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Abstract: Complex environments featuring variable lighting and backgrounds similar in color to the target objects present
challenges for the rapid and accurate detection of tobacco leaves, which is critical for the development of automated tobacco
leaf harvesting robots. This study introduces a depth filtering approach to filter out complex regions based on distance
information, thereby simplifying the detection task, and proposes a lightweight detection method based on an enhanced
YOLOVS5s model. Initially, the YOLOvSs backbone network is substituted with a more lightweight MobileNetV2 to reduce the
model size. Subsequently, sparse model training combined with the scaling factor distribution rules of batch normalization
layers is utilized to identify and eliminate inconsequential neural network channels. Finally, fine-tuning and knowledge
distillation techniques are employed to achieve a model accuracy close to the YOLOVSs baseline. Experimental results indicate
that the depth filtering method can improve the model’s precision, recall, and mean Average Precision (mAP) by 11.2%,
29.6%, and 17.1%, respectively. The optimized lightweight model achieves a precision of 91.1%, a recall of 90.8%, and an
mAP of 91.6%, with a memory footprint of only 1.4MB. It delivers a detection frame rate of 112 fps on desktop computers and
21 fps on mobile devices, which is approximately 3.5 and 4 times faster, respectively, compared to the baseline YOLOvVSs
tobacco leaf detection model. The precision, recall, and mAP experience a marginal decrease of 3.8, 1.6, and 2.8 percentage
points, respectively, while the memory consumption is merely 10% of the pre-optimization amount. In summary, the proposed
method enables the accurate detection of tobacco leaves against near-color backgrounds. Simultaneously, it achieves effective
lightweighting of the model without compromising its performance, thereby providing technical support for deploying tobacco

leaf detection on mobile platforms.
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1 Introduction

China is a major tobacco producer, contributing to half of the
global tobacco yield"?. Tobacco is cultivated across most provinces
in China, with leaves maturing from June onwards. Delayed
harvesting of mature leaves increases the risk of diseases such as
tobacco brown spot disease, which can cause leaf withering and
result in economic losses?.. Currently, tobacco harvesting in China
relies mainly on manual labor, a process characterized by high labor
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costs and harsh working conditions. Developing automated tobacco
leaf harvesting robots capable of replacing manual labor in this
demanding process is essential for stimulating the economic
viability of the tobacco industry'®. Accurate detection of tobacco
leaves serves as a prerequisite for subsequent maturity identification
and picking point localization, forming a critical foundation for the
technical advancement of tobacco leaf harvesting robots. However,
as tobacco is cultivated in extensive field environments, the
similarity in color between tobacco leaves and stems complicates
the extraction of effective features. This complexity contributes to
the challenges of tobacco leaf detection, increasing the likelihood of
While
detection algorithms perform well, their adaptability to low-
computational platforms is limited, affecting the real-time
applicability!'*". Researching detection methodologies that perform
robustly against similar-color backgrounds and enhancing real-time
detection capabilities in field conditions are urgent priorities to

