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Abstract: Complex  environments  featuring  variable  lighting  and  backgrounds  similar  in  color  to  the  target  objects  present
challenges for the rapid and accurate detection of tobacco leaves, which is critical for the development of automated tobacco
leaf  harvesting  robots.  This  study  introduces  a  depth  filtering  approach  to  filter  out  complex  regions  based  on  distance
information,  thereby  simplifying  the  detection  task,  and  proposes  a  lightweight  detection  method  based  on  an  enhanced
YOLOv5s model. Initially, the YOLOv5s backbone network is substituted with a more lightweight MobileNetV2 to reduce the
model  size.  Subsequently,  sparse  model  training  combined  with  the  scaling  factor  distribution  rules  of  batch  normalization
layers  is  utilized  to  identify  and  eliminate  inconsequential  neural  network  channels.  Finally,  fine-tuning  and  knowledge
distillation techniques are employed to achieve a model accuracy close to the YOLOv5s baseline. Experimental results indicate
that  the  depth  filtering  method  can  improve  the  model’s  precision,  recall,  and  mean  Average  Precision  (mAP)  by  11.2%,
29.6%,  and  17.1%,  respectively.  The  optimized  lightweight  model  achieves  a  precision  of  91.1%,  a  recall  of  90.8%,  and  an
mAP of 91.6%, with a memory footprint of only 1.4MB. It delivers a detection frame rate of 112 fps on desktop computers and
21  fps  on  mobile  devices,  which  is  approximately  3.5  and  4  times  faster,  respectively,  compared  to  the  baseline  YOLOv5s
tobacco leaf  detection model.  The precision,  recall,  and mAP experience a marginal  decrease of  3.8,  1.6,  and 2.8 percentage
points, respectively, while the memory consumption is merely 10% of the pre-optimization amount. In summary, the proposed
method enables the accurate detection of tobacco leaves against near-color backgrounds. Simultaneously, it achieves effective
lightweighting of the model without compromising its performance, thereby providing technical support for deploying tobacco
leaf detection on mobile platforms.
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1    Introduction
China  is  a  major  tobacco  producer,  contributing  to  half  of  the

global tobacco yield[1,2]. Tobacco is cultivated across most provinces
in  China,  with  leaves  maturing  from  June  onwards.  Delayed
harvesting  of  mature  leaves  increases  the  risk  of  diseases  such  as
tobacco  brown  spot  disease,  which  can  cause  leaf  withering  and
result in economic losses[3-5]. Currently, tobacco harvesting in China
relies mainly on manual labor, a process characterized by high labor

costs and harsh working conditions. Developing automated tobacco
leaf  harvesting  robots  capable  of  replacing  manual  labor  in  this
demanding  process  is  essential  for  stimulating  the  economic
viability  of  the  tobacco  industry[6].  Accurate  detection  of  tobacco
leaves serves as a prerequisite for subsequent maturity identification
and picking point localization, forming a critical foundation for the
technical advancement of tobacco leaf harvesting robots. However,
as  tobacco  is  cultivated  in  extensive  field  environments,  the
similarity  in  color  between  tobacco  leaves  and  stems  complicates
the  extraction  of  effective  features.  This  complexity  contributes  to
the challenges of tobacco leaf detection, increasing the likelihood of
false  detections  and  missed  detections[7-9].  While  traditional
detection  algorithms  perform  well,  their  adaptability  to  low-
computational  platforms  is  limited,  affecting  the  real-time
applicability[10-13]. Researching detection methodologies that perform
robustly against similar-color backgrounds and enhancing real-time
detection  capabilities  in  field  conditions  are  urgent  priorities  to
advance the technology of tobacco leaf harvesting robots[14,15].

