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Abstract: Calculation  of  critical  depth  in  open  channels  or  closed  conduits  is  a  prerequisite  for  efficient  hydraulic  design,
operation, and maintenance of irrigation channels and drainage ditches. Determination of critical depth in the trapezoidal cross
section is of particular significance as it is one of the most widely used channel sections throughout the world, while no closed-
form analytical solutions exist. Based on the novel combined iteration-curve-fitting method, the existing equations were unified
in  the  same function model,  and two new equations  were  proposed for  directly  calculating critical  depth in  trapezoidal  open
channels.  The  maximum absolute  relative  errors  of  the  two  proposed  equations  are  0.004 94% and  0.165%,  respectively,  in
wide  application  ranges.  Comparison  and  evaluation  of  the  proposed  and  existing  equations  for  calculating  critical  depth  in
trapezoidal open channels were also presented. The introduction and application of the novel method could make the process of
function  model  establishment  much more  efficient,  which  provides  more  insights  into  the  hydraulic  calculations  of  channels
and  ditches.  Moreover,  this  paper  provides  reference  for  the  problems  related  to  the  empirical  equations  of  high-degree
polynomial equations.
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1    Introduction
Critical  depth  is  the  flow depth  at  a  section  where  the  flow is

critical,  which is  one of  the most  significant  hydraulic  variables in
design,  operation,  and  maintenance  of  irrigation  channels  and
drainage  ditches[1].  The  critical  depth  classifies  channel  flow  as
subcritical  (mild),  super-critical  (steep),  and  critical  conditions.
Channel  designers  should  ensure  that  flow  remains  sub-critical
(high depth, low velocity) in the majority of its length. However, in
short reaches, super-critical flow may be allowed. For this purpose,
it is necessary to calculate the critical depth and find out the channel
reaches under  supercritical  flow where appropriate  measures  could
be  implemented  to  prevent  this  adverse  flow condition[2].  Even  for
open channels where critical  flow may not occur at  all,  the critical
depth is still calculated as the first step in dealing with most of the
open channel flow problems[3].

The  trapezoidal  cross  section  is  one  of  the  most  widely  used
open channel  sections,  whereas there are  no analytical  solutions to
explicitly  calculate  critical  depth  in  trapezoidal[4]  and  many  other
practical cross sections[5-9]. The critical depth in these cross sections
is presently obtained by time-consuming trial-and-error procedures,
chart  methods  with  low  accuracy,  costly  commercial  computer
programs, or explicit equations (if available). From the viewpoint of
hydraulic  engineers,  it  is  preferable  to  have  existing  explicit
equations  to  calculate  hydraulic  variables  (e.g.,  critical  depth  in  a
channel) with both high accuracy and wide application range[5]; thus
any efforts for deriving direct solutions meeting these requirements

would be of practical importance. With respect to the calculation of
critical  depth  in  trapezoidal  open  channels,  currently  the  most
accurate  existing  formula  was  proposed  by  Vatankhah[8];  the
maximum  relative  error  is  less  than  6×10–6%  with  one  Newton-
Raphson  iteration  calculation.  Varandili  et  al.[10]  developed  an
analytical  model  in  a  relatively  complicated  form  to  obtain
calculation  results  with  arbitrary  accuracy.  Despite  the  fact  that
various  explicit  equations  are  presently  available  for  calculating
critical  depth  in  trapezoidal  open  channels[7,8,10-15],  their  accuracy,
simplicity,  and  applicable  range  width  have  not  proved  optimum.
Moreover,  the  determination  of  the  function  models  exhibits  some
subjectivity and randomness.

