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Abstract: Rapid economic growth since the turn of the century has often been accompanied by significant challenges,
including fossil fuel depletion, environmental degradation, and energy security concerns. Urgent measures are essential to
promote environmentally friendly advancements and adopt sustainable energy solutions. Biomass energy, an important
component of renewable energy, stands out as the sole renewable energy source containing carbon and has attracted significant
attention from governments and the scientific community worldwide. Attention to biomass conversion technologies and their
practical applications has gradually increased. This paper provides an in-depth analysis of the utilization of biomass and its
wastes, and systematically introduces the progress of the application of biomass conversion technologies, including
biochemical and thermochemical conversion, to provide readers with a clear picture of the technological development. By
meticulously summarizing the current status of the application of different products produced by these technologies, it provides
a valuable reference for researchers and practitioners in the field of biomass energy, aiming to meet the challenges of clean
energy production and biomass waste management, and to mitigate the adverse impacts of human activities on the environment.
In addition, this paper explores the application of machine learning in the field of biomass conversion, especially its potential in
optimizing the biomass conversion process, improving the accuracy of energy yield prediction, and enhancing process control.
Despite challenges such as data quality and model interpretability, developments in machine learning, particularly advances in
feature engineering and interpretable Al, promise to address these issues. This study contributes positively to advancing

biomass energy technologies.
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1 Introduction

With of economic development

worldwide, sustainability challenges such as fossil resource scarcity,

the accelerating pace

ecosystem deterioration, and energy security risks have become
critical drivers of energy infrastructure transformation. Currently,
fossil fuels represent 80% of global energy consumption, with
demand expected to surge by 48% in the next two decades due to
factors like population growth. The petroleum and natural gas
industries encounter significant challenges in meeting this growing
demand"!. Despite their low cost and easy availability, fossil fuels
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have a significant impact on the environment and contribute to
global climate change. Consequently, urgent measures are essential
to promote environmentally friendly advancements and adopt
sustainable energy solutions. Biomass energy, an important
component of renewable energy, stands out as the sole renewable
energy source containing carbon and has attracted significant
attention from governments and the

worldwide®.

scientific community

Biomass typically encompasses all renewable organic materials
derived from biological growth processes, including plant and
animal residues, metabolic byproducts, and other organic matter
such as crop residues, forestry waste, grasses, straw, waste paper,
secretions, and feces. The main characteristics of biomass energy
include its abundant energy potential, wide distribution, extensive
applications, renewability, and cleanliness”. It is estimated that by
2050, 15%-50% of global energy consumption will be sourced from
biomass™. China, being a large agricultural country, boasts
abundant biomass resources. According to statistics, China produces
over 600 Mt of crop straw annually, of which around 400 Mt can be
used as energy fuel. The forestry biomass resources amount to
approximately 19 billion t, with an energy supply potential of about
300 Mt These figures indicate that China possesses rich biomass
resources, laying a solid foundation for its sustainable development
and showcasing its tremendous potential in the field of biomass
energy.

Biomass can be cultivated under various conditions, making
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biomass feedstocks less dependent on location and climatic
conditions compared to fossil resources'®. Therefore, utilizing the
potential of biomass to replace fossil resources can enhance the
profitability and carbon efficiency of biorefinery processes”.
Furthermore, despite biomass having a lower energy density than
fossil fuels, it is comparatively easy to store and transport. Waste
biomass is readily available as a low-cost fuel, making it a
promising global energy source. As an alternative energy source,
biomass holds a promising future and can significantly contribute to
China’s efforts to achieve its “carbon neutral” goal more effectively.

According to the United Nations, the global population
currently stands at about 8 billion and is expected to continue
growing in the coming years”. As the global population grows
exponentially, so does the relative demand for food and energy.
According to projections, a 51% increase in food production is
required to meet the demand for food by the growing population'”.
However, food production has a significant impact on
environmental pollution at all stages of its production to
distribution, and about one third of global food production is lost or
wasted during production, processing, storage, transportation, and
consumption'", This wasted and lost food is usually disposed of by
landfill decomposition and open burning!>"". However, these
treatments can lead to significant greenhouse gas emissions that
adversely affect the environment'. Landfills present serious
problems in that they can pollute surface and groundwater through
leachate while generating greenhouse gas emissions during the
decomposition of organic waste, posing a threat to air quality,
human well-being, and contributing to climate change. Sustainable
management of biomass waste is particularly important given its
significant environmental and economic impacts. The use of
biomass conversion technologies can transform biomass waste into
an efficient source of energy, addressing both energy needs and
biomass waste management.

It’s noteworthy that interest in biomass conversion technology
and its practical applications is on the rise. According to Kataya et
al.”! the total number of publications with the keyword “biomass
conversion technology and its applications” between 2003 and 2022
is close to 494 922. In 2003, the number of relevant publications
was only about 4035, while in 2022, the number had increased
significantly to 71 222, representing an increase of about 1664.8%.
This data clearly highlights the growing interest in biomass
conversion technologies.

This paper provides an in-depth analysis of the utilization of
biomass and its wastes, and systematically describes the progress in
the application of biomass conversion technologies, including
biochemical and thermochemical conversion. By meticulously
summarizing the current status of the application of different
products produced by these technologies, it provides a valuable
reference for researchers and practitioners in the field of biomass
energy. In addition, this paper explores the application of machine
learning (ML) in the field of biomass conversion, especially its
potential for optimizing the biomass conversion process, improving
the accuracy of energy yield prediction, and enhancing process
control. Through ML models, key parameters and optimized
production schedules are able to be predicted, providing new
research directions in the field of biomass energy and practical
technological pathways towards sustainable energy solutions.

2 Biomass feedstock

Biomass refers to organic material of plant origin that possesses
the characteristic of being naturally replenished or renewed. It is a