Most  existing  algorithms  for  tobacco  leaf  detection  are
deployed  in  phases  other  than  harvesting,  such  as  tobacco
phenotypic  analysis[16],  post-harvest  leaf  grading[17,18],  and  the
identification  and  control  of  diseases  and  pests[19-22].  Consequently,
there  is  a  necessity  to  develop  detection  methodologies  that  are
specifically  tailored  for  the  harvesting  phase.  Unlike  other  growth
phases such as phenotypic analysis or disease detection, harvesting-
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stage leaf detection must cope with dense leaf coverage, near-color
background  interference  (e.g.,  stems  and  weeds),  and  real-time
operational  demands.  These  differences  necessitate  dedicated
detection  methods  optimized  for  both  accuracy  and  computational
efficiency.  Leaf  detection  during  the  harvest  period  involves
identifying  targets  within  similar-color  backgrounds,  a  challenge
increasingly  addressed  by  various  deep  learning  algorithms  that
have been designed for this purpose. Tobacco leaf detection during
the  harvest  period  falls  within  the  realm  of  object  detection  in
similar-color  environments.  With  the  advancements  in  deep
learning,  numerous  algorithms  have  been  adapted  for  detecting
objects  under  such  conditions.  Wang  et  al.[23]  developed  a  tea  leaf
picking point detection method employing Mask R-CNN, integrated
with  Resnet50  and  RoIAlign  technologies,  achieving  an  average
detection  accuracy  of  93.95%.  Cardellicchio  et  al.[24]  utilized  a
YOLOv5-based  single-stage  detector  for  identifying  phenotypic
features  of  similarly  colored  tomato  plants,  attaining  substantial
average  detection  accuracy.  Ma  et  al.[25]  introduced  the  YOLOv5-
lotus method, effectively detecting mature lotus pods against similar-
color  backgrounds  in  a  natural  environment.  The  addition  of  a
Coordinate  Attention  module  enhanced  the  detection  precision,
facilitating automated lotus pod harvesting. Wang et al.[26] proposed
the YOLOv5s-CFL model for real-time detection of millet peppers
in similar-color backgrounds, thus aiding the development of millet
pepper  harvesting  robots.  Qiu  et  al.[27]  developed  a  lightweight
variant  of  the  enhanced  YOLOv5,  tailored  for  detecting  Foxtail
Millet  Ears  in  densely  populated  fields,  achieving  an  average
precision  of  96.60%.  Ho  et  al.[28]  employed  the  Faster  R-CNN
framework  to  detect  watermelons  against  similar  backgrounds,
contributing  to  watermelon  picking  methodologies.  Li  et  al.[29]

formulated  a  deep  learning-based  object  detection  algorithm  using
YOLOv4_tiny,  targeting  green  peppers  in  similar-color
environments,  thereby  supporting  green  pepper  harvesting
automation. Although existing studies on object detection in similar-
color  backgrounds  have  shown  promising  results,  research
specifically  targeting  leaf  detection  under  such  conditions  remains
limited.  Moreover,  the  proposed  models  often  suffer  from  large
parameter  sizes,  high  algorithmic  complexity,  and  slow  detection
speeds, making them less suitable for real-time field applications.

To  address  the  challenge  of  similar-color  background
interference in tobacco leaf detection and to effectively lightweight
the  model  while  maintaining  its  performance,  this  study  firstly
utilizes  depth  information  to  filter  out  complex  backgrounds  in

images.  A  lightweight  tobacco  leaf  detection  algorithm  based  on
YOLOv5s  is  proposed,  which  significantly  reduces  the  model  size
by  substituting  the  YOLOv5s  backbone  network.  Channel  pruning
is  employed  to  remove  non-essential  channels  from  the  model,
followed  by  fine-tuning  and  knowledge  distillation  to  restore  the
model’s  accuracy  to  near  pre-pruning  levels.  This  approach
provides  technical  support  for  the  rapid  and  accurate  detection
capabilities required by tobacco leaf harvesting robots. 

2    Materials and methods
 

2.1    Data collection and processing
This  study utilized the Intel  Realsense D405 depth camera for

tobacco  leaf  image  collection.  Images  were  captured  in  August
2023  at  the  World  Tobacco  Variety  Park  located  at  Zhangjiacun
Road,  Chengjiang  City,  Yuxi  City,  Yunnan  Province,  China
(24°39 ′N,  102°52 ′E).  The  tobacco  variety  used  for  the  study  was
Yunyan  87.  The  collected  color  images  have  a  resolution  of
1280×720  pixels  and  are  stored  in  the  PNG  format,  and  depth
images  are  saved  in  the  NPY  format.  The  imaging  conditions
encompassed  diverse  environments,  including  sunny  and  cloudy
weather, different times of day such as morning, noon, and evening,
as well as various lighting angles, including direct and backlighting.
The  capture  process  mimicked  the  robot  picking  routine,
maintaining  a  consistent  distance  while  acquiring  images  from
various  overhead  angles,  as  illustrated  in  Figure  1.  The  dataset
encompasses  a  wide  range  of  maturity  levels,  postures,  lighting
conditions,  and  backgrounds,  resulting  in  a  total  of  1020  tobacco
leaf images. Figure 2 displays a selection of the captured images.

  

30-50

cm

Example image of

depth camera

Example image of

tobacco plant structure

Figure 1    Schematic diagram of the acquisition process of images
under different conditions

 
 

a. Morning b. Noon c. Nightfall

d. Back light e. Forward light       f. Cloudy day

Figure 2    Example of tobacco leaf images
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In this study, a camera-off-hand setup was adopted,  where the
depth  camera  is  mounted  in  a  fixed  position  on  the  harvesting
platform  to  ensure  stable  imaging.  This  method  is  also  potentially
transferable to camera-in-hand configurations, as image acquisition
typically occurs before manipulator movement begins.