Characteristic  water  depth  (including  critical,  normal,
contracted,  and  conjugate  water  depths)[16,17],  as  well  as  hydraulic
jump[18]and flow velocity[19] in open channels were usually calculated
with  numerical  analysis  methods.  Among  various  numerical
analysis  methods,  the  iterative  algorithm  was  most  commonly
used[20].  For  the  iterative  convergence  procedure,  an  initial  value  is
always  needed  to  start  the  iterative  calculation,  and  an  appropriate
function  model  should  be  chosen  for  optimal  coefficient
determination in the curve-fitting procedure. Therefore, a regression-
based  equation  is  always  required  to  provide  an  approximation  of
the  initial  iteration  value  with  certain  accuracy.  To  the  best  of  our
knowledge, the selection of the function model that is most fitted to
the  inversion  of  a  non-linear  equation  with  no  analytical  solutions
relies  on  the  researchers’  experience,  and  this  process  could  be
inefficient  and  time-consuming.  Recently,  some  mathematical
methods  such  as  the  Delta-perturbation  method[21,22],  the  improved
asymptote matching technique[16], Lagrange’s inversion theorem[23,24],
and  Lambert  W‑ function[25,26]  were  introduced  to  improve  the
formula  determining  efficiency  of  characteristic  water  depth
calculations. With the continuous demand for farmland construction
and  channel  design,  more  novel  methods  are  bound  to  and  must
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necessarily be applied to the field of hydraulics calculation.
The  primary  objective  of  this  study  was  to  introduce  a  novel

method  into  the  calculation  of  critical  depth  in  trapezoidal  open
channels and derive new solutions with higher accuracy and wider
application range,  without  sacrificing the simplicity  of  the formula
form  in  a  more  efficient  approach,  which  could  provide  technical
reference for channel designers and operators. 

2    Methods
 

2.1    Governing  equation  of  critical  depth  in  trapezoidal  open
channels

The  geometric  property  of  the  trapezoidal  cross  section  is
shown in Figure 1. The critical flow condition in open channels can
be described by the following relation[27]:
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Figure 1    Cross section for a trapezoidal open channel
 

αQ2Tc

gA3
c cosθ

= 1 (1)

where, the subscript “c” denotes the condition of the critical state of
flow; α  is  the  energy  correction  factor,  non-dimensional; Q  is  the
channel discharge, m3/s; Tc is the width of the channel at the water
surface  when  critical  flow  occurs,  m;  g  is  the  gravitational
acceleration, m/s2; Ac is the cross section area of flow when critical
flow  occurs,  m2;  θ  is  the  angle  of  the  channel  bottom  with  the
horizon, rad or (°).

According  to  the  geometric  property  of  the  trapezoidal  cross
section, Tc and Ac in Equation (1) can be calculated with:

Tc = b+2myc (2)

Ac = byc +my2
c (3)

where, b is the bottom width of the trapezoidal open channel, m; yc
is the critical depth of the channel when critical flow occurs, m; m is
the mean value of two side slopes (m1 and m2) of the channel, non-
dimensional.

The  dimensionless  critical  depth  ηc  and  the  other  three
dimensionless variables λc, tc, and ε are defined as below[8]:

ηc = myc/b (4)

λc = t3
c = 2ηc +1 = Tc/b (5)

ε = 4
Å
αm3Q2

gb5 cosθ

ã1/3

(6)

where, ηc is the dimensionless critical depth, non-dimensional; λc is
the  dimensionless  width  of  the  channel  at  the  water  surface  when
critical  flow  occurs,  non-dimensional;  tc  is  a  dimensionless
intermediate variable, non-dimensional; ε is the dimensionless flow
discharge, non-dimensional.

Substituting  for  Tc,  Ac  from  Equations  (2)-(3)  and  tc,  ε  from
Equations  (5)-(6)  into  Equation  (1)  finally  yields  the  following
governing equation: a sextic (6th degree) polynomial combining all
the  variables  related  to  the  critical  flow  condition  into  two
dimensionless variables:

t6
c −εtc −1 = 0 (7)

 

2.2    Implementation  of  the  combined  iteration-curve-fitting
method

Using  the  fixed-point  iterative  method,  Equation  (7)  can  be
transformed into several iterative schemes as below:

tc1 =
(

1+εtc0

)1/6 (8)

tc2 = [1+ε(1+εtc0 )
1/6]1/6 (9)

tc3 = {1+ε[1+ε(1+εtc0 )
1/6]1/6}1/6 (10)

tc0If  each  constant  and    in  Equations  (8-10)  are  treated  as  the
object coefficients for curve fitting, three function models could be
established as below:

tc = (A+BεC)D (11)

tc = [A+Bε(C+DεE)F]G (12)

tc = {A+Bε[C+Dε(E+FεG)H]I}J (13)