false detections and missed detections!™. traditional

advance the technology of tobacco leaf harvesting robots!'*'l,

Most existing algorithms for tobacco leaf detection are
deployed in phases other than harvesting, such as tobacco
phenotypic analysis"®, post-harvest leaf grading!™'*, and the
identification and control of diseases and pests**?. Consequently,
there is a necessity to develop detection methodologies that are
specifically tailored for the harvesting phase. Unlike other growth
phases such as phenotypic analysis or disease detection, harvesting-
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stage leaf detection must cope with dense leaf coverage, near-color
background interference (e.g., stems and weeds), and real-time
operational demands. These differences necessitate dedicated
detection methods optimized for both accuracy and computational
efficiency. Leaf detection during the harvest period involves
identifying targets within similar-color backgrounds, a challenge
increasingly addressed by various deep learning algorithms that
have been designed for this purpose. Tobacco leaf detection during
the harvest period falls within the realm of object detection in
similar-color environments. With the advancements in deep
learning, numerous algorithms have been adapted for detecting
objects under such conditions. Wang et al.””! developed a tea leaf
picking point detection method employing Mask R-CNN, integrated
with Resnet50 and RolAlign technologies, achieving an average
detection accuracy of 93.95%. Cardellicchio et al.”* utilized a
YOLOv5-based single-stage detector for identifying phenotypic
features of similarly colored tomato plants, attaining substantial
average detection accuracy. Ma et al.” introduced the YOLOVS-
lotus method, effectively detecting mature lotus pods against similar-
color backgrounds in a natural environment. The addition of a
Coordinate Attention module enhanced the detection precision,
facilitating automated lotus pod harvesting. Wang et al.* proposed
the YOLOvSs-CFL model for real-time detection of millet peppers
in similar-color backgrounds, thus aiding the development of millet
pepper harvesting robots. Qiu et al.”” developed a lightweight
variant of the enhanced YOLOVS, tailored for detecting Foxtail
Millet Ears in densely populated fields, achieving an average
precision of 96.60%. Ho et al.® employed the Faster R-CNN
framework to detect watermelons against similar backgrounds,
contributing to watermelon picking methodologies. Li et al.*”
formulated a deep learning-based object detection algorithm using
YOLOv4 tiny, targeting green peppers in similar-color
environments, thereby supporting green pepper harvesting
automation. Although existing studies on object detection in similar-
color backgrounds have shown promising results, research
specifically targeting leaf detection under such conditions remains
limited. Moreover, the proposed models often suffer from large
parameter sizes, high algorithmic complexity, and slow detection
speeds, making them less suitable for real-time field applications.
To address the challenge of similar-color background
interference in tobacco leaf detection and to effectively lightweight
the model while maintaining its performance, this study firstly
utilizes depth information to filter out complex backgrounds in

images. A lightweight tobacco leaf detection algorithm based on
YOLOVS5s is proposed, which significantly reduces the model size
by substituting the YOLOvVSs backbone network. Channel pruning
is employed to remove non-essential channels from the model,
followed by fine-tuning and knowledge distillation to restore the
model’s accuracy to near pre-pruning levels. This approach
provides technical support for the rapid and accurate detection
capabilities required by tobacco leaf harvesting robots.

2 Materials and methods

2.1 Data collection and processing

This study utilized the Intel Realsense D405 depth camera for
tobacco leaf image collection. Images were captured in August
2023 at the World Tobacco Variety Park located at Zhangjiacun
Road, Chengjiang City, Yuxi City, Yunnan Province, China
(24°39'N, 102°52'E). The tobacco variety used for the study was
Yunyan 87. The collected color images have a resolution of
1280x720 pixels and are stored in the PNG format, and depth
images are saved in the NPY format. The imaging conditions
encompassed diverse environments, including sunny and cloudy
weather, different times of day such as morning, noon, and evening,
as well as various lighting angles, including direct and backlighting.
The capture process mimicked the robot picking routine,
maintaining a consistent distance while acquiring images from
various overhead angles, as illustrated in Figure 1. The dataset
encompasses a wide range of maturity levels, postures, lighting
conditions, and backgrounds, resulting in a total of 1020 tobacco
leaf images. Figure 2 displays a selection of the captured images.

e

| Example image of
depth camera

Example image of
tobacco plant structure

Figure 1 Schematic diagram of the acquisition process of images

under different conditions

d. Back light

e. Forward light

f. Cloudy day

Figure 2 Example of tobacco leaf images
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In this study, a camera-off-hand setup was adopted, where the
depth camera is mounted in a fixed position on the harvesting
platform to ensure stable imaging. This method is also potentially
transferable to camera-in-hand configurations, as image acquisition
typically occurs before manipulator movement begins.

The presence of similar-color backgrounds in tobacco leaves,
such as weeds and incomplete leaves, tends to induce false
detections and missed detections in the detection model.