The  presence  of  similar-color  backgrounds  in  tobacco  leaves,
such  as  weeds  and  incomplete  leaves,  tends  to  induce  false
detections  and  missed  detections  in  the  detection  model.

Furthermore,  tobacco  leaf  harvesting  robots  require  the
identification  of  the  nearest  tobacco  leaf  targets  during  operation.
To address this, the study utilizes depth information for background
filtration. Specifically, in the RGB images, pixels with depth values
greater than 60 cm are reassigned an RGB value of (128, 128, 128),
effectively  mitigating  the  impact  of  similar-color  backgrounds  on
tobacco  leaf  detection.  The  images  before  and  after  processing,  as
well as the colored depth image, are shown in Figure 3.

 
 

a. Before depth filtering   b. After depth filtering   c. Depth image (colored)

Figure 3    Comparison before and after depth filtering
 

The  harvesting  environment  for  tobacco  leaves  differs
significantly  from  typical  greenhouse  settings,  as  depicted  in
Figures  4a  and  4b  for  tomato  and  pepper  harvesting,  where  the
fruits are readily distinguishable from their background. In contrast,
the dense growth and large leaves of tobacco, alongside near-color
backgrounds  such as  weeds  and partial  leaves,  increase  the  risk  of
both false and missed detections in detection models,  as illustrated
in Figure 4c. Moreover, tobacco leaf harvesting robots are required
to identify the nearest leaf targets accurately.

In the process of  constructing the tobacco leaf  dataset,  images
are firstly  preprocessed through depth filtering,  and then Labelimg

software  is  used  to  mark  the  area  of  the  target  tobacco  leaf  in  the
image  with  a  rectangular  frame  to  generate  a  dataset  that  can  be
used  for  YOLOv5s  training.  In  order  to  ensure  the  generalization
performance  and  robustness  of  the  model,  the  data  enhancement
used included randomly adding noise, cropping, rotation, and other
operations,  expanding  it  to  2380  images,  and  creating  a  dataset  in
VOC format.  Among them, the category label  of  tobacco leaves is
set  to  tobacco,  and  the  labeled  rectangle  fits  the  outline  of  the
tobacco  leaves.  Then  it  was  divided  into  a  training  set  (1666
pictures),  a  verification  set  (476  pictures),  and  a  test  set  (238
pictures) according to the ratio of 7:2:1.

 
 

a. Tomato harvest environment b. Pepper harvesting environment c. Tobacco harvesting environment

Figure 4    Comparison of the growing environments of different crops
 
 

2.2    Algorithmic improvements
YOLO  is  a  single-stage  object  detection  network,

conceptualizing detection as a regression problem. This end-to-end
network  significantly  enhances  detection  speed.  The  YOLO series
has evolved from YOLOv1, with YOLOv5 being one of the widely
adopted  versions.  YOLOv1,  while  foundational,  suffers  from poor
detection  performance  and  inaccurate  localization[30].  YOLOv2
improved both  performance and speed,  yet  struggled in  a  complex
environment[31].  YOLOv3  marked  advancements  in  speed  and
accuracy  over  its  predecessors,  but  underperformed  in  scenarios
with  significant  occlusion[32].  YOLOv4 enhanced  feature  extraction
diversity  and  robustness  through  network  modifications,  yet  faced
issues  with  inaccurate  bounding  boxes  and  low  recall  rates,
alongside increased algorithmic complexity[33].  Subsequent versions
post YOLOv5 have seen improvements in accuracy, but with more
complex implementations and slower detection speeds compared to
YOLOv5[34].  YOLOv5  stands  out  for  its  optimized  architecture,
offering  rapid  and  accurate  object  detection.  Hence,  this  study
employs YOLOv5s, recognized for its superior overall performance
within the YOLOv5 variants.

The  YOLOv5s  architecture  comprises  an  input  layer,  a
backbone  feature  extraction  network,  a  neck  network,  and  a
prediction head. Within the fully trained YOLOv5s object detection
model,  the  backbone  layer  accounts  for  the  majority  of
computational  resources  and  parameters.  To  effectively  reduce  the
model’s  memory  footprint  and  enhance  field  detection  speed,  it  is
essential  to  modify  the  backbone.  Replacing  the  backbone  with  a
lightweight  network  serves  as  an  efficient  strategy  to  decrease  the
number  of  parameters  and  computational  load  while  maintaining
network performance. Further model lightening is achieved through
channel  pruning,  followed  by  the  restoration  of  detection
performance  via  knowledge  distillation.  Such  adaptations  are
pivotal  in  optimizing  the  model’s  structure  and  enhancing  its
deployment efficiency. 