In  order  to  obtain  an  explicit  solution  with  a  relatively  wide
range  of  flow  conditions,  1.001≤tc≤3.450  (0.001≤ηc≤20)  was
applied for curve fitting[28]. Within this range, a total number of 2450
data  points  derived  by  Equation  (7)  with  the  same  step  of  0.001
were  imported  to  the  Curve  Fitting  Toolbox  in  MATLAB.  Apply
Equations  (12)  and  (13)  as  the  function  models  for  coefficient
optimization,  and  then  set  the  corresponding  initial  coefficient
values in Equations (9) and (10) as the start points, e.g., set A=B=C=
D=E=1 and F=G=1/6 for Equation (12). The relative error (RE) and
absolute error (AE) of the equations are calculated with:

RE = AE
y∗c
=

y′c − y∗c
y∗c
×100% = η

′
c −η∗c
η∗c
×100% (14)

y′c y∗c
η′c
η∗c

y′c η′c
y′c

where,   is the calculated critical depth, m;   is the actual critical
depth,  m;    is  the  calculated  dimensionless  critical  depth,  non-
dimensional;    is  the  actual  dimensionless  critical  depth,  non-
dimensional.  RE  is  the  relative  error  of    and  ,  %;  AE  is  the
absolute error of  , m.

The average and maximum absolute RE were employed for the
error  analysis  of  the  direct  equations.  Average  absolute  RE  was
calculated with the data points derived from the application range of
ηc at intervals of 0.001; maximum absolute RE was calculated with
the data point intervals as short as needed to approach to an accurate
value. The values of the unknown coefficients were optimized until
both  the  maximum  and  average  absolute  RE  of  the  newly
established equation have been the lowest. 

3    Results and discussion
 

3.1    Proposed  direct  solution  for  critical  depth  in  trapezoidal
open channels

Two equations based on the function models of Equations (15)

　August, 2025 Chen C.　Novel method for calculating flow depth in open channels combining the iteration theory and the curve fitting Vol. 18 No. 4 　 191　



and (16) were finally derived:

λc = [1+0.9752ε(1.433+1.021ε)0.3175]0.4566, ε ∈ [0.0032,541.93]
(15)

λc ={1+0.9849ε[1.16+1.25ε(0.835+0.607ε)0.271]0.1664}0.4953,

ε ∈ [0,490.98] (16)

The  direct  solutions  developed  in  this  study  for  calculating
critical  depth  in  trapezoidal  open  channels  are  summarized  in
Table 1.
 
 

Table 1    Direct solutions developed in this study for critical
depth calculation in trapezoidal open channels

Step Known
value Formula Derivation

Ⅰ
α, m, Q,
g, b, θ ε = 4

Å
αm3Q2

gb5 cosθ

ã1/3

ε

Ⅱ ε

λc =[1+0.9752ε(1.433+1.021ε)0.3175]0.4566

λc ={1+0.9849ε[1.16+1.25ε(0.835+

0.607ε)0.271]0.1664}0.4953

λc

Ⅲ λc, b, m yc =
b

2m
(λc −1) yc

 

3.2    Performance  evaluation  of  the  existing  direct
calculationequations

Several  most  accurate  direct  equations  for  calculating  critical
depth  in  trapezoidal  open  channels  were  selected  for  comparison
with  Equations  (15)  and  (16)  in  terms  of  accuracy,  application
range,  and  simplicity.  These  equations  happen  to  be  able  to  be
expressed in the form of the proposed function models in Equations
(11)-(13).  As  shown  in  Figure  2  and  Table  2,  compared  with  the
equation  from  Wang[15],  Equation  (15)  is  a  direct  solution  of  λc
(sharing the same RE with ηc) with simplicity and 6.4-fold (the ratio
of  the  maximum  absolute  REs  of  the  two  equations)  higher
precision  using  the  same  number  of  coefficients.  Equation  (16)  is
the  most  accurate  among  all  the  existing  equations  and  exhibits  a
relatively  wide  application  range;  the  maximum  and  average
absolute  REs  are  merely  0.004 94%  and  0.002 69%,  respectively,
for  different  values  of  ηc  in  the  practical  range  of  [10–10,  20.095].
Equation  (16)  is  24  times  more  accurate  than  the  simplified
equation by Wang[14],  which is also in the three-iteration scheme in
Equation (13) owing to the benefits of the introduced method. It is
worth noting that Equation (16) provides approximations of yc with
absolute  errors  of  less  than  0.1  cm  when  yc  is  as  high  as  20  m
covering  a  totally  wide  practical  range  of  flow  conditions[28].  The
proposed method evidenced the capacity of predicting critical depth
in trapezoidal open channels with remarkable accuracy.
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Figure 2    Relative error distribution on approximation of critical depth in trapezoidal open channels using the calculation equations in the
form of the iterative schemes proposed in this study for 0.001≤ηc≤20

