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Abstract: With  the  nature  of  the  high  wind  and  sand  in  western  China,  the  Chinese  wolfberry  recognition  shows  a  strong
relationship with the sandy noise and needs a high-accuracy algorithm. To address this issue, this study aimed to develop an
algorithm  for  accurately  detecting  and  recognizing  wolfberries.  YOLOv8,  an  algorithm  promoted  by  Ultralytics,  supports
image classification, object detection, and instance segmentation tasks.  To enhance the performance of the original YOLOv8
model,  a  novel  YOLOv8  algorithm  incorporating  FasterNet,  RepBiFPN,  and  Lightweight  Asymmetric  Dual-Head  was
proposed.  Firstly,  thousands  of  Chinese  wolfberry  images  were  collected  from  the  Ningxia  Academy  of  Agriculture  and
Forestry Science, China, and random noises were added to simulate the wind and sand conditions typical of spring. Secondly,
leveraging the advantages of YOLOv8n, such as its high speed and accuracy, this research innovatively integrated the FasterNet
block  into  the  C2f  module  of  YOLOv8  to  improve  the  effective  handling  of  data  uncertainty  and  noise.  Additionally,  an
innovative RepViT+BiFPN, a new detective head, and a Lightweight Asymmetric Dual-Head were introduced to improve the
training efficiency of the YOLOv8 network. Finally, to evaluate the effectiveness of improved YOLOv8 for the recognition of
wolfberry,  the  dataset  of  wolfberry  images  was  divided  into  a  training  set,  a  validation  set,  and  a  testing  set  to  assess  the
performances  of  different  models.  Experiment  results  demonstrate  that  the  YOLOv8-FasterNet+LADH+RepBiFPN  model
outperforms other models in terms of mAP@0.50-0.95, achieving a 4.5% improvement on the validation set compared to the
original  YOLOv8n.  This  research  addresses  the  high-speed  and  accurate  recognition  of  the  Chinese  wolfberry  under  strong
winds and sand noise through algorithmic improvements and integration, which can facilitate the automation and intelligence of
Chinese wolfberry harvesting and contribute to the advancement of agricultural mechanization.
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1    Introduction
With  the  increasing  market  demand  and  the  strong  support

from  government  policy  aimed  at  promoting  agriculture,  the
planting  area  of  Chinese  wolfberry  has  been  expanding
significantly.  China,  as  a  major  exporter  of  wolfberry,  had  an
approximate  planting  area  of  29  677 hm2 by  the  end  of  2022.  The
annual production reached 86 300 t, accounting for over 95% of the
global  output,  and  the  export  volume  amounted  to  11  932.24  t.
From January to March 2023, the cumulative export of wolfberries

reached 3277.42 t,  valued at 164.57 million RMB yuan. China has
incorporated  wolfberry  picking  and  processing  into  more
comprehensive development planning as an important  part  of  rural
revitalization and poverty alleviation.

The rapid development of machine vision technology has made
object detection one of the most promising areas for application in
fruit picking[1]. As a large agricultural production country, China has
always  been  exploring  and  promoting  the  development  of
agricultural  architecture.  In  recent  years,  with  the  support  of  new
information technology and robotics, agricultural products’ picking
precision, accuracy, and efficiency have been greatly improved but
still  need  to  face  up  to  their  shortcomings.  For  example,  China’s
wolfberry  picking  relies  on  artificial  breeding,  while  with  the
increasing aging of the population, the labor force is in short supply.
However,  as  the  labor  demand  as  well  as  its  cost  continue  to
increase,  the  competitiveness  of  the  Chinese  wolfberry  industry  in
the international market is gradually weakened. Therefore, machine
vision  technology  has  been  introduced  into  agricultural  picking[2],
and the automation of wolfberry picking has become the recognized
development trend.