renewable resource obtained through the process of plant growth
and regeneration encompassing various sources such as wood, crop
residues, waste, food waste, algae, and more!®. Since plants can
grow and regenerate continuously, biomass stands as a sustainable
source of energy. While all plants can be considered biomass,
different types of biomass are often used as feedstock for producing
or converting into various useful products. For example, sugarcane,
extensively grown in southeastern Brazil, has been utilized by
researchers for conversion into liquid fuels!”, gaseous fuels"*, and
biochar materials!"”!. Furthermore, some researchers have converted
straw, rice husk, bagasse, fruit shells, and crops into biofuels
through processes such as catalytic cracking, pyrolysis, and
anaerobic digestion®*!. The utilization of wastewater solids,
biomass obtained from water resource recovery facilities or
wastewater treatment plants, has become widely discussed in recent
research. Researchers are actively exploring the potential
applications of these wastewater solids to develop new products®.
The utilization of solid residues from wastewater treatment holds
significant importance for a wide array of industrial activities,
primarily due to the prevalent challenge of water issues confronting
many industrial operations. Wastewater treatment inherently entails
managing a portion of waste generated during the production
process. Therefore, the efficient utilization of solid residues from
wastewater represents a pivotal milestone in industrial practices™'.
In recent years, the diversity of biomass sources has emerged as
a primary concern among researchers. This emphasis has directed
their focus toward various types of biomass. The utilization of
different types of biomass holds the potential to assist in the
treatment and management of industrial wastes within the country,
thereby facilitating resource utilization and environmental
protection efforts. China, characterized by its large population, faces
substantial demands for food. Agriculture has traditionally served as
an important foundation for meeting these food demands and
ensuring national food security. Furthermore, China’s agricultural
exports hold a significant position in the global market, covering a
wide range of products such as grains, vegetables, fruits, and
meat®. Agriculture in China has long served as a dependable
source of biomass. Researchers have initiated exploration into the
potential conversion of agricultural biomass and its by-products into
various valuable products. These products span a range of
applications, including bioethanol®, bioenergy™, fuel pellets™,
biofuels®™, biochar®, and others. These products play an important
role in advancing resource recycling, mitigating environmental
pollution, and promoting sustainable development in both
agriculture and energy sectors. As outlined by Fu et al.P,
considering the current state of bioethanol development and the
roadmap for liquid biofuels in China, two distinct stages of
bioethanol development have been defined. The initial stage, set for
2020, incorporates methodologies like the fusion statistical
algorithm. Through this approach, they estimated the total potential
bioethanol volume in China to be 21.55 Mt. According to the “2024-
2029 bioethanol industry status quo and future development trend
analysis report”, China’s bioethanol production in 2020 has
exceeded 8 Mt and the calculation of the data has a certain
discrepancy. This is due to the first stage of the calculation being
used in the production of corn for the relevant calculations. The
corn can not be all used for the production of ethanol, so it is normal
that there is a difference. Moreover, China’s National Energy
Administration in 2016 issued the “13th Five-Year Plan for
Biomass Energy Development”, which clearly put forward the 2020
biofuel ethanol development target of 4 Mt/a. The actual output is
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two times the target output, which is sufficient to illustrate the
potential for the development of bioethanol in China®*. The second
stage spans from 2020 to 2030, during which, using the same
method, they projected the potential bioethanol production to reach
145.42 Mt. These figures highlight the substantial potential of
China’s bioethanol production and exhibit the significant role of its
renewable energy sector within the broader landscape of renewable
energy. Concurrently, research and application of biochar have
attracted increasing attention, resulting in numerous reviews

B8 These reviews

pertaining to bio-preparation and application
primarily focus on biochar synthesized from individual biomass
sources, predominantly utilized for wastewater treatment or soil

amelioration purposes (as listed in Table 1).

Table 1 Different types of biomass conversion and their
products and uses

]};yp es of Feedstock Product Use Ref.
iomass
Tobacco stalks Bioethanol [39]
Sunflower ) Bio-ethanol can bg used as a fuel or
talk Bioethanol ¢hemical raw material, and biochar can [40]
Stalks stalks

be used for soil improvement, carbon

Tobacco stalks ~ Biochar sequestration, efc. [41]
Corn stalks Biochar [42]
Soybean Biodiesel [43]
. L Biodiesel can be used as a
Oclrlzeid Rapeseed B 10d1c?sel transportation fuel and biojet coal can (44]
P Brassica Aviation  be used for aviation fuel substitution. [45]
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Aquatic . . ; . .
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p crassipes toliber the textile and pulp industries. [47]
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residues Forest residues  Biofuel generation, etc. [49]
Cassava stalks Blé)rtl}zrmal [50]
Crop Ri i &y Bio-thermal energy can be used for
residues €6 COMCE, b ihermal  heating or electricity generation.
and cocoa crops [51]
; energy
residues

3 Biomass conversion technology

Research has demonstrated that the efficient and cost-effective
conversion of biomass waste into valuable resources can yield cost
savings and safeguard natural resources’™. Biomass conversion
refers to the process of converting the organic matter in biomass
into usable energy and high-value products. This process involves a
range of technologies and methods, including biomass gasification,
Through
biomass conversion, people can maximize the utilization of waste

biomass liquefaction, and biomass fermentation®".
and residual materials, mitigate environmental pollution, and
acquire renewable energy and other beneficial products to support
sustainable development.

Broadly speaking, biomass conversion technologies can be
categorized into two main groups: biochemical conversion and
thermochemical conversion® (as shown in Figure 1). The selection
of a specific conversion technology is influenced by various factors,
including the type of feedstock and its moisture content, biomass
quality and quantity, availability of resources, and desired end
product. Additionally, economic considerations such as profitability
and market accessibility, along with environmental concerns, play
critical roles®”. When deciding on a conversion technology, it is
essential to take into account the type and moisture content of the
feedstock, as different technologies have varying adaptations to
biomass types and moisture levels.

Biomass conversion technology

Biochemical transformation technology Ther

Biomass anaerobic digestion technology Biomass direct combustion technology

& de
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Figure 1 Comprehensive flow chart of biomass conversion

technology pathways

3.1 Biochemical transformation technology

Biomass biochemical conversion is a technology that utilizes
biomass (including organic matter produced by plants, animals, and
microorganisms) as a feedstock, transforming it into useful
chemicals and energy through a series of biochemical reactions.
Typically, these reactions are catalyzed by biocatalysts, such as
enzymes sourced from bacteria or other microorganisms®™. This
versatile technology enables the conversion of biomass into a range
of valuable products, including biofuels like biodiesel and biogas,
various chemicals such as bioplastics and biochemicals, fertilizers,
and other valuable products®™.

Biomass biochemical conversion technologies include a variety
of methods, including anaerobic digestion, fermentation, and
composting processes. These conversion processes are selected
based on the characteristics of the desired products and feedstocks,
and they are optimized and controlled as necessary. Microbial
catalysts, which typically include bacteria, fungi, and communities
of microorganisms, play a critical role in the processes by breaking
down, converting, and synthesizing organic matter’””. Through the
selection of various microorganisms, biomass can undergo
biochemical conversion processes to yield different products such
as hydrogen, biogas, ethanol, acetone, butanol, and organic acids®*.
Using the anaerobic digestion process alongside appropriate
hydrogen-producing bacteria, biomass can be transformed into
hydrogen, thus offering a renewable energy source®™. Alternatively,
by employing methanogenic microorganisms during anaerobic
digestion, biomass can be converted into methane (biogas), which
serves as an energy supply or can be utilized to generate
electricity®™). Through the fermentation process, along with suitable
yeasts, sugars present in biomass can be converted into ethanol, an
important biofuel and chemical feedstock*”. Through biosynthetic
processes and suitable microorganisms, biomass can be transformed
into acetone, serving as an organic solvent and synthetic
intermediate!™’. Using either anaerobic digestion or fermentation
processes alongside compatible microorganisms, sugars within
biomass can be converted into butanol, serving as a solvent or
biofuel®.  Furthermore, processes
alongside appropriate microorganisms enables the conversion of

employing fermentation
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sugars from biomass into organic acids like acetic acid”, propionic
acid"”, or succinic acid®’. These organic acids find applications in
chemical production or acid-base neutralization. The selection of
microorganisms and conversion processes offers a diverse range of
sustainable options, facilitating the utilization of biomass resources
in an economically and environmentally viable manner.
3.1.1 Biomass anaerobic digestion technology

