAP@0.5  value  maintained  at  91.28%,  which
was  4.35%  higher  than  before.  By  comparison,  adding  SEnet,
ECAnet, and CAnet modules resulted in 1.40%, 1.90%, and 2.39%
increments  of  mAP@0.5  values,  respectively.  However,  their
FLOPs and Params were only slightly different. Obviously, CBAM
performs better than other attention mechanisms. The experimental
finding demonstrates  that  adding a  CBAM attention module  to  the
backbone network can significantly enhance the attention degree of
the detection model to pineapple fruit and inhibit the interference of
a  sophisticated  agricultural  environment  background,  which  can
significantly  increase  the  model’s  detection  performance  for
pineapple fruit. 

3.3    The influence of data expansion method
In  this  section,  image  enhancement  techniques  such  as  image

rotation, brightness adjustment, and adaptive histogram equalization
are employed to augment the dataset. A controlled variable method
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is used to explore the impact of each enhancement approach on the
performance of the YOLOv5s model. Initially, the model is trained
using  the  fully  enhanced  dataset.  Subsequently,  each  enhancement
method is individually removed during training to evaluate its effect
on  precision  and  F1  score.  The  experiment  also  investigates  the
influence  of  multi-angle  image  acquisition,  which  simulates  the
varied  perspectives  encountered  by  the  picking  robot  during
operation.  After  data  augmentation  and  multi-angle  photography,
the dataset size increased to 5190 images.
 
 

Table 3    Result comparison of performance across various
attention mechanisms integrated into the backbone network

Model Recall Precision mAP@0.5 FLOPs/G Params/M
YOLOv5s 85.64% 87.37% 88.43% 15.94 6.69

Within CBAM 89.15% 91.43% 91.28% 16.71 6.75
Within SEnet 86.56% 88.49% 89.67% 16.63 7.21
Within ECAnet 87.61% 89.18% 90.11% 16.62 7.15
Within CAnet 88.04% 90.13% 89.97% 16.78 6.92

 

The  experimental  results,  as  summarized  in  Table  4,  indicate
that  multi-angle  image  acquisition  significantly  improves  model
performance,  as  its  removal  causes  the  F1  score  to  decrease  by
1.36%  and  the  precision  by  0.85%.  Removing  adaptive  histogram
equalization leads to a 1.48% reduction in precision, suggesting its
importance  in  enhancing  image  contrast  and  detection  accuracy.
Similarly,  brightness  adjustment  simulates  illumination  variability
in natural environments and effectively improves model robustness
and generalization, as its removal results in a decrease of 1.67% in
F1  score  and  1.06%  in  precision.  In  contrast,  the  vertical  rotation
method  contributes  relatively  little  to  performance  improvement,
with  only  a  0.32%  decrease  in  accuracy  and  a  0.94%  drop  in  F1
score observed when it is excluded. These findings demonstrate the
effectiveness  of  specific  image  enhancement  techniques  and
acquisition  strategies  in  improving  the  robustness  and  accuracy  of
the pineapple fruit detection model in complex field background.
 
 

Table 4    F1 score and mAP@0.5 value obtained by different
image enhancement methods

Data enhancement method F1 score mAP@0.5
All dataset 95.7% 94.5%
Remove multi-angle viewing method 94.4% 93.7%
Remove vertical rotation method 94.8% 94.2%
Remove brightness transformation method 94.1% 93.4%
Remove adaptive histogram equalization method 93.7% 93.1%

  

3.4    Ablation experiments
To  evaluate  the  effectiveness  of  the  proposed  pineapple

detection  algorithm,  a  series  of  ablation  experiments  were
conducted  to  examine  the  individual  contributions  of  the  CBAM
attention  module,  the  SIoU  loss  function,  and  the  image
augmentation  techniques.  As  listed  in  Table  5,  the  various
enhancements  to  the  model  structure  and  algorithm  strategy  yield
significant  improvements.  Specifically,  the  mAP@0.5  for
YOLOv5sp increased by 6.9% compared to the original YOLOv5s,
while  the  FLOPs  and  Params  saw  relatively  modest  increases  of
4.83%  and  0.9%,  respectively.  Incorporating  an  attention
mechanism strengthens the network’s feature extraction capabilities,
enabling  it  to  effectively  reduce  interference  and  enhance  the
model’s  detection  accuracy  in  challenging  environments.  The
mAP@0.5 improved by 4.35%, while FLOPs and Params increased
by 4.83% and 0.90%, respectively. Simultaneously, by refining the