 
 

Table 2    Comparison of the equations for calculating critical depth in trapezoidal open channels in the form of the iterative schemes
proposed in this study

Source of formula Form of formula Recommended application range of ηc
Absolute RE

Maximum Average

Wang et al.[15] λc = [1+ε(1+ε)0.2]0.5 (0, +∞) 1.048% /

Simplified from Wang[14] λc = [1+ε(1+ε(1+ε)0.2)1/6]0.5 (0, +∞) 0.118% /

Wang[14] λc = {1+ε[1+ε(1+ε(1+ε)0.2)1/6]1/6}0.5 [10–12, +∞) 0.0154% /

Improved from Wang[14] λc = {1+ε[1+ε(1+ε(1+ε(1+ε)0.2)1/6)1/6]1/6}0.5 [10–11, +∞) 0.002 14% /

Vatankhah and Easa[7] λc = 1+0.5ε(1+0.2722ε1.041)−0.339 (0, 2.999] 0.0611% 0.0336%

Vatankhah[8] λc = [1+1.161ε(1+0.666ε1.041)0.374]0.432 [0.062, 41.987] 0.0286% 0.0152%

Varandili et al.[10] λc = {1+ε[1+ε(1+ε(1+ε(1+ · · ·)1/6)1/6)1/6]1/6}0.5 (0, +∞) / /

Equation (15) λc = [1+0.9752ε(1.433+1.021ε)0.3175]0.4566 [0.0008, 21.351] 0.165% 0.0915%

Equation (16) λc = {1+0.9848ε[1.16+1.25ε(0.607ε+0.835)0.271]0.1664}0.4953 [10–10, 20.095] 0.004 94% 0.002 69%

Note: The formula proposed by Vatankhah and Easa[7] was expressed in the form of Equation (12).
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3.3    Insights  from  the  novel  combined  iteration-curve-fitting
method

The proposed combined iteration-curve-fitting method has both
theoretical  basis  and  practical  value.  There  are  quantities  of
dimensionless  governing  equations  without  analytical  solutions  for
the calculation of different characteristic depths (e.g., critical depth,
normal  depth,  conjugate  depth)  in  various  cross  sections.  Some
regression-based  equations  were  established  with  the  function
models selected according to experience with a certain randomness.
Among  these  governing  equations,  some  high-degree  polynomial
equations  can  be  transformed  into  simple  iterative  schemes  that
provide perfect function models. The related channel cross sections
include  not  only  trapezoidal,  but  also  various  parabola-shaped
channels[29,30].  The  iterative  scheme  derived  with  several  times  of
iterations  totally  ensures  the  accuracy  of  the  equation.  These
iteration-based functions themselves provide good approximation of
the  initial  values  of  coefficients  and  ensure  better  potential  of
convergence  in  the  coefficient  optimization  procedure,  thus
improving the efficiency for establishing new equations.

Compared  with  Delta-perturbation  method[21,22],  the  improved
asymptote matching technique[16], Lagrange’s inversion theorem[23,24],

and  Lambert  W‑ function[25,26],  the  method  combining  the  iteration
theory  and  the  curve-fitting  technique  method  proposed  in  this
paper  establishes  the  iterative  schemes  concisely  from the  original
governing equation,  and gives  full  play to  the  advantages  of  curve
fitting for parameter optimization. The theory provides an effective
approach for seeking appropriate formula forms of curve fitting and
explains  why  the  presently  available  equations  for  calculating
critical depth in trapezoidal sections are in similar forms. Moreover,
the method is  expected to provide references for  the calculation of
characteristic water depths of parabola-shaped cross sections[29,30], as
well as other problems relying on the direct solutions of non-linear
equations. 