Anaerobic digestion (AD) is a microbial decomposition process
of organic waste materials, including agricultural residues, food
waste, and animal manure, conducted under anaerobic conditions.
During anaerobic digestion, microorganisms break down organic
waste into methane (biogas) and digestate, which can serve as
organic fertilizer. Kumar and Ankaram provide a comprehensive
explanation of the working principle behind anaerobic digestion,
which involves the utilization of organic matter to produce energy
within an oxygen-deficient environment®. As described by
Sangeetha et al.*, the AD process involves several interconnected
stages, including hydrolysis, fermentation, acetogenesis, and
methanogenesis. Throughout these stages, biogas, predominantly
composed of methane, is generated as a byproduct. During
anaerobic digestion, microorganisms decompose the organic
components of waste, yielding biogas as a byproduct. Biogas
typically comprises 40% to 65% methane and 35% to 55% carbon
dioxide, alongside trace amounts of other gases like hydrogen (H,)
and hydrogen sulfide (H,S). The precise proportions of these gases
can vary depending on the composition of the waste and microbial
possesses
combustible and sustainable characteristics, making it suitable for

activity during the digestion process”. Biogas
use as an energy source or in various industrial applications.

AD represents a complex continuous biochemical process
typically divided into four phases: hydrolysis, acidification, acid
production, and methanogenesis'**. These four stages occur
simultaneously within the anaerobic digestion system, exhibiting
interdependence and mutual constraint among microbial
populations™. Figure 2 illustrates the flora involved in each stage.

Hydrolysis stage Acidification stage

L Clostridium  Ruminococcus

Acid production stage
| rod-shaped ~ Thermacetogeni
bacterium -um phaecum

|Clostridium Syntrophaceticus
I ultunense schinkii

Acetop Hydroge
-hilic  -nophilic

Methylo

Thermotog Tepidanaerobacer
| -philic

-a lettingae  acetatoxydans

Figure 2 Participating flora in various stages of anaerobic digestion

The AD process, while beneficial, does come with limitations,
particularly in agricultural applications. Challenges include the

relatively slow conversion process, the emission of malodorous
gases, the production of low-quality digestate, and constraints on
energy recovery’'. Consequently, some farms may opt for
alternative waste treatment technologies like composting and
gasification. These alternatives may better suit the treatment of large-
scale agricultural wastes and offer improved control over odors and
decomposition rates. Moreover, complementary technologies and
methods can be employed alongside anaerobic digestion to address
its limitations. These include solid-liquid separation, just-in-time
digestate treatment, and control systems”. In summary, while the
anaerobic digestion process offers numerous advantages in waste
treatment, its limitations necessitate careful consideration of factors
such as farm size, waste type, and viable treatment options to ensure
system viability and effectiveness in agricultural settings.

3.1.2 Biomass fermentation technology

Fermentation is a process that utilizes microbial metabolic
activities to convert organic matter into other useful chemicals. As
described by Patra et al.”, fermentation involves microorganisms
(such as yeast or bacteria) converting biomolecules, such as
glucose, into alcohols or acids under anaerobic conditions. By
fermenting sugars, starchy substances, or cellulosic materials,
biofuels or chemicals like bioethanol (the most common) and
acetone can be produced. Food and agricultural wastes contain
various sugars, some of which readily ferment to produce ethanol
and other products. However, for substances like cellulose,
hemicellulose, starch, and proteins, additional pretreatment
processes are necessary to facilitate the fermentation process more
effectively™.

The range of fermentation feedstocks for ethanol production is
broad and includes various options. These feedstocks can be
categorized into three generations, which have evolved and refined
over time, as depicted in Figure 3.

Figure 3 Development process of three generations of
feedstocks for bioethanol

The first generation of bioethanol feedstocks primarily
consisted of edible crops, such as corn, wheat, and sugarcane .
These crops, abundant in starch and sugar, could be converted to
ethanol through fermentation. However, using edible crops as
bioethanol feedstocks raised several including
competition for food resources, impacts on food supply stability,
and land use issues. Consequently, lignocellulosic feedstocks
emerged as second-generation alternatives to address the limitations

concerns,

of first-generation bioethanol*. Second-generation bioethanol
feedstocks predominantly comprise non-edible plant cellulose,
including wood, straw, and reeds”. Cellulosic wastes pose
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challenges in fermentation due to the complex structure of cellulose,
which is difficult to degrade. Therefore, pre-treatment methods such
as milling, acid and alkaline treatment, or enzymatic treatment are
necessary to make cellulose more accessible to microorganisms,
facilitating its breakdown and fermentation into ethanol™. Second-
generation bioethanol feedstocks offer greater sustainability
compared to first-generation options as they do not compete with
food resources and can utilize agricultural and forestry waste. Third-
generation bioethanol feedstocks involve the use of microalgae,
algae, and other microorganisms to produce ethanol”™*’. These
feedstocks boast potential for high energy efficiency, high
bioethanol yields, and can be produced on a large scale on non-
agricultural land.

Overall, bioethanol production is undergoing a gradual
transition from traditional food crops to the utilization of waste and
non-food plant cellulose as feedstocks, driven by technological
advancements. These materials are abundant in agricultural
countries, economically viable, and easy to use in industrial-scale
plants. Moreover, cellulosic feedstocks, being non-food sources,
mitigate competition with the food supply. Simultaneously, ongoing
research and development into third-generation bioethanol
feedstocks offer more sustainable and efficient options for
bioethanol production.