loss  function  to  account  for  the  vector  angle  in  the  expected
regression and redefining the penalty criteria,  the overall  degree of
freedom  in  the  loss  is  significantly  reduced.  This  adjustment
facilitates  both  the  converging  process  and  the  detection  accuracy
during training. Without affecting the complexity of the model and
the  amount  of  computation,  the  mAP@0.5  further  improves  by
0.50%.  Furthermore,  the  application  of  image  enhancement
techniques  helps  to  expand  the  dataset,  boosting  the  robustness  of
the  detection  model  and  leading  to  a  further  increase  in  pineapple
detection  accuracy  by  1.93%.  As  demonstrated  in  Table  5,  the
mAP@0.5 of the network shows a gradual improvement as a result
of  the  enhancements  implemented  using  the  aforementioned
methods.
  

Table 5    Ablation experiments results

Tag
Basic add add add

mAP@0.5 Flops/G Params/M
Model CBAM SIoU Image enhancement

1 ✓ - - - 88.43% 15.94 6.69
2 ✓ ✓ - - 92.28% 16.71 6.75
3 ✓ ✓ ✓ - 92.74% 16.71 6.75
4 ✓ ✓ ✓ ✓ 94.53% 16.71 6.75

  

3.5    Comparison of different algorithms
The  whole  pineapple  dataset  is  utilized  for  training  the  model

and  assessing  the  performance  of  the  improved  YOLOv5s.
Meanwhile,  the  proposed  YOLOv5sp  model  is  compared  against
YOLOv4,  YOLOv5s,  and  Faster  R-CNN  to  demonstrate  its
superiority. Table 6 shows that when combined with AP value, FPS,
FLOPs,  and  Params,  YOLOv5sp  performs  most  suitably.  The  AP
value  of  the  YOLOv5sp  model  is  6.30%  and  6.90%  higher  than
those  of  YOLOv4 and YOLOv5s,  respectively,  when compared  to
the one-stage object detection algorithm. Compared with YOLOv4,
the  FLOPs  of  the  YOLOv5sp  model  decreased  by  74.07%.  The
parameters  of  the  YOLOv5sp  model  are  88.76%  lower  than
YOLOv4.  The  parameters  of  YOLOv5s  are  lower  than  those  of
YOLOv5sp,  but  considering  the  AP  value  and  the  performance  of
FLOPs,  YOLOv5sp  is  still  optimal.  This  shows  that  YOLOv5sp
performs best in the one-stage object detection algorithm.
  

Table 6    Comparison of experimental results of
different models

Model YOLOv4Faster R-CNN
SHFP-
YOLO[44]

RGDP-
YOLOv7-tiny[45]YOLOv5sYOLOv5sp

mAP@0.5/% 88.9 92.8 90.4 91.3 88.4 94.5
FPS 26.7 2.4 38.7 47.4 41.6 40.2

FLOPs/G 64.4 370.2 6.3 4.5 15.9 16.7
Params/M 60.5 137.1 2.7 2.3 6.7 6.8

 

Faster R-CNN has excellent detection performance in the two-
stage  object  detection  algorithm.  Its  FLOPs  and  Params  are  much
higher than the one-stage detection model, so it has good detection
performance.  However,  its  AP value  is  still  1.80% lower  than  that
of YOLOv5sp. In addition, compared with the SHFP-YOLO[44] and
RGDP-YOLOv7-tiny[45]  models  reported  in  previous  pineapple
detection  studies,  the  proposed  model  achieves  higher  mAP@0.5
values,  exceeding  them  by  4.54%  and  3.50%,  respectively.
Although  its  detection  speed  is  slightly  lower  than  that  of  RGDP-
YOLOv7-tiny, the proposed model demonstrates superior detection
accuracy. In summary, the improved model is more suitable for the
pineapple-picking robot to identify pineapples. Figure 9 depicts the
loss values of six models during training. It is evident that the loss
value of the YOLOv5sp model during training decreases faster and
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is lower than that of other detection models. Figure 10 illustrates the
mAP@0.5  value  curve  of  the  six  models  during  training.  The
mAP@0.5 values of all models rise rapidly in the beginning epochs
and slow down gradually with the increase of epochs. The proposed
YOLOv5sp  model  finally  obtained  94.5%  AP  values,  which
exceeded other models.
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Figure 10    Training mAP@0.5 value curve of the six models
  