By  employing  machine  vision  technology,  the  precise
recognition,  accurate  positioning,  and  growth  prediction  of
wolfberry  can  be  achieved,  and  the  efficiency  and  quality  of
wolfberry  picking  will  be  significantly  enhanced.  The  mainstream
direction of visual recognition research in the current market can be
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divided into two categories: fruit recognition under strong noise and
fruit recognition under occlusion and overlap, as explained below:

1) Fruit recognition under strong noise
Strong noise refers to the noise in the image that is obvious and

severely affects the observation, processing, or analysis[3]. This type
of noise can be generated by a number of factors, including sensor
problems  in  the  acquisition  equipment  itself,  environmental
conditions,  abnormal  interference  in  image  acquisition,  etc.
Commonly, strong noises include light noise, rain, fog, snow, frost
noise, vibration noise, etc., which can lead to blurring and distortion
of image details, which has a detrimental impact on image analysis.
Scholars at home and abroad have done numerous research studies
in this field. For the problem of low light, a recognition method of
tomato fruit at night based on improved YOLOv5 was proposed by
He et al.[4] A total of 2000 tomato images in the night environment
were  collected  as  the  initial  training  samples,  the  original  loss
function  was  improved by establishing a  CIoU target  position  loss
function  based  on  intersection  and  union  ratio,  and  the  optimal
anchor  frame  was  generated  based  on  the  computational  function
anchor.  An  improved  YOLOv5  network  model  was  constructed,
which  improved  the  recognition  accuracy  of  feature  objects  in  the
dark.  Facing  the  complex  and  changing  environment,  Zhao  et  al.[5]

proposed  an  improved  fruit  recognition  algorithm  based  on  deep
learning to address the issue of low performance of traditional fruit
recognition  algorithms  in  complex  environments.  This  algorithm
incorporated  residual  modules  and  Cross  Stage  Partial  Networks
(CSP Net),  integrated Spatial  Pyramid Pooling (SPP) modules into
the  recognition  network  of  YOLOv5,  and  replaced  the  Non-
Maximum  Suppression  (NMS)  algorithm  with  the  Soft  NMS
algorithm.  Finally,  the  algorithm  was  improved  by  constructing  a
joint  loss  function  based  on  focal  and  CIoU  loss,  which  led  to  a
higher  recognition  accuracy.  Aiming  at  the  adverse  effects  of
complex environmental  factors  on the detection and recognition of
safflower silk, Wang et al.[6] proposed an improved model based on
YOLOv7  to  create  a  real  safflower  sample  dataset  to  establish  a
complex  picking  environment  aiming  at  the  problem of  inaccurate
recognition of safflower mechanized harvesting caused by complex
environments  such  as  light,  shade,  density,  and  uneven  number  of
samples,  which  creates  a  safflower  sample  dataset  to  establish  the
complex  environment  data  of  real  picking,  and  increases  the
attention mechanism of Swin Transformer to improve the accuracy
of the model in detecting each classified sample.

In addition, Li et al.[7] addressed the difficulty of picking robots
to  accurately  locate  the  fruit  in  the  case  of  fruit  oscillation.  An
oscillating  fruit  recognition  and  localization  method  based  on
monocular  vision  and  ultrasound  detection  was  proposed  and
ultimately  achieved  a  recognition  and  picking  success  rate
exceeding 86%.

It is summarized that the existing strong noise is mostly based
on light noise, rain, fog, snow and frost noise, and vibration noise.
However,  there are few noise reduction studies based on wind and
sand.  China’s  wolfberry  is  mainly  distributed  in  Ningxia  Hui
Autonomous  Region  and  other  places  where  the  windy  and  sandy
weather is very common. Recognition of wolfberries with noise and
sand  forms  the  research  foundation  for  fruit  positioning,  occlusion
restoration, growth prediction, and precision picking. However, this
specific field has not yet undergone in-depth investigation.

2) Recognition of overlapping fruit
Strong noise is the main concern of fruit  picking research, but

dealing  with  the  overlapping  problem  of  fruit  has  also  become  a
major  challenge.  To  address  the  challenges  of  missed  and  false