Furthermore, tobacco leaf harvesting robots require the
identification of the nearest tobacco leaf targets during operation.
To address this, the study utilizes depth information for background
filtration. Specifically, in the RGB images, pixels with depth values
greater than 60 cm are reassigned an RGB value of (128, 128, 128),
effectively mitigating the impact of similar-color backgrounds on
tobacco leaf detection. The images before and after processing, as
well as the colored depth image, are shown in Figure 3.

a. Before depth filtering

b. After depth filtering

c. Depth image (colored)

Figure 3 Comparison before and after depth filtering

The harvesting environment for tobacco leaves differs
significantly from typical greenhouse settings, as depicted in
Figures 4a and 4b for tomato and pepper harvesting, where the
fruits are readily distinguishable from their background. In contrast,
the dense growth and large leaves of tobacco, alongside near-color
backgrounds such as weeds and partial leaves, increase the risk of
both false and missed detections in detection models, as illustrated
in Figure 4c. Moreover, tobacco leaf harvesting robots are required
to identify the nearest leaf targets accurately.

In the process of constructing the tobacco leaf dataset, images
are firstly preprocessed through depth filtering, and then Labelimg

software is used to mark the area of the target tobacco leaf in the
image with a rectangular frame to generate a dataset that can be
used for YOLOVSs training. In order to ensure the generalization
performance and robustness of the model, the data enhancement
used included randomly adding noise, cropping, rotation, and other
operations, expanding it to 2380 images, and creating a dataset in
VOC format. Among them, the category label of tobacco leaves is
set to tobacco, and the labeled rectangle fits the outline of the
tobacco leaves. Then it was divided into a training set (1666
pictures), a verification set (476 pictures), and a test set (238
pictures) according to the ratio of 7:2:1.

a. Tomato harvest environment

b. Pepper harvesting environment

c. Tobacco harvesting environment

Figure 4 Comparison of the growing environments of different crops

2.2 Algorithmic improvements

YOLO is a object network,
conceptualizing detection as a regression problem. This end-to-end
network significantly enhances detection speed. The YOLO series
has evolved from YOLOv1, with YOLOVS being one of the widely
adopted versions. YOLOv1, while foundational, suffers from poor
detection performance and inaccurate localization®™. YOLOv2
improved both performance and speed, yet struggled in a complex
environment®. YOLOv3 marked advancements in speed and
accuracy over its predecessors, but underperformed in scenarios
with significant occlusion®”. YOLOv4 enhanced feature extraction
diversity and robustness through network modifications, yet faced
issues with inaccurate bounding boxes and low recall rates,
alongside increased algorithmic complexity™!. Subsequent versions
post YOLOVS have seen improvements in accuracy, but with more

single-stage detection

complex implementations and slower detection speeds compared to
YOLOv5®, YOLOVS stands out for its optimized architecture,
offering rapid and accurate object detection. Hence, this study
employs YOLOVSs, recognized for its superior overall performance
within the YOLOVS variants.

The YOLOvVSs architecture comprises an input layer, a
backbone feature extraction network, a neck network, and a
prediction head. Within the fully trained YOLOVSs object detection
model, the backbone layer accounts for the majority of
computational resources and parameters. To effectively reduce the
model’s memory footprint and enhance field detection speed, it is
essential to modify the backbone. Replacing the backbone with a
lightweight network serves as an efficient strategy to decrease the
number of parameters and computational load while maintaining
network performance. Further model lightening is achieved through
channel pruning, followed by the restoration of detection
performance via knowledge distillation. Such adaptations are
pivotal in optimizing the model’s structure and enhancing its
deployment efficiency.

2.3 MobileNetV2

MobileNetV2, a lightweight neural network architecture,
achieves low computational complexity and reduced parameter size
while delivering exceptional performance®™. As a part of the
MobileNet series, it is tailored for efficient image processing in
resource-constrained environments, such as mobile devices and
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embedded systems. Consequently, MobileNetV2 is utilized in this
study to modify the backbone of YOLOv5s for optimized
performance.

