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Abstract: Calculation of critical depth in open channels or closed conduits is a prerequisite for efficient hydraulic design,
operation, and maintenance of irrigation channels and drainage ditches. Determination of critical depth in the trapezoidal cross
section is of particular significance as it is one of the most widely used channel sections throughout the world, while no closed-
form analytical solutions exist. Based on the novel combined iteration-curve-fitting method, the existing equations were unified
in the same function model, and two new equations were proposed for directly calculating critical depth in trapezoidal open
channels. The maximum absolute relative errors of the two proposed equations are 0.004 94% and 0.165%, respectively, in
wide application ranges. Comparison and evaluation of the proposed and existing equations for calculating critical depth in
trapezoidal open channels were also presented. The introduction and application of the novel method could make the process of
function model establishment much more efficient, which provides more insights into the hydraulic calculations of channels
and ditches. Moreover, this paper provides reference for the problems related to the empirical equations of high-degree
polynomial equations.
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1 Introduction

Critical depth is the flow depth at a section where the flow is
critical, which is one of the most significant hydraulic variables in
design, operation, and maintenance of irrigation channels and
drainage ditches!. The critical depth classifies channel flow as
subcritical (mild), super-critical (steep), and critical conditions.
Channel designers should ensure that flow remains sub-critical
(high depth, low velocity) in the majority of its length. However, in
short reaches, super-critical flow may be allowed. For this purpose,
it is necessary to calculate the critical depth and find out the channel
reaches under supercritical flow where appropriate measures could
be implemented to prevent this adverse flow condition™. Even for
open channels where critical flow may not occur at all, the critical
depth is still calculated as the first step in dealing with most of the
open channel flow problems®.

The trapezoidal cross section is one of the most widely used
open channel sections, whereas there are no analytical solutions to
explicitly calculate critical depth in trapezoidal® and many other
practical cross sections™”. The critical depth in these cross sections
is presently obtained by time-consuming trial-and-error procedures,
chart methods with low accuracy, costly commercial computer
programs, or explicit equations (if available). From the viewpoint of
hydraulic engineers, it is preferable to have existing explicit
equations to calculate hydraulic variables (e.g., critical depth in a
channel) with both high accuracy and wide application range®'; thus
any efforts for deriving direct solutions meeting these requirements
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would be of practical importance. With respect to the calculation of
critical depth in trapezoidal open channels, currently the most
accurate existing formula was proposed by Vatankhah®; the
maximum relative error is less than 6x10°%% with one Newton-
Raphson iteration calculation. Varandili et al.'” developed an
analytical model in a relatively complicated form to obtain
calculation results with arbitrary accuracy. Despite the fact that
various explicit equations are presently available for calculating
critical depth in trapezoidal open channels*'*" their accuracy,
simplicity, and applicable range width have not proved optimum.
Moreover, the determination of the function models exhibits some
subjectivity and randomness.

Characteristic water depth (including critical, normal,
contracted, and conjugate water depths)'*', as well as hydraulic
jump'¥and flow velocity!"” in open channels were usually calculated
with numerical analysis methods. Among various numerical
analysis methods, the iterative algorithm was most commonly
used™. For the iterative convergence procedure, an initial value is
always needed to start the iterative calculation, and an appropriate
function model should be chosen for optimal -coefficient
determination in the curve-fitting procedure. Therefore, a regression-
based equation is always required to provide an approximation of
the initial iteration value with certain accuracy. To the best of our
knowledge, the selection of the function model that is most fitted to
the inversion of a non-linear equation with no analytical solutions
relies on the researchers’ experience, and this process could be
inefficient and time-consuming. Recently, some mathematical
methods such as the Delta-perturbation method®'*?, the improved
asymptote matching technique''”, Lagrange’s inversion theorem!*,
and Lambert W- function®*! were introduced to improve the
formula determining efficiency of characteristic water depth
calculations. With the continuous demand for farmland construction
and channel design, more novel methods are bound to and must
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necessarily be applied to the field of hydraulics calculation.

The primary objective of this study was to introduce a novel
method into the calculation of critical depth in trapezoidal open
channels and derive new solutions with higher accuracy and wider
application range, without sacrificing the simplicity of the formula
form in a more efficient approach, which could provide technical
reference for channel designers and operators.