detections in citrus fruit  detection caused by environmental  factors
such as leaf  occlusion,  fruit  overlap,  and variations in natural  light
in  hilly  and  mountainous  orchards,  Yu  et  al.[8]  proposed  a  citrus
detection  model  based on an  improved YOLOv5 algorithm,  which
introduced  receptive  field  convolutions  with  full  3D  weights
(RFCF).  The  model  overcomes  the  issue  of  parameter  sharing  in
convolution operations, and it  enhances detection accuracy. Due to
the  unstructured  characteristics  of  the  orchard  environment,  Li  et
al.[9] proposed  an  ensemble  U-Net  segmentation  model  suitable  for
small  sample  datasets,  in  which  edge  structures  are  designed  by
integrating  residual  blocks  and  gated  convolutions  to  obtain  the
boundary  semantic  information  of  the  target  image;  atrous
convolutions  are  applied  to  resolve  the  contradiction  between  the
resolution  of  the  feature  map  and  the  receiving  field,  retain  more
multi-scale  context  information,  and  achieve  target  fruit
segmentation.  Yang  et  al.[10]  designed  a  new  attention  module,
NCBAM,  to  improve  the  ability  to  extract  blueberry  features  in
response  to  the  problems  of  adherence  densities  and  severe
occlusion  of  blueberries.  Then,  a  small  target  detection  layer  was
added to improve the multi-scale recognition ability of blueberries.
Finally,  the  C3Ghost  module  was  introduced  into  the  backbone
network to reduce the number of model parameters, which reduces
the complexity of the model to a certain extent. A method of tomato
segmentation  based  on  RGB-D  depth  images  and  K-means
optimized SOM neural network was proposed by Li et al.[11] to solve
the  problem  of  automatic  recognizing  and  localizing  difficulties
caused  by  fruit  overlapping  and  adherence.  By  extracting  both  the
planar and depth information of fruit contour points, and employing
a K-means optimized Self-Organizing mAP (SOM) neural network
to construct clustered points that fit  the position and contour shape
of  tomatoes,  this  approach  enhances  the  accuracy  of  recognizing
occluded fruits.  Hao et  al.[12] proposed a  YOLO-RD-Apple  orchard
heterogeneous image occlusion fruit detection model based on dual
inputs  of  RGB  and  Depth  images.  The  lightweight  MobileNetV2
and the lighter MobileNetV2-Lite were utilized as feature extractors
for RGB and Depth images, and the new SE-DWCSP3 module was
proposed  to  improve  the  PANet  structure  and  enhance  the  feature
extraction capability  of  the  network for  stubby apple  targets.  Zhao
et  al.[13]  researched the fast-tracking and recognition of overlapping
fruits, which fit and predetermine the robot’s motion path based on
the  center  of  the  circle  of  the  captured  overlapping  images,  and
finally  used  fast  normalized  mutual  correlation  matching  to  match
and  recognize  the  overlapping  fruits,  which  improved  the  robot’s
recognition of the picking timeliness.

The  existing  research  mainly  focuses  on  large  fruits  such  as
tomatoes and apples, and there are few studies on the recognition of
small  fruits  like  wolfberry.  By  using  the  depth  information  and
considering  the  prior  adjacent  constraint  between  the  fruit  and  the
stem of cherry tomatoes, Xu et al.[14] proposed an improved Mask R-
CNN for visual recognition of cherry tomatoes. The input layer was
modified  to  achieve  dual-mode  data  fusion  of  RGB  and  depth
images,  and  the  corresponding  region  generation  network  was
constructed to indicate the integral constraint between the fruit and
the  stem.  Meanwhile,  multi-task  loss  balance  and  adaptive  feature
pooling were adopted to overcome the limitation caused by the size
difference  between  fruit  and  stem.  Liu  et  al.[15]  proposed  a  fruit
recognition method for  winter  jujube based on improved YOLOv3
(YOLOv3-SE),  which  strengthened  effective  features,  weakened
ineffective  or  invalid  features,  and improved the  expressive  ability
of the feature map, thus improving the model recognition accuracy.
In  response  to  the  complexity  and  variability  of  grape  growth
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scenarios, Sun et al.[16] proposed a grape detection method based on
improved  YOLO-v5  for  grapes  with  different  occlusion  states,
which  used  the  lightweight  network  MobileNetv3  as  a  feature
extraction network and introduced the neck network in the RepVGG
Block. Finally, the loss based on dynamic non-monotonic focusing
mechanism  (wise  intersection  over  union  loss,  WIoU  Loss)  was
used  as  the  bounding  box  regression  loss  function  to  accelerate
network  convergence  and  improve  the  detection  accuracy  of  the
model.  Wang  et  al.[17]  improved  the  YOLOv4-Tiny  network
structure  and  proposed  a  network  containing  an  Attention  Module
Target  Detection  Network  (I.  YOLOv4.Tiny),  which  uses  the
CSPDarknet53. A tiny network model as the backbone network and
the  Convolution  Block  Attention  Module  (CBAM) is  added  to  the
Feature Pyramid of the YOLOv4. A tiny network structure,  whose
network  has  fewer  network  layers  and  a  low  memory  footprint,  is
one way to improve the accuracy of blueberry fruit detection. Zhang
et al.[18] leveraged deep learning techniques to develop a coated seed
recognition  model  named  YOLO-Coated  Seeds  Recognition
(YOLO-CSR),  aiming  to  address  the  challenges  posed  by  coated
seed recognition tasks in response to the aforementioned challenges.
The experimental results showed that YOLO-CSR achieved the best
recognition performance on the self-built coated seed image dataset.