In the MobileNet series, depthwise separable convolution is
introduced, segmenting the convolution process into depthwise and
point-wise convolutions to decrease computational demand. Unlike
standard convolutions where each kernel processes all channels of
the input feature map simultaneously (Figure 5), depthwise
separable convolution efficiently reduces the complexity. Assuming
the input image has a dimension of N, with a convolution kernel
size of L., and output dimensions of L,XL,xM, the total
parameter count X,umeer and computational load Xy €an be
represented as follows:

Xoarameter = Li X Ly XN X M (1)

Xeatcutation = L X L XN X M X L,, X L 2)

xM
L,
N L,
LW

L

W

Figure 5 Standard convolutions

Depthwise separable convolution comprises two stages:
depthwise and pointwise convolutions. Initially, each input channel
undergoes an independent convolution to create feature maps across
multiple channels, known as depthwise convolution. Subsequently,
1x1 convolutions are applied to linearly combine these feature
maps, resulting in the final output feature map, termed pointwise
convolution. This process is illustrated in Figure 6. The total
number of parameters and computational load in depthwise
separable convolution can be quantified as:

Xpprameter = Li XL X N+ N XM (3)

1. Depth convolution 2. Pointwise convolution
A A

ﬁ :
L .@ L, ( E
' L
N N
L,

L,
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w

Figure 6 Depthwise separable convolution

Xeatcutation = L X X NX L, X Li + NX M X L, X L, 4)

Consequently, the number of parameters and computational
effort required for depthwise separable convolution is only

(%-FL%) of that for standard convolution. This results in a
significant reduction in parameter and computational complexity for
depthwise separable convolution, enabling a substantial increase in
the model’s execution speed.

The essence of the MobileNetV2 architecture lies in its series
of inverted residual modules, each composed of three layers: an
expansion layer, a depthwise separable convolution layer, and a
projection layer. The expansion layer employs 1x1 convolutions to
upsample low-dimensional inputs to a higher dimension, followed
by the depthwise separable convolution layer which performs
spatial filtering on these high-dimensional features. Subsequently,
the projection layer utilizes 1x1 convolutions to project the features
back to a lower dimension.

Incorporating MobileNetV2 as the backbone network for
YOLOVS5s leverages its efficient feature extraction and compact
model size. MobileNetV2’s layered architecture efficiently captures
a wide range of image features, conveying them to other
components of YOLOvSs for object detection. The integration of
MobileNetV2 into YOLOvSs enhances the real-time performance
on embedded devices, simultaneously reducing the number of the
model’s parameters and computational resources while ensuring
high accuracy. The network’s architecture is depicted in Figure 7.

1
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Figure 7 Structure schematic of YOLOv5s-MobileNetV2 algorithm
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2.4 Channel pruning and knowledge distillation

Although the YOLOv5s model with a modified backbone can
accurately detect tobacco leaves, its size remains slightly large. To
further reduce the complexity and enhance the efficiency of the
detection model, channel pruning algorithms are employed to
further optimize the YOLOVSs tobacco leaf detection model with
the altered backbone®™.
2.4.1 Sparse training

In the method of channel pruning, it is a prerequisite to conduct
sparse training on the batch normalization (BN) layers within the
network model. In models trained without sparsity constraints, the
scaling factors y of the batch normalization (BN) layers tend to
follow a normal distribution centered around 1 as training
progresses. During sparse training, by incorporating an L1
regularization constraint on the BN layer’s scaling factors into the
loss function, the parameters are sparsified, driving the scaling
factors’ distribution closer to zero. The loss function’s computation
process is formulated as follows:

L= IF W0+ e@) (5)

(xy) yel’

In the equation, (x,y) denotes the training inputs and targets,
while W represents the weights used in standard training. The first
summation term signifies the loss function for standard training.
The second summation term pertains to the sparsification of the BN-
layer scaling factors (denoted as y) through L1 regularization. Here,
g(y) =yl serves as a penalty term for sparse training, and A is the

Oruginal network

balancing factor between standard and sparse training, also known
as the sparsity regularization coefficient.

During the sparse training process, balancing model accuracy
with the degree of sparsity is crucial, and this balance hinges on the
sparsity regularization coefficient A. A larger value of A accelerates
the approach of the BN layer’s scaling factors towards zero,
potentially reducing the model’s average recognition accuracy.
Conversely, a smaller A value results in a slower rate of approach to
zero for the scaling factors, leading to more stable convergence of
the model’s average recognition accuracy. Thus, careful selection of
the sparsity regularization coefficient is essential in designing an
effective sparsification strategy to optimize the performance
balance.