3.5.1    Model detection performance analysis
The  growth  environment  of  pineapple  is  complex.  There  are

many  problems,  such  as  the  fruit  being  blocked  by  branches  and
leaves, overlapping between fruits, too small pineapple fruit, and so
on. The YOLOv5sp adds the CBAM attention modules to enhance
the capacity to obtain features of pineapple. Figures 11 and 12 show
that even when the fruit is occluded, overlapped, or the fruit target
is too tiny, YOLOv5sp can detect the occluded pineapple, while the
original YOLOv5s has missed detection. By comparing e. and f. of
Figure 13 and Figure 14, it can be seen that YOLOv4 and Faster R-
CNN failed to detect pineapple when the pineapples were obscured
or  the  pineapple  targets  were  too  small.  YOLOv5sp  pineapple
detection  under  different  light  conditions  and  angles  is  the  most
accurate  and  comprehensive.  As  a  result,  compared  with  other
algorithms,  the  detection  performance  of  YOLOv5sp  for  occluded
or overlapped pineapples has been optimized to a certain extent, and
real-time  detection  of  pineapples  in  complex  agricultural
environments can be realized. 

3.6    Model visualization analysis
Convolutional  neural  networks only deal  with object  detection

problems, but their interpretability in network processing is not very
good. Therefore, in this study, the visualization effects of YOLOv5s
and the  improved YOLOv5sp model  are  compared  with  activation
heat  maps,  and  the  features  extracted  from  the  final  convolution
layer  are visualized to facilitate  the detection of  pineapple fruit.  In

the  heat  map,  the  intensity  of  the  red  area  indicates  the  level  of
influence  that  specific  location  has  on  the  model’s  final  decision,
with  darker  red  areas  representing  greater  influence.  Since
YOLOv5sp  adds  a  CBAM  attention  mechanism,  the  model  pays
more  attention to  the  pineapple  fruit  association region,  which can
effectively  suppress  the  interference  of  the  environment  on  its
decision-making, as shown in Figure 15e and Figure 16e. Moreover,
compared  with  the  visualization  results  in  Figures  15  and  16,  the
feature  extraction  capability  of  YOLOv5sp  is  typically  superior  to
that of the original YOLOv5s across various conditions. Therefore,
the  proposed  lightweight  pineapple  inspection  model,  YOLOv5sp,
is  better  suited  for  integration  into  the  vision  module  of  the
pineapple-picking robot for effective pineapple inspection.

  

a. Sunny morning b. Sunny noon c. Cloudy

d. Evening e. Occlusion f. Small target

Figure 11    Pineapple detection results of YOLOv5sp under
different conditions

  

a. Sunny morning b. Sunny noon c. Cloudy
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detection

Miss
detection

d. Evening e. Occlusion f. Small target

Figure 12    Pineapple detection results of YOLOv5s under different
conditions

  

a. Sunny morning b. Sunny noon c. Cloudy

d. Evening e. Occlusion f. Small target

Miss
detectionMiss

detection

Miss
detection

Figure 13    Pineapple detection results of YOLOv4 under different
conditions

  

3.7    Real-world experimental demonstrations
In the laboratory environment, a picking experiment simulating
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a  pineapple-picking  robot  is  carried  out.  This  experiment  aims  to
explore  the  precision  of  the  proposed  YOLOv5s  algorithm  in  the
actual  picking  process  and  to  supplement  the  database  simulation
results.  The experimental  platform is  composed of  Intel  RealSense
Depth  Camera  D435i,  6-DOF  Unitree  manipulator,  and  end
effector, as shown in Figure 17. The experimental steps are as follows:
1)  Pineapple  plants  are  placed  at  a  distance  of  60  cm  from  the
platform.  The  camera  collects  pineapple  images  in  real  time  and
performs  real-time  detection  through  the  YOLOv5sp  algorithm  to
obtain  the  specific  location  of  the  pineapple.  2)  The  information
about  the  pineapple’s  position  and  posture  is  transmitted  to  the
robotic  arm  through  the  ROS  system,  the  manipulator  reaches  the
pineapple  position  autonomously  through  the  path-planning
algorithm,  and  robust  adaptive  control[46]  and  fuzzy  sliding  mode
control[47]  are  used  to  complete  the  picking  action,  as  shown  in
Figure 18.
  