2 Methods

2.1 Governing equation of critical depth in trapezoidal open
channels

The geometric property of the trapezoidal cross section is
shown in Figure 1. The critical flow condition in open channels can
be described by the following relation®”:

Figure 1

Cross section for a trapezoidal open channel

aQT. _
gA3cosd
where, the subscript “c” denotes the condition of the critical state of

flow; a is the energy correction factor, non-dimensional; Q is the
channel discharge, m’/s; T, is the width of the channel at the water

(1

surface when critical flow occurs, m; g is the gravitational
acceleration, m/s*; 4, is the cross section area of flow when critical
flow occurs, m* € is the angle of the channel bottom with the
horizon, rad or (°).

According to the geometric property of the trapezoidal cross
section, 7, and 4, in Equation (1) can be calculated with:

T, =b+2my, 2)

A, = by, +my’ 3)

where, b is the bottom width of the trapezoidal open channel, m; y,
is the critical depth of the channel when critical flow occurs, m; m is
the mean value of two side slopes (m; and m,) of the channel, non-
dimensional.

The dimensionless critical depth 7. and the other three
dimensionless variables A, ., and ¢ are defined as below™™:

ne = my./b 4)

A= =2 +1=T./b )
_ am® Q* )]/3

&= 4(gb5 cosf ©)

where, 7, is the dimensionless critical depth, non-dimensional; /, is
the dimensionless width of the channel at the water surface when
critical flow occurs, non-dimensional; ¢, is a dimensionless
intermediate variable, non-dimensional; ¢ is the dimensionless flow
discharge, non-dimensional.

Substituting for 7,, 4. from Equations (2)-(3) and ¢, ¢ from
Equations (5)-(6) into Equation (1) finally yields the following
governing equation: a sextic (6th degree) polynomial combining all
the variables related to the critical flow condition into two
dimensionless variables:

—et,—1=0 (7)

2.2 Implementation of the combined iteration-curve-fitting
method

Using the fixed-point iterative method, Equation (7) can be

transformed into several iterative schemes as below:
1/6

tcl = (1 +Slc0) (8)
t, = [1+e&(1 +et,)"]" ©)
t, = {1 +e&[1 +&(l +e&t,,)""°]/o}° (10)

If each constant and #,, in Equations (8-10) are treated as the
object coefficients for curve fitting, three function models could be
established as below:

t.=(A+Bs%)P (11)
t. = [A+ Be(C + De")"1° (12)
t. = {A + Be[C + De(E + F"1'Y (13)

In order to obtain an explicit solution with a relatively wide
range of flow conditions, 1.001<7<3.450 (0.001<#4.<20) was
applied for curve fitting™. Within this range, a total number of 2450
data points derived by Equation (7) with the same step of 0.001
were imported to the Curve Fitting Toolbox in MATLAB. Apply
Equations (12) and (13) as the function models for coefficient
optimization, and then set the corresponding initial coefficient
values in Equations (9) and (10) as the start points, e.g., set A=B=C=
D=E=1 and F=G=1/6 for Equation (12). The relative error (RE) and
absolute error (AE) of the equations are calculated with:
%:%xl%%:%xm% (14)

RE =

where, y. is the calculated critical depth, m; y; is the actual critical
depth, m; 77, is the calculated dimensionless critical depth, non-
dimensional; 77} is the actual dimensionless critical depth, non-
dimensional. RE is the relative error of y, and 7., %; AE is the
absolute error of y., m.

The average and maximum absolute RE were employed for the
error analysis of the direct equations. Average absolute RE was
calculated with the data points derived from the application range of
7. at intervals of 0.001; maximum absolute RE was calculated with
the data point intervals as short as needed to approach to an accurate
value. The values of the unknown coefficients were optimized until
both the maximum and average absolute RE of the newly
established equation have been the lowest.

3 Results and discussion

3.1 Proposed direct solution for critical depth in trapezoidal
open channels
Two equations based on the function models of Equations (15)
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and (16) were finally derived:

A =[1+0.9752(1.433 +1.021£)™'5]%45% & € [0.0032,541.93]
(15)

A ={1+0.98495[1.16 + 1.255(0.835 + 0.6075)"*7]*10664}0495
£ €[0,490.98] (16)
The direct solutions developed in this study for calculating

critical depth in trapezoidal open channels are summarized in
Table 1.