4    Practical application

To  illustrate  the  application  of  the  equations  available  in  this
study  and  their  reliability,  critical  depths  calculation  with  the
application  of  Equations  (15)  and  (16)  and  equations  present  in
existing studies (Table 2) were conducted for two actual man-made
concrete-lined  open  channels  (Table  3).  The  critical  depths  were
calculated with the hypotheses that α=1.0, cosθ=1, g=9.7964 m/s2.

 
 

Table 3    Comparison of equations for calculating critical depth in trapezoidal open channels in the form of the
iterative schemes proposed in this study

Equations m Q/(m3∙s–1) b/m ε y′c /m RE/% AE/mm

Accurate value calculated with the trial method

1.25 28.37 3.05 3.389

1.641 784 904 0 0

Equation (15) 1.641 819 467 2.1×10–3 0.035

Equation (16) 1.641 812 765 1.7×10–3 0.028

Wang et al.[15] 1.655 418 141 0.8300 13.630

Simplified from Wang[14] 1.643 640 618 0.1100 1.860

Wang[14] 1.642 037 915 0.0150 0.250

Improved from Wang[14] 1.641 819 408 0.0021 0.035

Vatankhah and Easa[7] 1.642 664 110 0.0540 0.880

Vatankhah[8] 1.642 186 969 0.0240 0.400

Accurate value calculated with the trial method

1.25 23.35 2.44 4.317

1.599 885 703 0 0

Equation (15) 1.599 239 168 –0.040 –0.650

Equation (16) 1.599 886 233 3.6×10–5 0.000 58

Wang et al.[15] 1.611 698 593 0.740 11.810

Simplified from Wang[14] 1.601 568 746 0.110 1.680

Wang[14] 1.600 125 876 0.015 0.240

Improved from Wang[14] 1.599 919 984 2.1×10–3 0.034

Vatankhah and Easa[7] 1.600 815 206 0.058 0.930

Vatankhah[8] 1.600 323 154 0.027 0.440
 

As  listed  in  Table  3,  the  REs  of  Equation  (16)  are  merely
1.7×10–3% and  3.6×10–5%,  which  are  the  most  accurate  among  all
the  equations.  The  AEs  of  Equation  (16)  are  below  0.1  mm,
indicating  that  the  accuracy  could  absolutely  meet  the  practical
application  demand.  With  fewer  times  of  power  function
calculation,  the  REs  of  Equation  (15)  are  of  the  same  orders  of
magnitude  or  more  accurate  compared  with  all  the  existing
equations apart from the formula improved from Wang[14]. It should
be  mentioned  that  excessively  pursuing  accuracy  is  not  necessary,
as  the  construction  of  open  channels  only  requires  that  the  AE  is
below 1  mm or  even  1  cm in  most  cases.  As  exhibited  in  the  two
application  cases,  the  optimization  of  the  parameters  of  the  basic
iteration  function  using  the  curve-fitting  technique  could  greatly
improve  the  accuracy  of  the  equation  and  the  efficiency  of  the
equation selection procedure. 

5    Conclusions

This study has considered a dimensionless governing equation
of critical flow in trapezoidal open channels that includes only two
variables. Through the application of the novel combined iteration-
curve-fitting method, two direct calculation equations were derived
and  the  existing  most  accurate  equations  were  classified  into
iteration-based  forms.  The  maximum  absolute  REs  of  the  two
proposed  equations  are  respectively  0.004 94%  and  0.165%  over
wide  practical  ranges.  The  results  of  accuracy  evaluation  and
practical application indicated that one of the proposed equations is
preferable  to  previously  presented  solutions  in  terms  of  accuracy.
The novel method greatly improves the efficiency of establishment
of the direct solution of high-degree polynomial equations, which is
expected  to  be  a  useful  tool  in  the  design,  operation,  and
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maintenance of open channels and related hydraulic structures. 
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