2.3    MobileNetV2
MobileNetV2,  a  lightweight  neural  network  architecture,

achieves low computational complexity and reduced parameter size
while  delivering  exceptional  performance[35].  As  a  part  of  the
MobileNet  series,  it  is  tailored  for  efficient  image  processing  in
resource-constrained  environments,  such  as  mobile  devices  and
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embedded  systems.  Consequently,  MobileNetV2  is  utilized  in  this
study  to  modify  the  backbone  of  YOLOv5s  for  optimized
performance.

N
Lk Lw ×Lk ×M

Xparameter Xcalculation

In  the  MobileNet  series,  depthwise  separable  convolution  is
introduced, segmenting the convolution process into depthwise and
point-wise convolutions to decrease computational demand. Unlike
standard  convolutions  where  each  kernel  processes  all  channels  of
the  input  feature  map  simultaneously  (Figure  5),  depthwise
separable convolution efficiently reduces the complexity. Assuming
the  input  image  has  a  dimension  of  ,  with  a  convolution  kernel
size  of  ,  and  output  dimensions  of  ,  the  total
parameter  count    and  computational  load    can  be
represented as follows:

Xparameter = Lk ×Lk ×N ×M (1)

Xcalculation = Lk ×Lk ×N ×M×Lw ×Lk (2)
  

Lh

LhN

×M

M

Lw
Lw

Figure 5    Standard convolutions
 

Depthwise  separable  convolution  comprises  two  stages:
depthwise and pointwise convolutions. Initially, each input channel
undergoes an independent convolution to create feature maps across
multiple channels,  known as depthwise convolution.  Subsequently,
1×1  convolutions  are  applied  to  linearly  combine  these  feature
maps,  resulting  in  the  final  output  feature  map,  termed  pointwise
convolution.  This  process  is  illustrated  in  Figure  6.  The  total
number  of  parameters  and  computational  load  in  depthwise
separable convolution can be quantified as:

Xparameter = Lk ×Lk ×N +N ×M (3)
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Figure 6    Depthwise separable convolution
 

Xcalculation = Lk ×Lk ×N ×Lw ×Lk +N ×M×Lw ×Lk (4)Å
1
M
+

1
L2

k

ãConsequently,  the  number  of  parameters  and  computational
effort  required  for  depthwise  separable  convolution  is  only

  of  that  for  standard  convolution.  This  results  in  a

significant reduction in parameter and computational complexity for
depthwise separable convolution, enabling a substantial increase in
the model’s execution speed.

The  essence  of  the  MobileNetV2  architecture  lies  in  its  series
of  inverted  residual  modules,  each  composed  of  three  layers:  an
expansion  layer,  a  depthwise  separable  convolution  layer,  and  a
projection layer. The expansion layer employs 1×1 convolutions to
upsample  low-dimensional  inputs  to  a  higher  dimension,  followed
by  the  depthwise  separable  convolution  layer  which  performs
spatial  filtering  on  these  high-dimensional  features.  Subsequently,
the projection layer utilizes 1×1 convolutions to project the features
back to a lower dimension.

Incorporating  MobileNetV2  as  the  backbone  network  for
YOLOv5s  leverages  its  efficient  feature  extraction  and  compact
model size. MobileNetV2’s layered architecture efficiently captures
a  wide  range  of  image  features,  conveying  them  to  other
components  of  YOLOv5s  for  object  detection.  The  integration  of
MobileNetV2  into  YOLOv5s  enhances  the  real-time  performance
on  embedded  devices,  simultaneously  reducing  the  number  of  the
model’s  parameters  and  computational  resources  while  ensuring
high accuracy. The network’s architecture is depicted in Figure 7.
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2.4    Channel pruning and knowledge distillation
Although  the  YOLOv5s  model  with  a  modified  backbone  can

accurately detect tobacco leaves,  its  size remains slightly large.  To
further  reduce  the  complexity  and  enhance  the  efficiency  of  the
detection  model,  channel  pruning  algorithms  are  employed  to
further  optimize  the  YOLOv5s  tobacco  leaf  detection  model  with
the altered backbone[36]. 

2.4.1    Sparse training

γ

In the method of channel pruning, it is a prerequisite to conduct
sparse  training  on  the  batch  normalization  (BN)  layers  within  the
network  model.  In  models  trained  without  sparsity  constraints,  the
scaling  factors    of  the  batch  normalization  (BN)  layers  tend  to
follow  a  normal  distribution  centered  around  1  as  training
progresses.  During  sparse  training,  by  incorporating  an  L1
regularization  constraint  on  the  BN layer’s  scaling  factors  into  the
loss  function,  the  parameters  are  sparsified,  driving  the  scaling
factors’ distribution closer to zero. The loss function’s computation
process is formulated as follows:

L =
∑

(x,y)

l ( f (x,W) ,y)+λ
∑
γ∈Γ

g(γ) (5)

(x,y)
W

γ
g(γ) = |γ| λ

In  the  equation,    denotes  the  training  inputs  and  targets,
while   represents the weights used in standard training. The first
summation  term  signifies  the  loss  function  for  standard  training.
The second summation term pertains to the sparsification of the BN-
layer scaling factors (denoted as  ) through L1 regularization. Here,

  serves  as  a  penalty  term for  sparse  training,  and    is  the

balancing factor  between standard  and sparse  training,  also  known
as the sparsity regularization coefficient.