Table 1 Direct solutions developed in this study for critical
depth calculation in trapezoidal open channels

Step er:l)ZZn Formula Derivation
1/3
[ %mo e=4 am’ Q° e
g b0 gb’ cosf
Ae =[1+0.97526(1.433 +1.021¢)03170:4566
1l e Ae ={1+0.9849¢[1.16 + 1.25£(0.835+ e
0.607£)0-271]0-16640.4953
b
I A, b,m Ye = T(ﬂc—l) Je
m

0.05

3.2 Performance evaluation of the direct
calculationequations

Several most accurate direct equations for calculating critical

existing

depth in trapezoidal open channels were selected for comparison
with Equations (15) and (16) in terms of accuracy, application
range, and simplicity. These equations happen to be able to be
expressed in the form of the proposed function models in Equations
(11)-(13). As shown in Figure 2 and Table 2, compared with the
equation from Wang!", Equation (15) is a direct solution of A,
(sharing the same RE with #.) with simplicity and 6.4-fold (the ratio
of the maximum absolute REs of the two equations) higher
precision using the same number of coefficients. Equation (16) is
the most accurate among all the existing equations and exhibits a
relatively wide application range; the maximum and average
absolute REs are merely 0.004 94% and 0.002 69%, respectively,
for different values of 7, in the practical range of [107°, 20.095].
Equation (16) is 24 times more accurate than the simplified
equation by Wang'"*, which is also in the three-iteration scheme in
Equation (13) owing to the benefits of the introduced method. It is
worth noting that Equation (16) provides approximations of y, with
absolute errors of less than 0.1 cm when y, is as high as 20 m
covering a totally wide practical range of flow conditions™. The
proposed method evidenced the capacity of predicting critical depth
in trapezoidal open channels with remarkable accuracy.

0.00

RE/%
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Figure 2 Relative error distribution on approximation of critical depth in trapezoidal open channels using the calculation equations in the

form of the iterative schemes proposed in this study for 0.001<#,.<20

Table 2 Comparison of the equations for calculating critical depth in trapezoidal open channels in the form of the iterative schemes
proposed in this study

Source of formula Form of formula Recommended application range of 7, - Absolute RE
Maximum Average
Wang et al.** A =[1+&(1+£)°2]%3 (0, +o0) 1.048% /
Simplified from Wang"* Ae = [1+&(1 +&(1 +£)02)1/6105 (0, +o0) 0.118% /
Wang" Ao = {1+&[l+8(1 +&(1 +5)02)1/071/6)0.5 [1072, +o0) 0.0154% /
Improved from Wang"! Ao = {L+e[l +£(1+ (1 + (1 +)02)1/6)1/6]1/6)0.5 [10", +o0) 0.002 14% /
Vatankhah and Easa” Ae = 1+0.5e(1 +0.2722¢1041)=0.339 (0,2.999] 0.0611%  0.0336%
Vatankhah!® ¢ = [141.161&(1 + 0.666¢!:041)0-37410432 [0.062, 41.987] 0.0286% 0.0152%
Varandili et al."” Ao ={1+e[l+8(1+&(1 +&(1+---)1/6)1/6)1/611/6,0.5 (0, +o0) / /
Equation (15) Ae = [1+0.97526(1.433 + 1.021£)0-317510.4566 [0.0008, 21.351] 0.165% 0.0915%
Equation (16) A = {1+0.9848¢[1.16 + 1.25£(0.607¢ + 0.835)0-27110-166410.4953 [10, 20.095] 0.004 94%  0.002 69%

Note: The formula proposed by Vatankhah and Easa™ was expressed in the form of Equation (12).
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3.3 Insights from the novel combined iteration-curve-fitting
method

The proposed combined iteration-curve-fitting method has both
theoretical basis and practical value. There are quantities of
dimensionless governing equations without analytical solutions for
the calculation of different characteristic depths (e.g., critical depth,
normal depth, conjugate depth) in various cross sections. Some
regression-based equations were established with the function
models selected according to experience with a certain randomness.
Among these governing equations, some high-degree polynomial
equations can be transformed into simple iterative schemes that
provide perfect function models. The related channel cross sections
include not only trapezoidal, but also various parabola-shaped
channels™\. The iterative scheme derived with several times of
iterations totally ensures the accuracy of the equation. These
iteration-based functions themselves provide good approximation of
the initial values of coefficients and ensure better potential of
convergence in the coefficient optimization procedure, thus
improving the efficiency for establishing new equations.