3.1.3 Biomass composting technology

Composting is the microbial degradation process of organic
wastes (e.g., agricultural and food wastes) facilitated by the right
combination of moisture, oxygen, and temperature control.
Throughout the composting process, microorganisms break down
organic materials, yielding organic fertilizers that enhance soil
quality and promote plant growth. This intricate process involves a
series of biological and chemical reactions, necessitating optimal
conditions of moisture, aeration, and temperature. Currently,
composting technology finds widespread application in diverse
fields, including agriculture®, horticulture, and floriculture®™, as
well as in landscape maintenance™ and municipal waste
treatment!®l,

Composting is widely used in agricultural production,
particularly in organic or green farming practices. Its application to
farmland enriches the soil with essential nutrients, enhances soil
structure, and maintains moisture content. For organic farming,
composting stands as a vital organic fertilizer alternative, offering a
sustainable replacement for chemically synthesized fertilizers™.
Moreover, composting proves highly advantageous in horticulture
and flower cultivation. It improves soil texture and water retention,
furnishing plants with the necessary nutrients to promote robust
growth and flower and prolific flower fruit yields®*". Composting
plays a critical role in landscape maintenance across parks, golf
courses, sports fields, and various other green spaces. Its benefits
extend beyond improving soil quality and supporting plants’
resistance to pests, diseases, and environmental challenges.
Composting also reduces reliance on chemical fertilizers and
pesticides, promoting environmentally sustainable practices®.
Additionally, composting technology is pivotal in municipal waste
treatment endeavors. By composting organic waste such as food
waste and flower cuttings, it mitigates the volume of waste destined
for landfills, thereby reducing environmental pollution. Moreover,
this process transforms organic waste into valuable fertilizers™".

3.2 Thermochemical conversion technology

Biomass thermochemical conversion technology involves
utilizing high temperatures and pressures to convert biomass into
renewable energy. According to Mahinpe and Gomez, this method

offers several advantages over conventional approaches, including
reduced greenhouse gas emissions and the potential for independent
power generation®. A variety of biomass wastes, including food
waste, agricultural residue, algae, and forestry waste, serve as
suitable feedstock for thermochemical conversion. The moisture
content of biomass waste plays a critical role in selecting the
appropriate thermochemical process. When the moisture content is
low, drying technology is preferred, whereas high moisture content
necessitates hydrothermal technology for conversion. The primary
routes for thermochemical conversion include combustion,
gasification, and pyrolysis, alongside hydrothermal treatment (HTT)
options like hydrothermal carbonization!**".

3.2.1 Biomass direct combustion technology

Direct combustion involves burning biomass waste directly in
the presence of oxygen to produce heat, H,O, and CO,. It stands as
a simple and common thermochemical conversion method,
representing one of the earliest applications of biomass conversion
technology. Direct combustion is particularly suitable for dry
biomass wastes like wood and straw. The heat generated through
this process finds application in heating, power generation, and
various industrial processes. However, it is important to note that
inadequate oxygen supply during direct combustion can lead to
incomplete combustion, releasing pollutants such as CO, NO,, SO,,
and particulate matter into the atmosphere*.

Direct combustion typically takes place in furnaces, turbines, or
boilers within the temperature range of 800°C to 1000°C, as
described by Lam et al®. This method is well-suitable for biomass
materials with low moisture content (below 50%). The biomass
combustion process can be summarized as follows: 1) drying: the
removal of moisture from biomass materials is usually achieved
through heating; 2) degreasing: biomass may contain organic
substances such as fatty acids, which can produce toxic gases and
pollutants during combustion. Therefore, it is essential to remove
them as much as possible before combustion; 3) gasification: under
suitable temperature and atmospheric conditions, biomass
decomposes into gaseous products, including synthesis gases (CO
and H,), along with other organic gases; 4) charcoal combustion:
charcoal, a solid residue formed from biomass after pyrolysis,
undergoes combustion; and 5) gas-phase reactions: volatile
substances and gaseous products from biomass combustion may
participate in gas-phase reactions, which can generate secondary
pollutants and impact the atmosphere. Figure 4 shows a simplified
depiction of the phenomena occurring during biomass combustion
in a fluidized bed®".

t Product
gases
Biomass combustion phenomena
Freeboard
P e i e |
: Drying & devolatilization I : Homogenous |
> . 11 combustion |
i< : Moisture o | :
Gas : b'DnCd H Volatiles :
i0mass L4 <

: Fresh ‘ : I (02 :

[T I H,0
Char | biomass :I___________E__!

' e e
1 r T ] H
Biomass | i | Co. co, |
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. i o e e e L
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Figure 4 Simplified process of phenomena occurring during
biomass combustion in a fluidized bed

Alexis et al. conducted a study on the biomass energy potential
of direct combustion systems in Colombia, revealing that utilizing
approximately half of the solid biomass in such systems could
effectively replace the use of solid fuels like wood and coal®”. Zhao
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et al. further elucidated that, beyond the feedstock, the principle of
biomass direct combustion for power generation mirrors that of
conventional thermal power generation. Biomass fuels include
agricultural and forestry waste such as corn stalks, wheat straw, rice
straw, bark, sawdust, and branches. Despite its widespread
adoption, direct combustion exhibits lower thermal efficiency and
presents challenges related to air pollutant emissions and public
health risks. Consequently, there is a growing interest in exploring
more efficient and environmentally friendly biomass conversion
technologies. Gasification, pyrolysis, and other thermochemical
conversion methods are extensively researched and implemented to
improve energy utilization efficiency while mitigating
environmental impact.
3.2.2 Biomass gasification technology

Gasification is a process wherein biomass undergoes partial
oxidation and reacts with water vapor to produce gases like CO, H,,
CO,, CH,, etc., through interaction with air, oxygen, and water
vapor at higher temperatures”’*®. The gasification process usually
consists of four steps: heating and drying, pyrolysis, oxidation or
partial combustion, and reduction or gasification, as shown in

Figure 5.
co
O I U . (o
Pyrolysi Cco H,
0 'yrolysis O, — > CH,
O gas __.» HO / ?ﬁ-
e ar
(CHa———— Char Char
Heating and drying Pyrolysis Oxidation Gasification

Figure 5 Main processes of biomass gasification””

In the initial stage, the feedstock undergoes heating and drying
to remove moisture and volatile matter. The temperature typically
reaches around 200°C, with a moisture content of 10%-15%""", to

achieve optimal conditions for gasification and enhance efficiency.
Subsequently, the biomass undergoes thermal decomposition at
high temperatures, yielding volatile compounds and char. These
volatile compounds comprise small molecular gases and liquid
products (tar). The third stage involves oxidation or partial
combustion, typically occurring at temperatures exceeding 700°C.
This phase releases heat, providing energy necessary for sustaining
the pyrolysis and gasification processes. Reduction or gasification
represents the final stage in the gasification process, typically
occurring at temperatures surpassing 800°C. During this phase,
residual carbon or char within the feedstock reacts with gasifying
agents like O, and steam to yield synthesis gas or other valuable
gases. Yao et al. conducted a comprehensive study on the biomass
gasification process using a fixed-bed tubular reactor and drew the
following conclusions"": As the gasification temperature rises,
there is an increase in the generation of gaseous products,
accompanied by a decrease in solid products. Moreover, the
generation of liquid products experiences a rapid increase followed
by a gradual decrease. In addition, increasing the concentration of
oxygen in the gasifier leads to a decrease in the generation of solid
products. The gasification process enables the regulation of gas
composition by controlling reaction conditions and the choice of
gasifying agent!'"'*],

Gasification stands out as a preferred method for extracting
value from biomass, whereby the resulting gas mixture fuels power
plants, facilitating the generation of clean energy. Moreover, it can
be used in the chemical industry to produce ammonia and methanol
instead of natural gas"*. Despite its considerable potential, biomass
gasification encounters challenges related to the presence of tar, a
complex mixture of aromatics, within the volatile components of
biomass!'"”. Figure 6 outlines the advantages and disadvantages
associated with biomass gasification.