λ λ

λ

During  the  sparse  training  process,  balancing  model  accuracy
with the degree of sparsity is crucial, and this balance hinges on the
sparsity regularization coefficient  . A larger value of   accelerates
the  approach  of  the  BN  layer’s  scaling  factors  towards  zero,
potentially  reducing  the  model’s  average  recognition  accuracy.
Conversely, a smaller   value results in a slower rate of approach to
zero for  the  scaling factors,  leading to  more stable  convergence of
the model’s average recognition accuracy. Thus, careful selection of
the  sparsity  regularization  coefficient  is  essential  in  designing  an
effective  sparsification  strategy  to  optimize  the  performance
balance. 

2.4.2    Channel pruning and model fine-tuning
Post sparse training, model pruning is executed by eliminating

less  significant  channels  within  the  convolutional  layers.  This
pruning is informed by the distribution of the scaling factors in the
BN  layer.  The  factors  are  ordered  by  mean  value,  and  channels
approaching  zero  are  removed.  Deep  networks  primarily  involve
multiplications and additions across layers, and channels with near-
zero scaling factors  contribute  minimally  to  the  model.  Thus,  their
removal  aids  in  network  compression,  as  illustrated  in  Figure  8.
Models  subjected  to  pruning  typically  experience  some  accuracy
degradation. To mitigate this loss and adjust to the altered network
architecture, fine-tuning is essential. This step entails re-loading the
dataset  and  associated  configuration  files  to  either  restore  or
enhance the network’s performance.

 
 

Oruginal network

Pruning

0.962

0.006

0.872

0.012

0.632

0.962

0.872

0.632

i-th convolutional
layer

BN layer
scaling factor

j-th convolutional
layer

i-th convolutional
layer

BN layer
scaling factor

j-th convolutional
layer

Ci1 Ci1

Ci2

Ci3 Ci3

Ci4

Cin

Cj1

Cj1

Cj1

Cj1

Cin

Network after pruning

Figure 8    Channel pruning
 
 

2.4.3    Knowledge distillation
Knowledge  distillation  is  a  technique  for  model  compression,

fundamentally involving the transfer of knowledge from a large, co-
mplex ‘teacher model’ to a smaller, simpler ‘student model’[37]. This
approach  enables  smaller  models  to  achieve  performance  compar-
able  to  larger  models  while  requiring  fewer  computational  resour-
ces. In the knowledge distillation process, the student model learns
not  only  the  correct  outputs  for  actual  labels  but  also  emulates  the
outputs of the teacher model, as depicted in Figure 9.

In this study, the tobacco leaf detection model with a replaced
backbone  is  selected  as  the  teacher  network  for  the  knowledge
distillation experiment, while the fine-tuned pruned model serves as
the  student  network.  Through  knowledge  distillation,  the  soft
feature  information  from  the  intermediate  layers  learned  by  the
teacher  network  is  imparted  to  the  student  network,  thereby
enhancing its recognition accuracy. 

2.5    Test platform
The computational setup used for the experiments consisted of

a  computer  running  the  Windows  10  operating  system,  equipped
with  an  Intel  Core  I5-13490F  CPU,  Nvidia  Geforce  RTX 3080  Ti

GPU,  and  32GB  of  RAM.  The  software  environment  included
Pytorch 1.10.0, Cuda 11.3, cuDNN 8.2.0, and Python 3.8. 
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2.6    Evaluation indicators
To  holistically  assess  the  impact  of  lightweight  model

processing  and  data  modification  on  detection  performance,  three
model recognition metrics, two computational performance metrics,
and  model  memory  usage  were  chosen  for  evaluation.  The
recognition  metrics  include  precision  (P),  recall  (R),  and  mean
average  precision  (mAP)  at  an  IoU  threshold  of  0.5.  The
computational  metrics  comprise  the  number  of  parameters  and  the
volume of floating-point operations. Precision, recall, and mAP are
mathematically expressed as follows:

P =
TP

TP + FP (6)

R =
TP

TP + FN (7)

mAP@0.5 =
1
N

N∑
i=1

APi (8)

TP
FP

FN
N

APi

In  these  definitions,    (True  Positive)  denotes  the  count  of
positive samples correctly identified as positive;   (False Positive)
refers  to  the  count  of  negative  samples  incorrectly  identified  as
positive;    (False  Negative)  represents  the  count  of  negative
samples  incorrectly  identified  as  negative;    signifies  the  total
number of categories; and   denotes the average precision for the
ith category at an IoU threshold of 0.5.