Nevertheless, the existing research studies on the recognition of
wolfberry  are  relatively  few.  In  the  wolfberry’s  main  regions  of
distribution,  such  as  Gansu  and  Ningxia,  where  the  climate  is  arid
and  sandy[19],  the  conventional  recognition  technology  cannot  be
carried out effectively. Additionally, because its fruit is more dense,
it is very easy for the fruit to block each other, which increases the
difficulty  of  recognition.  Therefore,  research  on  the  recognition
algorithm of wolfberry under the influence of strong noise has high
scientific significance and engineering urgency.

In summary,  the application of  target  detection algorithms has
been gradually popularized in fruit recognition and picking, and the
strong  adaptability  and  wide  application  prospects  of  machine
vision  in  fruit  recognition[20]  have  been  demonstrated.  However,
influenced  by  environmental  and  lighting  conditions,  equipment
vibration, fruit size, and other factors, the traditional fruit detection
methods still have great limitations in detecting wolfberries. Under
the  environment  of  mature  target  detection  algorithms  and
recognition techniques, there is still room for research on wolfberry
recognition due to the special characteristics of its fruit. Besides, the
target  detection  algorithm  is  constantly  updated  and  iterative,  and
the  traditional  target  detection  algorithm  no  longer  meets  the
picking  process  for  the  recognition  and  recognition  efficiency
needs. Therefore, this study focuses on the above difficulties related
to the small size of wolfberry fruit, growing environment with large
wind  and  sand,  collecting  picture  data  affected  by  wind  and  sand,
and optimizing the recognition accuracy of wolfberry as well as the
recognition  efficiency,  all  to  enhance  the  reliability  of  the  target
detection algorithm for recognition of wolfberry. 

2    Improved  recognition  algorithm  architecture  for
YOLOv8
 

2.1    YOLOv8 algorithm
YOLOv8 is the model of the YOLO series with high accuracy

and speed of detection[21]. According to the depth of the network and
the width of the feature map, the YOLOv8 algorithm is divided into
five  versions:  YOLOv8-n,  YOLOv8-s,  YOLOv8-m,  YOLOv8-l,
and YOLOv8-x. The network structure of YOLOv8 is composed of
four  sections:  Input,  Backbone,  Neck,  and  Head.  The  input  part  is

the  image  input  link,  and  the  Backbone  part  references  the
CSPDarkNet-53 network, which consists of the convolution module
Conv, C2f structure, and SPPF module[22]. Compared with YOLOv5’s
C3  module,  YOLOv8’s  C2f  module  adds  more  layer-hopping
connections,  and  the  amount  of  computation  is  significantly
reduced, which effectively improves the convergence speed and the
convergence  effect.  The  Focus  module  mainly  operates  for  image
slicing,  which  is  capable  of  further  extracting  the  target  features.
The PANet structure is adopted by the Neck part, which deletes the
convolution  operation  at  the  sampling  stage  on  YOLOv5,  and
effectively  integrates  and  utilizes  features  of  different  scales  to
capture  the  various  scales  and  features  of  the  detected  target  more
accurately. The Head part is responsible for the computation of the
enhanced target features and finally getting the confidence level and
position of the target. 

2.2    Improvement of the backbone
To  achieve  faster  networks,  commonly  used  operators  were

revisited by Chen et al.[23], and it was demonstrated that low FLOPS
are  mainly  caused  by  frequent  memory  access,  particularly  in
depthwise convolutions. Consequently, a novel Partial Convolution
(PConv)  was  proposed,  enabling  the  more  efficient  extraction  of
spatial  features  by simultaneously reducing redundant  computation
and  memory  access.  Building  on  PConv,  FasterNet  was  further
developed,  achieving  significantly  faster  performance  across
various  devices  while  maintaining  accuracy  in  a  wide  range  of
visual tasks.