Gasification of biomass
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Figure 6 Advantages and disadvantages of biomass gasification

3.2.3 Biomass pyrolysis technology

Pyrolysis subjecting biomass
temperatures in the absence of oxygen,
breakdown and the formation of smaller molecules!'*. Depending
on the heating rate, pyrolysis processes can be categorized into three
types: slow, medium, and fast pyrolysis (or flash pyrolysis)!’”. Fast
pyrolysis is particularly effective in bio-oil production and inhibits
char formation compared to slow pyrolysis, which is tailored for

involves pellets to high

causing molecular

biochar production*®"". Fast pyrolysis technology can convert
biomass into bio-oil, biochar, and syngas, each holding significant
economic potential''l. After refinement, pyrolyzed bio-oil serves as
a valuable fuel or chemical feedstock!"”, while biochar finds
application in soil amendment, catalysis, or as an adsorbent".
Furthermore, syngas can function as a renewable energy source for
heat or power generation'”. The operating conditions and main
products of different pyrolysis types are outlined in Table 2.

Table 2 Operating conditions and main products of
different pyrolysis types''

Pyrolysis Res'idence Heating rate Temperature  Main products
type time
Slow Days Very slow 400°C Char
Conventional 5-30 min (20°C-100°C)'min"' 450-650°C Liquid, gas, char
Fast 0.5-5s 1000°C-s™! 450-650°C Liquid
Temperature plays a significant role in shaping the

physicochemical properties of char. In a study conducted by
Rajapaksha et al., tea waste was pyrolyzed at 300°C and 700°C to
generate derived biochar. The study revealed that the carbon content
increased from 70.05% to 85.11% as the temperature increased
from 300°C to 700°CM". Additionally, the surface area of the
biochar showed a substantial increase from 2.28 m*/g to 342.22 m?/g
with the temperature increment. The solid carbon material typically
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exhibits a large specific surface area, which correlates closely with
adsorption  capacity, water-holding
remediation efficacy, and supercapacitor performance.

3.2.4 Biomass hydrothermal carbonization technology

its  superior capacity,

Hydrothermal carbonization (HTC) is a thermochemical
process that involves reacting biomass waste with water as the
reaction medium under high temperature and pressure conditions. In
this process, the temperature typically ranges from 180°C to 280°C,
and the reaction occurs under water gasification pressure ranging
from 2 to 6 MPa, lasting from 5 to 240 minutes"""'"*. The feedstock
undergoes a cracking reaction, resulting in the formation of a new
solid product called hydrothermal carbon. Compared with
conventional high-temperature dry cracking, HTC technology can
process biomass with high water content (75%-90%)"*" under mild
reaction conditions. Moreover, it minimizes air pollution by
dissolving nitrogen oxides (NOx) and sulfur oxides (SOx) in the
water!'”. Additionally, it features lower energy consumption and
cost, simple equipment and operation, and high adaptability.
Numerous researchers both domestically and internationally have
adopted the HTC process for treating various types of biomass,
including lignocellulose!'™®, agricultural waste!**'*, and sludge!*”,
for resource utilization purposes. Hydrothermal carbonization
technology has found widespread application across multiple fields.
These applications include converting biomass into solid fuels,
liquid fuels, soil conditioners, carbon material adsorbents,
functional nanomaterials, and new carbon catalytic materials!'*!..

The HTC process is influenced by factors such as hydrothermal
reaction temperature and reaction time. Among these, the reaction
temperature stands out as the most significant factor affecting the
product. Generally, higher temperatures  intensify
hydrothermal reactions, consequently reducing the yield of

reaction

hydrothermal carbon. However, higher pyrolysis temperatures are
not conducive to the formation of a large number of functional
groups. In their study, Guo et al. observed SEM (scanning electron
microscope) images of tea tree branch-derived biochar produced by
the HTC process at different temperatures. They found that the
derived biochar exhibited internal porosity and cracks, potentially
originating from cellulose decomposition during the heat treatment
process. Moreover, SEM images clearly showed the effect of HTC
temperature on the porosity of the biochar”. Biochar prepared at
120°C exhibited a typical plant fiber structure with barely
discernible porous features. However, biochar prepared at 200°C
and 240°C displayed more microporous and mesoporous particles
on the surface. Consequently, it can be assumed that temperature
affects the degradation process of various biomass components,
thereby significantly influencing biochar yield as well as changes in
its chemical and physical properties. Similarly, reaction time plays a
significant role in the HTC process, where longer reaction times
result in more vigorous hydrothermal reactions, consequently
reducing the yield of the solid product™. The increase in reaction
time leads to the hydrolysis of organic components in the feedstock,
resulting in the formation of various small molecules dissolved in
the liquid phase. Consequently, this process lowers the yields of
hydrothermal carbon. However, due to energy consumption
constraints, extending the reaction time or raising the reaction
temperature  indefinitely is often impractical. = Therefore,
conventional HTC processes typically opt for lower temperatures
and shorter reaction times to mitigate energy consumption.
However, this approach also yields lower quality hydrothermal
carbon with relatively lower carbon content.

Thermochemical conversion is a versatile treatment method

suitable for a wide range of biomass feedstocks, characterized by its
lack of pre-treatment and short reaction times. The biomass
feedstock undergoes a chemical reaction to transform into the
desired product. Due to the chemical reaction involved,
thermochemical conversion boasts high productivity, yielding a
wide range of high-value products that can be further fractionated.
In contrast, biochemical conversion necessitates the pretreatment of
biomass feedstock and involves longer reaction times. Biochemical
conversion typically employs microorganisms, enzymes, and/or
chemicals, with its productivity usually limited to one or a few
products. To broaden the product range, additional use of
microorganisms and enzymes is often required. Furthermore,
thermochemical conversion is not significantly influenced by
climatic conditions and can be conducted in various environments.
Conversely, biochemical conversion is more susceptible to ambient
factors such as temperature and the conditions within anaerobic
digesters. Additionally, biochemical conversion may produce
secondary wastes, such as biomass sludge!'*.

Considering the aforementioned factors, when choosing
between biomass conversion technologies, whether biochemical or
thermochemical, several aspects such as intended applications,
logistical concerns, and the availability of specific biomass
resources must be carefully evaluated. Each situation has its own
unique advantages and disadvantages, requiring a comprehensive
evaluation.