2.4.2 Channel pruning and model fine-tuning

Post sparse training, model pruning is executed by eliminating
less significant channels within the convolutional layers. This
pruning is informed by the distribution of the scaling factors in the
BN layer. The factors are ordered by mean value, and channels
approaching zero are removed. Deep networks primarily involve
multiplications and additions across layers, and channels with near-
zero scaling factors contribute minimally to the model. Thus, their
removal aids in network compression, as illustrated in Figure 8.
Models subjected to pruning typically experience some accuracy
degradation. To mitigate this loss and adjust to the altered network
architecture, fine-tuning is essential. This step entails re-loading the
dataset and associated configuration files to either restore or
enhance the network’s performance.

Network after pruning

y A=
- —| 00872 qﬂ
coo | PN
| o
i-th convolutional BN layer j-th convolutional
layer scaling factor layer

A N
.—> ° (.872 ‘vm
va
| o
i-th convolutional BN layer j-th convolutional
layer scaling factor layer

Figure 8 Channel pruning

2.4.3 Knowledge distillation

Knowledge distillation is a technique for model compression,
fundamentally involving the transfer of knowledge from a large, co-
mplex ‘teacher model’ to a smaller, simpler ‘student model’*"\. This
approach enables smaller models to achieve performance compar-
able to larger models while requiring fewer computational resour-
ces. In the knowledge distillation process, the student model learns
not only the correct outputs for actual labels but also emulates the
outputs of the teacher model, as depicted in Figure 9.

In this study, the tobacco leaf detection model with a replaced
backbone is selected as the teacher network for the knowledge
distillation experiment, while the fine-tuned pruned model serves as
the student network. Through knowledge distillation, the soft
feature information from the intermediate layers learned by the
teacher network is imparted to the student network, thereby
enhancing its recognition accuracy.

2.5 Test platform

The computational setup used for the experiments consisted of
a computer running the Windows 10 operating system, equipped
with an Intel Core 15-13490F CPU, Nvidia Geforce RTX 3080 Ti

GPU, and 32GB of RAM. The software environment included
Pytorch 1.10.0, Cuda 11.3, cuDNN 8.2.0, and Python 3.8.

Teacher
network

ﬁ Distillation
P Training

date Data (features)
ﬁ Transfer

. | Student

- network

Figure 9
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2.6 Evaluation indicators

To holistically assess the impact of lightweight model
processing and data modification on detection performance, three
model recognition metrics, two computational performance metrics,
and model memory usage were chosen for evaluation. The
recognition metrics include precision (P), recall (R), and mean
average precision (mAP) at an IoU threshold of 0.5. The
computational metrics comprise the number of parameters and the
volume of floating-point operations. Precision, recall, and mAP are
mathematically expressed as follows:

TP

P=Tp+Fp ©)
TP
R=1pr N )
1 N
mAP@0.5= ZAP,- (8)

i=1

In these definitions, TP (True Positive) denotes the count of
positive samples correctly identified as positive; FP (False Positive)
refers to the count of negative samples incorrectly identified as
positive; FN (False Negative) represents the count of negative
samples incorrectly identified as negative; N signifies the total
number of categories; and AP; denotes the average precision for the
ith category at an IoU threshold of 0.5.

Post knowledge distillation, to further examine the effect of
lightweight processing on the model, the frame rates detected on the
same desktop configuration and on a mobile platform (NVIDIA
Jetson Orin NX 16 G) are also included as computational
performance metrics.

3 Results and discussion

3.1 The impact of depth filtering on detection results

To validate the effectiveness of depth filtering in simplifying
the complex background of tobacco leaf images for enhanced
detection, two datasets were utilized: one comprising original

2 ‘ tobacco 0.90
s ”"‘h\x bacco 0.97
tobacco 0.93 0.87 tobacco 0.
- e
“tobacco 0.97 e

N
_tobacco 0.98 M

tobacco 0.94

5 - A
c. Before depth filtering
Figure 11

3.2 Effects of model lightweighting

3.2.1 Comparing models with and without backbone replacement
Utilizing depth information to filter out the complex

background of tobacco leaves has simplified the task of tobacco leaf

detection. To effectively reduce the memory footprint of the

tobacco leaf images and the other consisting of images post depth
filtering. Both datasets were trained using the YOLOv5s model. The
mAP variation during training for each dataset is depicted in
Figure 10, with the training spanning 100 epochs. The results of the
training are presented in Table 1.