Compared with Delta-perturbation method?'?, the improved

16

asymptote matching technique''?, Lagrange’s inversion theorem”?%,

and Lambert W- function™*?, the method combining the iteration
theory and the curve-fitting technique method proposed in this
paper establishes the iterative schemes concisely from the original
governing equation, and gives full play to the advantages of curve
fitting for parameter optimization. The theory provides an effective
approach for seeking appropriate formula forms of curve fitting and
explains why the presently available equations for calculating
critical depth in trapezoidal sections are in similar forms. Moreover,
the method is expected to provide references for the calculation of
characteristic water depths of parabola-shaped cross sections™~", as
well as other problems relying on the direct solutions of non-linear
equations.

4 Practical application

To illustrate the application of the equations available in this
study and their reliability, critical depths calculation with the
application of Equations (15) and (16) and equations present in
existing studies (Table 2) were conducted for two actual man-made
concrete-lined open channels (Table 3). The critical depths were
calculated with the hypotheses that a=1.0, cosf=1, g=9.7964 m/s.

Table 3 Comparison of equations for calculating critical depth in trapezoidal open channels in the form of the
iterative schemes proposed in this study

Equations m O/(m’s™) b/m & y./m RE/% AE/mm
Accurate value calculated with the trial method 1.641 784 904 0 0
Equation (15) 1.641 819 467 2.1x10° 0.035
Equation (16) 1.641 812 765 1.7x10° 0.028
Wang et al.!"¥ 1.655 418 141 0.8300 13.630
Simplified from Wang!"*! 1.25 28.37 3.05 3.389 1.643 640 618 0.1100 1.860
Wang!"¥ 1.642 037 915 0.0150 0.250
Improved from Wang!"" 1.641 819 408 0.0021 0.035
Vatankhah and Easa” 1.642 664 110 0.0540 0.880
Vatankhah¥ 1.642 186 969 0.0240 0.400
Accurate value calculated with the trial method 1.599 885 703 0 0
Equation (15) 1.599 239 168 —0.040 —0.650
Equation (16) 1.599 886 233 3.6x10° 0.000 58
Wang et al.'™! 1.611 698 593 0.740 11.810
Simplified from Wang!" 1.25 23.35 2.44 4317 1.601 568 746 0.110 1.680
Wang!"! 1.600 125 876 0.015 0.240
Improved from Wang!* 1.599 919 984 2.1x10° 0.034
Vatankhah and Easa!” 1.600 815 206 0.058 0.930
Vatankhah¥ 1.600 323 154 0.027 0.440

As listed in Table 3, the REs of Equation (16) are merely
1.7x10°% and 3.6x107°%, which are the most accurate among all
the equations. The AEs of Equation (16) are below 0.1 mm,
indicating that the accuracy could absolutely meet the practical
application demand. With fewer times of power function
calculation, the REs of Equation (15) are of the same orders of
magnitude or more accurate compared with all the existing
equations apart from the formula improved from Wang!"*. It should
be mentioned that excessively pursuing accuracy is not necessary,
as the construction of open channels only requires that the AE is
below 1 mm or even 1 cm in most cases. As exhibited in the two
application cases, the optimization of the parameters of the basic
iteration function using the curve-fitting technique could greatly
improve the accuracy of the equation and the efficiency of the
equation selection procedure.

5 Conclusions

This study has considered a dimensionless governing equation
of critical flow in trapezoidal open channels that includes only two
variables. Through the application of the novel combined iteration-
curve-fitting method, two direct calculation equations were derived
and the existing most accurate equations were classified into
iteration-based forms. The maximum absolute REs of the two
proposed equations are respectively 0.004 94% and 0.165% over
wide practical ranges. The results of accuracy evaluation and
practical application indicated that one of the proposed equations is
preferable to previously presented solutions in terms of accuracy.
The novel method greatly improves the efficiency of establishment
of the direct solution of high-degree polynomial equations, which is
expected to be a useful tool in the design, operation, and



194 August, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org Vol. 18 No. 4

maintenance of open channels and related hydraulic structures.
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