4 Biomass conversion their

applications

products and

4.1 Synthesis gas and its applications

Biomass conversion processes can produce a variety of gases,
with synthesis gas (Syngas) being among the most prevalent.
Syngas primarily comprises carbon monoxide (CO), carbon dioxide
(CO,), hydrogen (H,), and lower hydrocarbons. Syngas is
commonly used as a feedstock for various applications including
chemical production, biofuels, thermoelectric power production,
and hydrogen energy production.

As depicted in Figure 7, the CO and H, present in syngas serve
as valuable feedstocks for chemical production. Through catalytic
reactions, syngas can be converted into a range of chemicals
including methanol, ethanol, propylene, acetic acid, ammonia, and
more!*"?, These chemicals find extensive applications across
various industries, including the production of synthetic plastics,
resins, solvents, and synthetic fibers. Moreover, syngas can be
converted into liquid fuels such as biodiesel"*, bioethanol!*”, and
biomethane!"”. These biofuels offer a sustainable alternative to
traditional fossil fuels, thereby reducing dependence on finite
resources and cutting carbon emissions, thereby achieving a more
sustainable energy supply. Furthermore, syngas can be directly
utilized to generate electricity or heat™'. By combusting syngas
through internal combustion engines, gas turbines, gas boilers, and
other equipment, electricity and heat can be efficiently produced.
This form of energy utilization finds widespread application across
industrial, commercial, and residential sectors. Syngas is rich in H,
and can be used for hydrogen energy production*”. Hydrogen can
be used in fuel cell power generation, hydrogen combustion, and
hydrogen storage, offering a clean and efficient energy solution
essential for reducing carbon emissions and fostering sustainable
development. Syngas’s wide range of applications continues to be
driven by ongoing research and technological advancements aimed
at enhancing efficiency, reducing costs, and better aligning with
energy needs and environmental sustainability goals.
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Figure 7 Areas of application: Overview of the three forms of
biomass conversion products and their uses

4.2 Biochar and its applications

Biochar is an incredibly versatile and multifunctional material
that can undergo various conversion processes to yield different
types of biochar, each serving distinct purposes. As illustrated in
Figure 7, biochar can be used for wastewater treatment!'**. Due to
its good adsorption properties, biochar can effectively adsorb and
remove pollutants from water. Biochar can also serve as a precursor
for catalysts in the preparation of catalysts for various chemical
reactions!*. Additionally, it can be utilized in the production of bio-

oil or biodiesel!*>13¢

!. Moreover, biochar functions effectively as a
soil conditioner, acting as a fertilizer"*”. It enhances soil structure
and texture, improves soil fertility, and promotes plant growth.
Furthermore, biochar serves as an adsorbent, capable of adsorbing
toxic elements, thus purifying soil, water, and gases"*.
Furthermore, it can be used for energy storage, serving as a
renewable energy storage material to reduce carbon emissions from
other energy sources!*.

The morphology of biochar significantly influences its
functionality, with various forms exhibiting distinct structures and
properties, including tubular biochar, spherical biochar, and nano-
biochar!*, each suitable for different applications'*". Spherical
biochar, characterized by its low ash content and good adsorption
properties, holds particular advantages in
remediation. It proves effective in purifying and ameliorating soil,
water, and gases, aiding in the removal of pollutants!*>'*. Tubular

environmental

biochar, conversely, holds promise as a potential mycorrhizal
inoculation material, given its positive effect on microbial growth
and reproduction. By facilitating the adsorption of water and
nutrients by plant roots, tubular biochar contributes to improved
plant health and growth outcomes!*. Furthermore, tubular biochar
can serve as a sustainable alternative to the expensive and non-
renewable peat material traditionally used for inoculation purposes.
Nano-biochar, on the other hand, finds application as a pollutant
detector in sensors!*'*l. It boasts highly reliable accuracy and
sensitivity, making it adept at detecting and monitoring
environmental pollutants. Moreover, due to its high surface-to-
volume ratio and porous structure, nano-biochar can also function

as an effective enzyme carrier*’..
4.3 Bio-oil and its applications

Biomass conversion processes also yield liquid products, with
one of the most common being bio-oil, generated during biomass
preparation for biofuels. Bio-oil, a condensable liquid derived from
biomass through pyrolysis!'*, primarily consists of organic
compounds present in the biomass'*). As depicted in Figure 7,
following appropriate treatment and refinement, bio-oil finds
and heat
transportation™*"'l. It serves as a versatile liquid fuel, including
applications such as biodiesel, aviation fuel, and a substitute for
liquefied natural gas (LNG). Moreover, the organic compounds
within bio-oils can substitute chemical raw materials. Through
further processing and chemical conversion, bio-oil can yield

application in power generation, as well as

various chemicals and materials like plastics, solvents, paints,
resins, and pigments'*>'**l. Specific compounds within bio-oils are
also valuable in synthesizing high-value chemicals such as
pharmaceuticals, fragrances, and antioxidants!**. Additionally, bio-
oils contribute to the production of eco-friendly products like bio-
based lubricants and paints, which have minimal carbon emissions
and environmental impact.

Despite its potential, bio-oil applications encounter several
challenges. Currently, bio-oil production costs remain relatively
high, primarily attributed to the energy-intensive nature of processes
such as biomass treatment, pyrolysis, and refining. Additionally, the
development of efficient and stable catalysts, along with the
implementation of more sustainable bio-oil production technologies,
poses significant challenges. Moreover, the high oxygen content,
elevated water content, and poor thermal stability of crude biomass
oil limit its widespread utilization!*”. To address these limitations,
various upgrading technologies, such as hydrotreating or
hydrodeoxygenation, have been developed to enhance the efficiency
of bio-oil production through the pyrolysis process.

Despite the challenges, the future of bio-oil appears promising.
In recent years, microalgae bio-oil has emerged as a leading
renewable fuel option, characterized by its low environmental
impact and high yield, among other advantages'*. With ongoing
technological advancements and government support, bio-oil stands
poised to evolve into a viable alternative to traditional fossil fuels.