100
80
£ 60
=3
T 40
20 — After depth filtering
— Original data
0 1 1 1 1 I
0 20 40 60 80 100
Epoch
Figure 10 mAP change curves of different datasets
Table 1 Training results on different datasets
Training data name Pl% R/% mAP/%
Original data 83.7 62.8 71.3
Depth-filtered data 94.9 92.4 94.4

As indicated by the figure and table, training with depth-filtered
tobacco leaf images resulted in an average precision of 94.4%. In
contrast, the original dataset achieved only 77.3% average precision
after training, primarily due to background interference from distant
tobacco leaves, which negatively affected the detection
performance. Depth filtering of the images effectively filters out the
complex background, thereby enhancing the detection of complete
tobacco leaves. A comparison of the detection results before and
after depth filtering is illustrated in Figure 11.

As indicated in Table 1, training with depth-filtered tobacco
leaf images results in a model with higher accuracy, recall rate, and
mAP by 11.2, 29.6, and 17.1 percentage points, respectively,
compared to using original images. Thus, employing depth filtering
to remove the complex background from the original images proves
more effective for tobacco leaf detection.

tobacco 0.97

b. After depth filtering

tobacco 0.98

d. After depth filtering

Detection results before and after depth filtering

YOLOv5s model and accelerate its detection speed in field
conditions, the backbone of the model was replaced with
MobileNetV2. The performance of the model post replacement is
presented in Table 2.

As listed in Table 2, the precision, recall, and mAP of the
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YOLOvV5s-MobileNetV2 model are 2.6, 0.9, and 2.3 percentage
points lower, respectively, than those of the YOLOvSs model.
However, the size of the YOLOvS5s-MobileNetV2 model is only
23.5% of the YOLOVS5s, representing a significant step towards the
lightweighting of the detection model.

Table 2 Performance of the model before and after
backbone replacement

Model name Pl% RI% mAP/, Numberof op pg Model
parameters size/MB
YOLOvSs 949 924 944  7.2x10° 16.2 13.6
YOLOVSs-MobileNetV2 92.3 91.5 92.1  1.4x10° 2.5 32

3.2.2 Effects of model pruning

To avoid confusion, it is noted that A represents the sparsity
regularization coefficient controlling the strength of L1 penalty,
while y denotes the scaling factors in BN layers used for pruning
decisions.

After the backbone replacement, channel pruning was
conducted on the YOLOv5s-MobileNetV2 model. To maintain

Frequency of scaling factors

ol g R URONIG 0 LI,
OO~ N LIN— N
[VAVANVAVIVIVAIIN

yoodo Sururen osredg

02061.0141.8222.63.0343.842465054
Scaling factor y
a. 1=0.0003

Frequency of scaling factors

robust detection performance while facilitating channel pruning,
comparative experiments were performed using different sparse
regularization coefficients A. Variations in A resulted in corres-
ponding changes in the weights and mAP of the model’s BN layer.
These changes were visualized using the TensorBoard module in
the PyTorch framework. The distribution changes of the BN layer’s
scaling factors (y) for different A values are illustrated in Figure 12.

Figure 12a depicts the BN layer’s weight changes with A set to
0.0003 after 100 epochs of training. After 100 epochs of sparse
training, the distribution of BN-layer scaling factors (y) remained
largely unchanged, with none approaching zero, suggesting an
overly small A value of 0.0003. Figure 12c, with A set to 0.05,
shows significant screening of channels with BN layer scaling
factors nearing zero within the initial 10 epochs of sparse training,
potentially impacting model accuracy, indicating an excessively
high A value of 0.05. As shown in Figure 12b, setting A at 0.004
and after 100 epochs of sparse training, the variation in scaling
factors nearing zero in the BN layer stabilized, indicating that the
model is adequately prepared for the pruning experiment.