Post  knowledge  distillation,  to  further  examine  the  effect  of
lightweight processing on the model, the frame rates detected on the
same  desktop  configuration  and  on  a  mobile  platform  (NVIDIA
Jetson  Orin  NX  16  G)  are  also  included  as  computational
performance metrics. 

3    Results and discussion
 

3.1    The impact of depth filtering on detection results
To  validate  the  effectiveness  of  depth  filtering  in  simplifying

the  complex  background  of  tobacco  leaf  images  for  enhanced
detection,  two  datasets  were  utilized:  one  comprising  original

tobacco  leaf  images  and  the  other  consisting  of  images  post  depth
filtering. Both datasets were trained using the YOLOv5s model. The
mAP  variation  during  training  for  each  dataset  is  depicted  in
Figure 10, with the training spanning 100 epochs. The results of the
training are presented in Table 1.
  

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

m
A

P
/%

After depth filtering

Original data

Figure 10    mAP change curves of different datasets
 

  
Table 1    Training results on different datasets

Training data name P/% R/% mAP/%
Original data 83.7 62.8 77.3

Depth-filtered data 94.9 92.4 94.4
 

As indicated by the figure and table, training with depth-filtered
tobacco  leaf  images  resulted  in  an  average  precision  of  94.4%.  In
contrast, the original dataset achieved only 77.3% average precision
after training, primarily due to background interference from distant
tobacco  leaves,  which  negatively  affected  the  detection
performance. Depth filtering of the images effectively filters out the
complex  background,  thereby  enhancing  the  detection  of  complete
tobacco  leaves.  A  comparison  of  the  detection  results  before  and
after depth filtering is illustrated in Figure 11.

As  indicated  in  Table  1,  training  with  depth-filtered  tobacco
leaf images results in a model with higher accuracy, recall rate, and
mAP  by  11.2,  29.6,  and  17.1  percentage  points,  respectively,
compared to using original images. Thus, employing depth filtering
to remove the complex background from the original images proves
more effective for tobacco leaf detection.

 
 

a. Before depth filtering b. After depth filtering

c. Before depth filtering d. After depth filtering

Figure 11    Detection results before and after depth filtering
 
 

3.2    Effects of model lightweighting 

3.2.1    Comparing models with and without backbone replacement
Utilizing  depth  information  to  filter  out  the  complex

background of tobacco leaves has simplified the task of tobacco leaf
detection.  To  effectively  reduce  the  memory  footprint  of  the

YOLOv5s  model  and  accelerate  its  detection  speed  in  field
conditions,  the  backbone  of  the  model  was  replaced  with
MobileNetV2.  The  performance  of  the  model  post  replacement  is
presented in Table 2.

As  listed  in  Table  2,  the  precision,  recall,  and  mAP  of  the
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YOLOv5s-MobileNetV2  model  are  2.6,  0.9,  and  2.3  percentage
points  lower,  respectively,  than  those  of  the  YOLOv5s  model.
However,  the  size  of  the  YOLOv5s-MobileNetV2  model  is  only
23.5% of the YOLOv5s, representing a significant step towards the
lightweighting of the detection model.
  

Table 2    Performance of the model before and after
backbone replacement

Model name P/% R/% mAP/% Number of
parameters GFLOPS Model

size/MB
YOLOv5s 94.9 92.4 94.4 7.2×106 16.2 13.6

YOLOv5s-MobileNetV2 92.3 91.5 92.1 1.4×106 2.5 3.2
  

3.2.2    Effects of model pruning
λ

γ

To  avoid  confusion,  it  is  noted  that    represents  the  sparsity
regularization  coefficient  controlling  the  strength  of  L1  penalty,
while    denotes  the  scaling  factors  in  BN layers  used  for  pruning
decisions.

After  the  backbone  replacement,  channel  pruning  was
conducted  on  the  YOLOv5s-MobileNetV2  model.  To  maintain

λ λ

γ λ

robust  detection  performance  while  facilitating  channel  pruning,
comparative  experiments  were  performed  using  different  sparse
regularization  coefficients  .  Variations  in    resulted  in  corres-
ponding changes in the weights and mAP of the model’s BN layer.
These  changes  were  visualized  using  the  TensorBoard  module  in
the PyTorch framework. The distribution changes of the BN layer’s
scaling factors ( ) for different   values are illustrated in Figure 12.