5 Applications of machine learning in biomass
conversion

In recent years, the application of ML to biomass conversion
has received increasing attention. As shown in Figure 8, through a
keyword search of the “Web of Science” database (covering various
subfields of ML and biomass conversion), it is found that the
number of related studies is showing a rapidly increasing trend (467
articles between 2011 and 2024, extracted from Web of Science).
The application of ML can significantly improve the efficiency and
sustainability of biomass conversion processes by reducing the
number of experiments, increasing energy output, and reducing
environmental impact through predictive models and optimization
algorithms™*. In order to highlight the potential of ML and to
promote its use as a pass-through toolkit for researchers in the field
of biomass conversion, the next section analyzes the potential of the
application of ML in the field of biomass conversion from two
perspectives: 1) the current status of the application of ML in the
field of biomass conversion; 2) the limitations and prospects for the
development of the application of ML in the field of biomass
conversion.
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5.1 Current status of machine learning applications in
biomass conversion

The application of ML technology in the field of biomass
conversion is mainly reflected in its ability to optimize the biomass
conversion process by analyzing a large amount of data. This
technology can predict and optimize key parameters in the
biochemical conversion and thermochemical conversion processes,
thus improving the efficiency and product selectivity of biomass
energy conversion. In the biochemical conversion process, ML can
be used to predict the optimal conditions for steps such as
enzymolysis and fermentation™”; while in the thermochemical
conversion process, it can predict the product yields and properties
for steps such as pyrolysis and gasification. In this way, ML
technology helps to realize the automation and intelligence of the
biomass conversion process, which in turn promotes the
development of the biomass energy industry!**..
5.1.1 Biochemical conversion processes

In the field of biomass conversion, the biochemical conversion
process is a key step in converting biomass feedstock into bioenergy
and bio-based chemicals. The application of ML technology in this
process aims to improve the conversion efficiency and product
selectivity by optimizing each step, so as to realize the high-value
utilization of biomass resources. This paper mainly categorizes the
application of ML in the biochemical conversion process into the
following three stages:

1) Initial stage: Feedstock pre-processing

ML techniques are playing an increasingly important role in the
pre-processing of biomass. High-value utilization of biomass,
especially lignocellulose, which consists of cellulose, hemicellulose,
and lignin, involves a variety of pretreatment methods such as
physical, biological, and chemical pretreatment*'*. These
pretreatment processes are complex and multidimensional, and the
interaction of different factors leads to different results. ML is able
to learn and make predictions or conclusions by analyzing data, thus
avoiding long experimental processes and high costs"*'. In the field
of biomass fermentation, biomass feedstocks need to be pretreated
to improve the efficiency of enzymatic digestion. During the
enzymatic digestion process, ML models are able to predict the
optimal enzymatic conditions, such as pH, temperature, and enzyme
concentration, based on biomass properties and enzyme properties,
so as to improve the saccharification efficiency of biomass. Wang et
al.l' used sodium hydroxide to pretreat wheat straw, and
investigated and optimized various parameters affecting the

enzymatic degradation of wheat straw through Box-Behnken design
and response surface methodology, including solids content,
enzyme loading, pH, and hydrolysis time, and improved the final
enzymatic sugar yield. This step is crucial for the conversion of
biomass into fermentable sugars, which directly affects the
availability of feedstock for subsequent fermentation processes.

2) Core stage: Optimization of experimental conditions

Biochemical such as enzymatic
digestion, anaerobic digestion, fermentation, and advanced
fermentation, are key technologies for biomass conversion. These
processes usually involve complex biochemical reactions, the

conversion processes,

optimization and control of which are crucial for improving the
efficiency of biomass conversion!®’. ML techniques, especially
artificial neural networks (ANN), support vector machines (SVM),
random forests (RF), and Gaussian process regression (GPR), have
been widely applied to model and optimize these processes'*!.
These models are capable of recognizing and learning non-linear
relationships between input parameters and output results, thus
improving prediction accuracy and process control. Again, as an
example from the field of fermentation, as the sugars produced by
enzymatic digestion enter the fermentation process, ML techniques
again come into play by analyzing data on microbial growth and
metabolite accumulation during the fermentation process to predict
and optimize the fermentation conditions in order to improve the
yield and quality of biofuels and biochemicals. Optimization at this
stage involves not only the adjustment of fermentation conditions,
but also the selection and improvement of strains"®. ML techniques
can assist in screening strains with high yield and tolerance or
predicting the performance of genetically engineered modified
strains to improve the overall efficiency of the fermentation process.
Khaleghi et al"* discussed the application of metabolic flux
analysis (MFA) and dynamic flux balance analysis (DFBA) to the
fermentation process. MFA analyzes the metabolite production and
consumption rates to determine the metabolic flux distribution,
while DFBA considers the relationship between macro-state
parameters and cellular physiological metabolic parameters during
fermentation. And the combination of macrokinetic equations and
DFBA produces more accurate predictive models, which can
improve the efficiency and effectiveness of the fermentation
process.

3) Final stage: Process analysis and control

In the final stage of the biochemical conversion process, the
combination of process analytical techniques (PAT) and ML
techniques allows for more accurate and automated process
monitoring and control"*”. This not only helps to ensure product
quality, but also to meet stringent regulatory requirements,
especially in the pharmaceutical and food industries. By monitoring
and adjusting process parameters in real time, ML techniques are
able to predict and prevent potential production problems, reduce
waste, and increase productivity*®. Williams et al"*¥ used a novel
refractive index-based PAT system to monitor the metabolic
activity of HEK293T cell cultures in real time during lentiviral
vector (LVV) production. The system was able to rapidly identify
the relationship between bioreactor pH and culture metabolic
activity and use this to develop a pH manipulation strategy that
achieved a 1.8-fold increase in metabolic activity in a minimum
number of bioreactor experiments compared to unoptimized
bioprocesses, with the potential to facilitate the fine-tuning and
rapid optimization of the production environment and to enable
adaptive process control for enhanced process performance and
robustness.
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5.1.2 Thermochemical conversion process

The thermochemical conversion process is a key step in the
conversion of biomass energy. Figure 9 presents an overview of ML
applications in the thermochemical conversion process. Through
literature search and reading, the most commonly used ML methods
in the thermal conversion process are SVM!®L decision trees
(DT)", ANN'-71 and RF', while simulated degradation
(SA)" and particle swarm optimization (PSO)' are the most
commonly used optimization methods. Most studies use biomass
characterization!™""””  (proximate and ultimate analysis) and
pyrolysis conditions!”'™! (temperature, heating rate, residence time)
as inputs to the ML model, while the yield and composition of the

172,174

thermal conversion products!”'"7! (bio-oil, bio-char, syngas) are

frequently studied as target variables.
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Figure 9 Overview of ML applications in the thermochemical
conversion process

Hybrid models have been widely used in ML due to their
advantages in improving prediction accuracy!®, adapting to
different  data providing  probabilistic
explanations!"™, dealing with non-independent data"®), and
applicability to large-scale problems!*. Garcia Nieto et al'®!, based
on an SVM and a Grid-Search (GS) optimizer, studied a novel
artificial intelligence model for characterizing the high heating

distributions!®!,

value HHV of biomass feedstocks based on experimentally
determined parameters. The study surfaces that the coefficient of
determination and the correlation coefficient of HHV estimation
based on the model reached 0.8517 and 0.9229, respectively. Shi et
al"! proposed a hybrid optimization algorithm that combines PSO
and Genetic Algorithms (GA) for beechwood at three heating rates.
The pyrolysis of beechwood was experimentally investigated and a
numerical solver was built to simulate the pyrolysis details. The
results show that PSO-GA has the highest probability of obtaining
the desired results, and with a fixed population size, PSO-GA
converges to a lower value of the fitness function, resulting in a
higher accuracy.