Specifically, the authors proposed a simple Partial Convolution
(PConv)  to  simultaneously  reduce  computational  redundancy  and
memory access, and the working principle of PConv is illustrated in
Figure  1.  In  light  of  the  novel  PConv  and  the  readily  available
PWConv as the primary operator, FasterNet was further proposed. It
is structured into four hierarchical stages as shown in Figure 2, with
each  stage  composed  of  a  set  of  FasterNet  blocks,  preceded  by  an
embedding layer or a merging layer. The final three layers are used
for  feature  classification.  Within  each  FasterNet  block,  a  PConv
layer  is  followed  by  two  PwConv  layers.  To  maintain  feature
diversity  and  achieve  lower  latency,  normalization  and  activation
layers are set only after the intermediate layer.
 
 

* =… *
=

…

* =…

*

Input/output

Filter

Convolution

Identity

a. Convolution b. Depthwise/Group convolution

c. Partial convolution

Figure 1    Architecture of the PConv used in this study
  
2.3    Improvement of FPN

A  fusion  mechanism,  RepBiFPN  (BiFPN  +  RepViT),  was
proposed in this study. 

2.3.1    RepViT
Although  lightweight  Vision  Transformers  (ViTs)[24]  have

demonstrated  excellent  performance  due  to  their  ability  to  learn
global  representations,  the  architectural  differences  between
lightweight  CNNs  and  lightweight  ViTs  have  not  been  fully
explored. Therefore, the efficient architectural design of lightweight
ViTs  was  integrated,  and  standard  lightweight  CNNs  (particularly
MobileNetV3) were gradually improved to create a series of novel
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pure  CNN  models,  referred  to  as  RepViT[25].  These  models  have
been  shown  to  perform  well  across  various  visual  tasks  and  are

more  efficient  than  existing  lightweight  ViTs.  Figure  3  shows  the
overview of RepViT.
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2.3.2    BiFPN
BiFPN  (Bidirectional  Feature  Pyramid  Network),  an  efficient

multi-scale  feature  fusion  network,  is  optimized  based  on  the
traditional Feature Pyramid Network (FPN).

Figure  4  illustrates  the  specific  details  of  the  EfficientNet
architecture, including the use of EfficientNet as the backbone and
BiFPN as the feature network. In this architecture, BiFPN layers are
employed to receive multi-scale input features from the EfficientNet
backbone  through  their  bidirectional  feature  fusion  capability  and
then  generate  expressive  features  for  object  classification  and
bounding box prediction. 

2.4    Improvement of head
To  further  improve  the  performance  of  YOLO,  an  innovative

Lightweight  Asymmetric  Dual-Head  (LADH,  as  in  Figure  5)[26]

detection  head  was  proposed.  The  detection  head  utilizes
asymmetric  multi-stage  compression  technology  for  enhancing

detection  efficiency  and  accuracy.  Traditional  YOLO  detectors
typically  use  symmetric  multi-stage  compression  structures,  where
the  compression  ratios  of  all  detection  heads  are  the  same.
However, since the complexity of objects in different categories varies, an asy-
mmetric multi-stage compression strategy was introduced. Different
compression ratios are applied to different categories to better adapt
to  various  feature  representations  and  target  size  distributions,
thereby improving the generalization capability of the detector.

The  LADH  detection  head  mainly  consists  of  two  parts:
AsymmetricHead  and  Dual-Head.  AsymmetricHead  is  responsible
for asymmetric compression of features from different categories to
handle  the  differences  in  category  complexity,  while  Dual-Head
combines the outputs of two AsymmetricHeads to generate the final
detection  results.  By  incorporating  these  two  components,  LADH
enhances  detection  performance  and  accuracy  while  maintaining  a
lightweight model.

　242 　 April, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 2　

https://www.ijabe.org


 

P7/128

P6/64

P5/32

P4/16

P3/8

P2/4

P1/2

BiFPN layer

Conv Conv

Conv Conv

Box prediction net

Class prediction net

Figure 4    Overview of EfficientNet
 
  

1×1

Conv

3×3

DWConv

FPN feature

P3

P4

P5

Cls.H×W×C

IoU.H×W×1

Reg.H×W×4

H×W×C

1024

512

256

Figure 5    Architecture of LADH
 

In  order  to  validate  the  effectiveness  of  the  improved method,
the  following  metrics  were  used  to  evaluate  the  model:  precision
(P),  recall  (R),  mean  accuracy  (mAP),  and  the  rate  of  model

prediction (fps).  The calculations are as follows,  and the improved
YOLOv8 architecture is proposed in Figure 6.