Frequency of scaling factors
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Figure 12 Distribution of BN layer scaling factors after different sparse trainings

Figure 13 illustrates the variations in average accuracy during
sparse training at sparse regularization coefficients of 0.05 and
0.004. It is evident from the figure that the model accuracy with a
coefficient of 0.004 significantly surpasses that with 0.05, resulting
in a difference of 10.7 percentage points in final average accuracy.
100

80 f,
60
40
20

mAP/%

--2=0.05

O 1 1 1 1 I
0 20 40 60 80 100

Epoch

Figure 13 mAP change curves
under different A

The experimental results indicate that with the sparse
regularization coefficient A set at 0.004, the optimal pruning model
was identified by iteratively adjusting the pruning rate. This model,
preserving 25% of the original model’s channels, was selected as
the final configuration. The variation in the number of channels in
the model before and after pruning is illustrated in Figure 14.

100 .
= Origin channels
80 - = Remaining channels
B 60}
g
5 40
20 + H
0 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11

Order of layers
Figure 14 Changes of partial channels in the model
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Following the pruning and subsequent fine-tuning training, the
model, now designated as YOLOv5s-MobileNetV2-Pruned,
exhibited a slight reduction in accuracy compared to its pre-pruning
state. The detailed performance metrics of the model before and
after pruning are depicted in Figure 15. Although the average
precision decreased by 3.2 percentage points post pruning, the
model’s memory footprint experienced a significant reduction of 56
percentage points.

100
80 R
<60
[=™}
T 40
20 — YOLOV5s-MobileNetV2
-- YOLOv5s-MobileNetV2-Pruned
0 1 1 1 1 1
0 20 40 60 80 100
Epoch

Figure 15 Comparison of the model’s mAP before
and after pruning

3.2.3 Effects of knowledge distillation

The model post knowledge distillation has been designated as
YOLOv5s-MobileNetV2-Pruned-Distill.  Various models were
deployed on a mobile platform for comparative testing, with the

tobacco 05890 -89

{bacco 0.87

tobacco 0.44
paS

a. YOLOvS5s (Before depth filtering)

tobacco 0.97 A
tobacco 0.95

d. YOLOVSs (After depth filtering)

tobacco 0.

g. YOLOvS5s-MobileNetV2-Pruned-Distill
(After depth filtering)

h. YOLOv5s-MobileNetV2-Pruned-Distill
(After depth filtering)

results presented in Table 3.

Table 3 reveals that following knowledge distillation, the
model demonstrated improvements in precision, recall, and mAP by
3.2, 4.1, and 2.7 percentage points, respectively, while maintaining
consistent memory usage and frame rate. When compared to
YOLOvV5s-MobileNetV2, YOLOvS5s-MobileNetV2-Pruned-Distill
showed slight reductions of 1.2, 0.7, and 0.5 percentage points in
precision, recall, and mAP, respectively, along with a decrease in
memory usage by 1.8 MB and an increase of 34 in desktop frame
rate. Overall, the memory footprint of the optimized YOLOvSs
model for leaf disease detection was significantly reduced by 90%,
with desktop and mobile detection frame rates increasing nearly 3.5
and 4 times, respectively. To validate the effectiveness of the
lightweight model, tobacco leaf images from the dataset were
tested, with results presented in Figure 16.

Table 3 Performance of models

Model name P/ R/ mAP/ Model Desktop  Mobile
% % %  size/MB frame rate frame rate
YOLOVS5s 949 924 944 13.6 32 5
YOLOv5s-MobileNetV2 92.3 91.5 92.1 32 78 14
YOLOVSs-MobileNetV2- g7 9 g57 839 14 12 21
Pruned
YOLOv5s-MobileNetV2- 91.1 908 91.6 1.4 112 1

Pruned-Distill

tobacco 0.87

tobacco 0.80

c. YOLOVSs ( Before depth filtering)

tobacco 0.87 F .% By <
L% B

tobacco 0.93

i. YOLOv5s-MobileNetV2-Pruned-Distill
(After depth filtering)

Figure 16 Result of model validation

Figure 16 illustrates that depth information filtering effectively
simplifies complex backgrounds, thereby reducing the complexity
of detection tasks. In tobacco leaf detection, both the original and
the lightweight models successfully identified all tobacco leaves.
The marginally reduced confidence level in the lightweight model
suggests that its detection performance is closely aligned with the
original model.