In addition, ML models are widely used to predict product
yields and properties during biomass pyrolysis and gasification, as
well as to identify potential reaction pathways and kinetic
parameters*”). For example, models based on RF and ANN have
been used to predict the properties of biomass pyrolysis products
and the composition of syngas from biomass gasification*. In
addition, the use of feature selection in combination with ML
techniques is a new trend in research, which allows for more
accurate prediction of high calorific values of biomass and
improved modeling accuracy by selecting the most important
explanatory variables!'.

5.2 Limitations and development prospects of machine
learning applications in biomass conversion field

Although ML has made some breakthroughs in the field of
biomass conversion, there are still many issues that need to be
further addressed. The first challenge is data collection, analysis,

and adaptation, a step also known as feature engineering. On the
one hand, data from biomass conversion processes are often
nonlinear and high-dimensional, which requires ML models to be
able to handle complex datasets. However, these datasets may
require the processing of both continuous and discrete features, all
of which increase the complexity of model training and
prediction®, On the other hand, data quality is also a key factor
affecting ML prediction in biomass conversion. Current literature
often lacks explicit details or sharing of unsuccessful and negative
samples, resulting in these samples being discarded in the data
cleaning process. As a result, positive data dominate the collected
datasets, leading to biased and unbalanced biomass conversion
datasets. These biased datasets do not accurately reflect the real-
time situation of biomass conversion, making further ML
predictions meaningless!*".

Furthermore, with the development of ML technology,
complex nonlinear relationships in big data collected from real
industrial production can be fitted using more advanced ML
algorithms. However, such models, especially deep neural
networks, often face the problem of poor interpretability, known as
the “black box” nature!”". Finally, the applicability of various ML
models in the field of biomass conversion has not been
comprehensively studied, or the application of traditional theoretical
models in the biomass conversion process is limited by their
assumptions or insufficient sample sizes in the derivation process,
which leads to a narrow range of applicability conditions for the
models.

Based on this, there are several important factors that deserve
careful attention regarding the future prospects of ML applications
in biomass conversion:

1) Improvements in data collection, analysis, and adaptation:
With the development of feature engineering techniques, such as
data preprocessing, feature extraction, feature selection, and feature
construction, more efficient methods for handling nonlinear, high-
dimensional data in biomass conversion processes can be
anticipated. These include improved missing value processing, data
normalization, and data cleaning, as well as more advanced feature
coding and textual feature extraction techniques. Future research
may focus on developing more efficient feature generation
algorithms, as well as automated interpretive methods that make
automatically generated features more interpretable. This will help
to deal with bias and imbalance in biomass conversion datasets and
improve the quality of the datasets and the generalization ability of
the models.

2) Improve model interpretability and expand model
applicability: In order to solve the “black box™ problem of models
such as deep neural networks, explainable artificial intelligence
(XAI) technology will become a hot spot for research. XAl
technology facilitates deeper comprehension of model decision-
making processes and significantly improves model transparency
and credibility. In addition, through multi-core learning and multi-
view learning, different sources and types of data can be integrated
to improve the robustness and applicability of the model. This helps
to overcome the limitations of traditional theoretical models in the
biomass conversion process and broaden the application scope of
the models.

3) Data security and ethical issues: With the development of
ML and Al technology, data security and ethical issues will become
the focus of research. In the field of biomass energy, this means that
new technologies and methods need to be developed to protect data
from misuse while ensuring the sustainable development of Al
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technology.

6 Conclusions and perspectives

This review provides an in-depth analysis of the utilization of
biomass and its wastes, systematically describes the advances in the
application of biomass conversion technologies, including
biochemical and thermochemical conversion, and explores the
potential of biomass conversion technologies for the production of
valuable products such as biofuels and biochar. Biomass can be
converted into gaseous, liquid, and solid products through
thermochemical and biochemical conversion processes, which have
a wide range of applications in the fields of energy, chemical

industry, and agriculture!'”

1. The development and application of
these technologies are not only of great significance to
environmental protection and energy security, but also provide a
new impetus for the sustainable development of the economy. In
addition, this paper explores the application of machine learning in
the field of biomass conversion, especially its potential in
optimizing the biomass conversion process, improving the accuracy
of energy yield prediction, and enhancing process control.

In view of the important role of biomass conversion technology
in solving energy and environmental problems, future research
directions and development trends are particularly important. The
following are a few key directions for development:

1) Technological innovation and integration: Future research
should focus on the development of more efficient biomass
conversion technologies, including the integrated optimization of
biochemical and thermochemical conversion to increase energy
yield and reduce costs. At the same time, the application of new
catalysts and biotechnology should be explored to improve
conversion efficiency and product selectivity. For example, the
“coal-to-biomass” technology!”” can fundamentally change the
energy and mass density properties of biomass and break the
technical bottleneck.

2) Application of machine learning and artificial intelligence:
Given the potential of machine learning in optimizing the biomass
conversion process, future research could further explore how
advanced data analytics can be used to predict and optimize the
biomass conversion process to increase energy production and
reduce environmental impact. Machine learning techniques have a
wide range of application areas, including image recognition,
natural language processing, recommender systems, and predictive
analytics'”, which can provide innovative solutions in the field of
biomass energy, such as assisting in decision making through
intelligent analytics to improve the efficiency and economic
benefits of biomass energy conversion.

3) Construction of a sustainable biomass supply chain: In order
to ensure the sustainability of biomass energy, a stable and
sustainable biomass supply chain needs to be constructed. This
includes the optimization of the planting, collection, storage, and
transportation of biomass feedstock. The construction of the supply
chain can be combined with machine learning, which can help
companies predict demand more accurately, optimize inventory
levels, and reduce operating costs by analyzing historical data and
real-time information, while improving the ability to respond to
market changes. Intelligent algorithms can enable logistics
optimization, reduce transportation time and costs, and improve
overall efficiency. In the case of biomass feedstock transportation,
this means that delays and costs during transportation can be
reduced and the efficiency of feedstock transportation can be
improved.

4) Environmental impact assessment and life cycle analysis:
Future research should pay more attention to the environmental
impact assessment of the whole process of biomass energy
production, and assess the environmental sustainability of biomass
energy through life cycle analysis (LCA). Exploring the mass and
heat transfer of reaction and separation processes, exploring the
kinetics and thermodynamics of complex conversion systems, and
constructing equations of state and basic physical property
databases with reliable theoretical foundations are essential for
assessing the environmental impacts of biomass energy and
optimizing the utilization of biomass energy.
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