a. Sunny morning b. Sunny noon c. Cloudy

d. Evening e. Occlusion f. Small target

Miss
detection

Miss
detection

Figure 14    Pineapple detection results of Faster R-CNN under
different conditions

  

a. Sunny morning b. Sunny noon c. Cloudy

d. Evening e. Occlusion f. Small target

Figure 15    YOLOv5s heat map

  

a. Sunny morning b. Sunny noon c. Cloudy

d. Evening e. Occlusion f. Small target

Figure 16    YOLOv5sp heat map
 

In the case of hilly areas, it is difficult for conventional crawler
chassis  machinery  to  operate  in  these  areas[48].  Therefore,  a
demonstration  using  the  Unitree  robot  attempts  to  evaluate  the
picking  performance  of  two  pineapples  in  the  laboratory
environment, as shown in Figure 19. Experiments demonstrate that
by  incorporating  the  CBAM  attention  module  into  the  YOLOv5s
model and substituting the CIoU function in the detection layer with
the  SIoU  loss  function,  the  achievement  rate  of  pineapple  fruit
harvesting reaches 90%, and the average time consumption is about
15  s.  In  particular,  when  branches  and  leaves  block  the  pineapple,
the  position  of  the  pineapple  fruit  can  also  be  well  obtained.  As  a
result,  in  robot  engineering applications,  the designed algorithm of
YOLOv5s has  achieved advanced performance with high-accuracy
detection and strong anti-interference.
  

Six degrees of
freedom manipulator

Real-time
deteetion screen

Intel RealSense D435i

End effector

Figure 17    Pineapple picking experimental platform
  

1-1 1-2 1-3

2-1 2-2 2-3

Figure 18    Demonstration of pineapple picking process
in robot system

  

1-1 1-2 1-3

2-1 2-2 2-3

Figure 19    Pineapple picking process using the Unitree robot with
manipulator’s arm

  

4    Conclusion
This  study  proposes  a  real-time  pineapple  fruit  detection

approach  based  on  an  improved  YOLOv5s  model,  designed  to
operate  effectively  in  complex  agricultural  environments.  The
model  integrates  a  CBAM after  the  C3 module  to  enhance  feature
extraction  capabilities,  particularly  under  conditions  involving
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occlusion, small targets, and dense fruit clusters, thereby improving
detection  accuracy.  Furthermore,  the  CIoU  loss  function  in  the
detection  layer  is  replaced  by  the  SIoU loss  function  to  accelerate
model  convergence  and  enhance  detection  accuracy.  The  key
findings are as follows:

1) Ablation studies indicate that the improved YOLOv5s model
achieves  excellent  performance.  Under  the premise of  increasing a
small  amount  of  calculation  and parameters,  the  model’s  detection
mAP@0.5 is increased to 94.5%, which is significantly higher than
the original model (mAP@0.5=88.4%).

2) Evaluation on the custom pineapple fruit dataset shows that
the YOLOv5sp model attains an mAP@0.5 of 94.5%, representing
improvements  of  6.30%,  1.83%,  4.54%,  3.50%,  and  6.90%  over
YOLOv4,  YOLOv5,  Faster  R-CNN,  SHFP-YOLO,  and  RGDP-
YOLOv7-tiny, respectively.

3)  Laboratory-based picking experiments  reveal  a  success  rate
of  90%  and  an  average  picking  time  of  approximately  15  s,
validating the practical effectiveness of the model.

In  conclusion,  the  proposed  YOLOv5sp  model  effectively
meets  the  engineering  requirements  for  robotic  pineapple
harvesting. However, this study focuses solely on fruit detection and
does  not  address  the  classification  of  fruit  maturity  levels  (e.g.,
immature,  green-ripe,  or  fully  ripe).  Future  research  will  aim  to
expand the model to include maturity level classification while also
enhancing both detection accuracy and processing speed. 
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