4 Discussion

Tobacco leaf detection is challenging due to the color similarity

between leaves and stems, leading to potential both false and missed
detections that could impact the efficiency of harvesting equipment.
To address this, a depth filtering method was introduced to enhance
the model’s detection accuracy by simplifying the complex
background, improving from 77.3% to 94.4%. However,
inappropriate depth filtering thresholds might render leaf
information incomplete, as demonstrated with the upper right
tobacco leaves in Figure 16b, which are fully detected in the
original images, but are missed after depth filtering due to the loss
of complete leaf information. Future adjustments to the depth
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filtering threshold could allow for tailored background filtration
based on specific conditions.

To tackle the large size of the YOLOvSs model and the limited
computational capacity of harvesting equipment, a lightweighting
strategy was developed. This involved compressing the model by
replacing its backbone network and further reducing its size through
channel pruning, with knowledge distillation applied to closely
restore its pre-pruning accuracy. Experimental results indicate that
this approach reduced the model size from 13.6 MB to 1.4 MB
while minimally impacting accuracy by only 2.8%, ensuring precise
tobacco leaf detection with lower computational demands. Dense
growth and occasional leaf occlusion present additional challenges;
slight occlusions allow for the differentiation of leaves as depicted
in Figures 16a, 16d, and 16g, while severe occlusions, shown in
Figures 16¢, 16f, and 16i, hinder separate leaf detection.
Incorporating an attention mechanism algorithm into the model is
considered for future work to address severe occlusions. In addition
to occlusion, variable illumination in field environments—such as
shadows, strong sunlight, and backlighting—can lead to
inconsistent color features and reduced detection accuracy. To
mitigate this, future work will explore illumination-invariant
preprocessing techniques such as adaptive gamma correction,
histogram equalization, or high dynamic range (HDR)
enhancement, in order to improve model robustness under diverse
lighting conditions.

Unlike other fruit harvesting scenarios, tobacco leaf harvesting
targets the leaves themselves, where inter-leaf interference is
common, as illustrated in Figure 3. The depth filtering method and
YOLOv5s-MobileNetV2-Pruned-Distill lightweight model
proposed herein effectively detect leaf targets, offering valuable
insights for future research on leaf detection in near-color
backgrounds, including mulberry and mint leaves. Furthermore,
tobacco leaf detection is crucial for identifying maturity levels and
detecting pests and diseases, with future studies aimed at enhancing
leaf maturity identification.

5 Conclusions

To address the challenges of low accuracy, limited real-time
performance, and poor robustness in tobacco leaf detection under
complex environments, this paper introduces a depth filtering
method and a lightweight tobacco leaf detection approach based on
an enhanced YOLOvS5s model. The MobileNetV2 lightweight
network is employed as the backbone, and channel pruning is
utilized to eliminate unimportant channels, thereby reducing the
model size. Knowledge distillation is then applied to restore the
pruned model to its pre-pruning state. Based on the comparison of
detection performance before and after depth filtering, as well as
algorithm performance before and after lightweighting, the
following conclusions were drawn:

1) Training with images post depth filtering, compared to
original images, shows significant improvement. Depth filtering
raises the model’s precision, recall, and mAP by 11.2, 29.6, and
17.1 percentage points, respectively.

2) Replacing the detection network’s backbone and applying
channel pruning significantly reduces the model’s memory usage
and computational demand. The memory usage of the YOLOvSs-
MobileNetV2-Pruned-Distill model is 90% of the YOLOvS5s, and
the frame rates on desktop and mobile platforms increase to 3.5 and
4 times their original values, respectively.

3) Combining knowledge distillation with backbone
replacement and channel pruning effectively lightweights the model

while minimizing the loss in accuracy. The YOLOvS5s-
MobileNetV2-Pruned-Distill model, post knowledge distillation,
achieves precision, recall, and mAP of 91.1%, 90.8%, and 91.6%,
respectively, fulfilling the requirements for tobacco leaf detection.
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