λ

γ

λ λ

λ λ

Figure 12a depicts the BN layer’s weight changes with   set to
0.0003  after  100  epochs  of  training.  After  100  epochs  of  sparse
training,  the  distribution  of  BN-layer  scaling  factors  ( )  remained
largely  unchanged,  with  none  approaching  zero,  suggesting  an
overly  small    value  of  0.0003.  Figure  12c,  with    set  to  0.05,
shows  significant  screening  of  channels  with  BN  layer  scaling
factors nearing zero within the initial  10 epochs of sparse training,
potentially  impacting  model  accuracy,  indicating  an  excessively
high    value  of  0.05.  As  shown  in Figure  12b,  setting    at  0.004
and  after  100  epochs  of  sparse  training,  the  variation  in  scaling
factors  nearing  zero  in  the  BN  layer  stabilized,  indicating  that  the
model is adequately prepared for the pruning experiment.
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Figure 12    Distribution of BN layer scaling factors after different sparse trainings
 

Figure  13  illustrates  the  variations  in  average  accuracy  during
sparse  training  at  sparse  regularization  coefficients  of  0.05  and
0.004.  It  is  evident  from the figure that  the model  accuracy with a
coefficient of 0.004 significantly surpasses that with 0.05, resulting
in a difference of 10.7 percentage points in final average accuracy.
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The  experimental  results  indicate  that  with  the  sparse
regularization coefficient   set at 0.004, the optimal pruning model
was identified by iteratively adjusting the pruning rate. This model,
preserving  25%  of  the  original  model’s  channels,  was  selected  as
the final  configuration.  The variation in the number of  channels  in
the model before and after pruning is illustrated in Figure 14.
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Figure 14    Changes of partial channels in the model
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Following the pruning and subsequent fine-tuning training, the
model,  now  designated  as  YOLOv5s-MobileNetV2-Pruned,
exhibited a slight reduction in accuracy compared to its pre-pruning
state.  The  detailed  performance  metrics  of  the  model  before  and
after  pruning  are  depicted  in  Figure  15.  Although  the  average
precision  decreased  by  3.2  percentage  points  post  pruning,  the
model’s memory footprint experienced a significant reduction of 56
percentage points.
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Figure 15    Comparison of the model’s mAP before
and after pruning

  

3.2.3    Effects of knowledge distillation
The  model  post  knowledge  distillation  has  been  designated  as

YOLOv5s-MobileNetV2-Pruned-Distill.  Various  models  were
deployed  on  a  mobile  platform  for  comparative  testing,  with  the

results presented in Table 3.
Table  3  reveals  that  following  knowledge  distillation,  the

model demonstrated improvements in precision, recall, and mAP by
3.2, 4.1, and 2.7 percentage points, respectively, while maintaining
consistent  memory  usage  and  frame  rate.  When  compared  to
YOLOv5s-MobileNetV2,  YOLOv5s-MobileNetV2-Pruned-Distill
showed  slight  reductions  of  1.2,  0.7,  and  0.5  percentage  points  in
precision,  recall,  and  mAP,  respectively,  along  with  a  decrease  in
memory usage  by  1.8  MB and an  increase  of  34  in  desktop frame
rate.  Overall,  the  memory  footprint  of  the  optimized  YOLOv5s
model for leaf disease detection was significantly reduced by 90%,
with desktop and mobile detection frame rates increasing nearly 3.5
and  4  times,  respectively.  To  validate  the  effectiveness  of  the
lightweight  model,  tobacco  leaf  images  from  the  dataset  were
tested, with results presented in Figure 16.
  

Table 3    Performance of models

Model name P/
%

R/
%

mAP/
%

Model
size/MB

Desktop
frame rate

Mobile
frame rate

YOLOv5s 94.9 92.4 94.4 13.6 32 5
YOLOv5s-MobileNetV2 92.3 91.5 92.1 3.2 78 14
YOLOv5s-MobileNetV2-

Pruned 87.9 86.7 88.9 1.4 112 21

YOLOv5s-MobileNetV2-
Pruned-Distill 91.1 90.8 91.6 1.4 112 21

 
 

a. YOLOv5s (Before depth filtering) b. YOLOv5s (Before depth filtering) c. YOLOv5s ( Before depth filtering)

d. YOLOv5s (After depth filtering) e. YOLOv5s (After depth filtering) f. YOLOv5s (After depth filtering)

g. YOLOv5s-MobileNetV2-Pruned-Distill

(After depth filtering)

h. YOLOv5s-MobileNetV2-Pruned-Distill

(After depth filtering) 

i. YOLOv5s-MobileNetV2-Pruned-Distill

(After depth filtering)

Figure 16    Result of model validation
 

Figure 16 illustrates that depth information filtering effectively
simplifies  complex  backgrounds,  thereby  reducing  the  complexity
of  detection  tasks.  In  tobacco  leaf  detection,  both  the  original  and
the  lightweight  models  successfully  identified  all  tobacco  leaves.
The  marginally  reduced  confidence  level  in  the  lightweight  model
suggests  that  its  detection  performance  is  closely  aligned  with  the
original model. 

4    Discussion
Tobacco leaf detection is challenging due to the color similarity

between leaves and stems, leading to potential both false and missed
detections that could impact the efficiency of harvesting equipment.
To address this, a depth filtering method was introduced to enhance
the  model’s  detection  accuracy  by  simplifying  the  complex
background,  improving  from  77.3%  to  94.4%.  However,
inappropriate  depth  filtering  thresholds  might  render  leaf
information  incomplete,  as  demonstrated  with  the  upper  right
tobacco  leaves  in  Figure  16b,  which  are  fully  detected  in  the
original images, but are missed after depth filtering due to the loss
of  complete  leaf  information.  Future  adjustments  to  the  depth
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filtering  threshold  could  allow  for  tailored  background  filtration
based on specific conditions.

To tackle the large size of the YOLOv5s model and the limited
computational  capacity  of  harvesting  equipment,  a  lightweighting
strategy  was  developed.  This  involved  compressing  the  model  by
replacing its backbone network and further reducing its size through
channel  pruning,  with  knowledge  distillation  applied  to  closely
restore  its  pre-pruning  accuracy.  Experimental  results  indicate  that
this  approach  reduced  the  model  size  from  13.6  MB  to  1.4  MB
while minimally impacting accuracy by only 2.8%, ensuring precise
tobacco  leaf  detection  with  lower  computational  demands.  Dense
growth and occasional leaf occlusion present additional challenges;
slight  occlusions allow for the differentiation of  leaves as depicted
in  Figures  16a,  16d,  and  16g,  while  severe  occlusions,  shown  in
Figures  16c,  16f,  and  16i,  hinder  separate  leaf  detection.
Incorporating  an  attention  mechanism  algorithm  into  the  model  is
considered for future work to address severe occlusions. In addition
to  occlusion,  variable  illumination  in  field  environments—such  as
shadows,  strong  sunlight,  and  backlighting—can  lead  to
inconsistent  color  features  and  reduced  detection  accuracy.  To
mitigate  this,  future  work  will  explore  illumination-invariant
preprocessing  techniques  such  as  adaptive  gamma  correction,
histogram  equalization,  or  high  dynamic  range  (HDR)
enhancement,  in  order  to  improve  model  robustness  under  diverse
lighting conditions.

Unlike other fruit harvesting scenarios, tobacco leaf harvesting
targets  the  leaves  themselves,  where  inter-leaf  interference  is
common, as illustrated in Figure 3. The depth filtering method and
YOLOv5s-MobileNetV2-Pruned-Distill  lightweight  model
proposed  herein  effectively  detect  leaf  targets,  offering  valuable
insights  for  future  research  on  leaf  detection  in  near-color
backgrounds,  including  mulberry  and  mint  leaves.  Furthermore,
tobacco leaf detection is crucial  for identifying maturity levels and
detecting pests and diseases, with future studies aimed at enhancing
leaf maturity identification. 

5    Conclusions
To  address  the  challenges  of  low  accuracy,  limited  real-time

performance,  and  poor  robustness  in  tobacco  leaf  detection  under
complex  environments,  this  paper  introduces  a  depth  filtering
method and a lightweight tobacco leaf detection approach based on
an  enhanced  YOLOv5s  model.  The  MobileNetV2  lightweight
network  is  employed  as  the  backbone,  and  channel  pruning  is
utilized  to  eliminate  unimportant  channels,  thereby  reducing  the
model  size.  Knowledge  distillation  is  then  applied  to  restore  the
pruned model  to its  pre-pruning state.  Based on the comparison of
detection  performance  before  and  after  depth  filtering,  as  well  as
algorithm  performance  before  and  after  lightweighting,  the
following conclusions were drawn:

1)  Training  with  images  post  depth  filtering,  compared  to
original  images,  shows  significant  improvement.  Depth  filtering
raises  the  model’s  precision,  recall,  and  mAP  by  11.2,  29.6,  and
17.1 percentage points, respectively.

2)  Replacing  the  detection  network’s  backbone  and  applying
channel  pruning  significantly  reduces  the  model’s  memory  usage
and  computational  demand.  The  memory  usage  of  the  YOLOv5s-
MobileNetV2-Pruned-Distill  model  is  90%  of  the  YOLOv5s,  and
the frame rates on desktop and mobile platforms increase to 3.5 and
4 times their original values, respectively.

3)  Combining  knowledge  distillation  with  backbone
replacement and channel pruning effectively lightweights the model

while  minimizing  the  loss  in  accuracy.  The  YOLOv5s-
MobileNetV2-Pruned-Distill  model,  post  knowledge  distillation,
achieves  precision,  recall,  and  mAP of  91.1%,  90.8%,  and  91.6%,
respectively, fulfilling the requirements for tobacco leaf detection. 
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