P =
T P

T P+FP
(1)

R =
T P

T P+FN
(2)

AP =
n=1∑
i=1

(ri+1 − ri)p(ri+1) (3)

mAP =
1
N

N∑
i=1

APi (4)

fps = 1000
preprocess(ms)+ inf erence(ms)+ postprocess(ms)

(5)
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3    Data sample collection and preprocessing
 

3.1    Data acquisition
The  wolfberry  fruits  used  in  this  experiment  were  collected

from the Ningxia Academy of Agriculture and Forestry Science. A
total  of  990  images  of  wolfberry  were  collected,  which  were

captured by a DJI hand-held camera at a distance of 50 cm from the
wolfberry  fruits.  The  original  format  of  the  photographed  images
was  JPG,  with  a  resolution  of  2976×1984.  The  wolfberry  samples
are shown in Figure 7, and a collection of images of wolfberry are
available  at:  https://pan.baidu.com/s/1O4dNaoGWiL2lq_TLR5
VAtQ?pwd=hck1.

 
 

Figure 7    Examples of wolfberry bush image
 
 

3.2    Preprocessing and image enhancement of sample datasets
In  the  collected  LBP  images,  due  to  different  shooting  angles

and  different  light  conditions  under  different  weather,  the  color  of
the  collected  images  differed  to  some  extent,  which  led  to  the
difficulty of extracting the features of wolfberry. In order to obtain
accurate  data  parameters,  the  screened  and  classified  wolfberry
images  were  manually  labeled  with  LabelImg.  To  ensure  the
effectiveness  of  the  training,  reduce  the  impact  of  noise  during
shooting,  and  avoid  overfitting  of  deep  learning  models  during
training,  the  Opencv  was  employed  for  data  enhancement  on  the

990  images  collected  for  training  and  testing,  with  which  the
samples  were  expanded  to  3840  images.  The  samples  of  images
with noises added are shown in Figure 8.

After  expanding  the  images,  labeling  software  was  used  to
annotate the targets of wolfberries in the images to obtain the XML
files  in  VOC  format.  During  the  labeling  process,  the  size  of
wolfberries  in  the  obscured  situation  was  in  accordance  with  the
real  size.  The  labeled  wolfberries’  dataset  was  divided  into  a
training  set,  a  validation  set,  and  a  test  set,  which  were  randomly
assigned according to the ratio of 8:1:1 of the total dataset.

 
 

a. Original b. Gaussian noise

c. Sault noise d. Turning around

Figure 8    Image of wolfberries after data enhancement process
 
 

4    Experimental  validation  of  YOLOv8  based  on
improvement of different parts
 

4.1    Experimental environment and parameters
Model  training  and  testing  were  performed  on  the  same

computer  with  a  hardware  configuration  of  12thGen  Intel(R)  Core
(TM)  i7-12700H2.30  GHz,  GeForceGTX3060GPU,  16  GB  of
operating  memory,  a  software  environment  of  ubuntu18.04

operating system, and a  model  training framework of  Pytorch1.12.
The relevant training parameters are listed in Table 1.
 
 

Table 1    Model training parameters
Parameter Value Parameter Value

LearningRate 0.01 Epochs 220
BatchSize 16 Momentum 0.937
ImageSize 640×640 WeightDecay 0.0005
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4.2    Ablation experiment
In  this  study,  three  different  neural  network  backbones—

EfficientNet,  ReNLANFasterNet,  and  FasterNet—along  with  three
different  detection  heads—LightshiftHead,  LAHD,  and
ImplicitHead—and  three  different  feature  pyramid  networks—
AFPN,  EffQAFPN,  and  RepBiFPN—were  selected  and  integrated
into  the  YOLOv8  network  for  training.  The  model’s  various
performance  metrics  were  compared.  The  advantages  and

disadvantages of each improvement module are listed in Table 2.
From the  data  in Table  3  and Figure  9,  it  can  be  summarized

that the mean average precision under the IoU of 0.5-0.95 (mAP@
0.5-0.95) of YOLOv8-FasterNet+LADH+RepBiFPN is the highest,
at  about  0.81.  Although the  speed of  YOLOv8-FasterNet+LADH+
RepBiFPN  slightly  decreases  compared  to  YOLOv8n,  its
performance  of  other  metrics  is  better  than  the  original  model.
Table 3 lists some more information about the ablation experiment.

 
 

Table 2    Comparison of different YOLO models
Model Advantages Disadvantages

EfficientNet Efficient parameter usage, excellent performance, strong scalability, and
good generalization ability

Longer training time, high hardware resource requirements, complex
architecture, limited inference speed

FasterNet[27] Speed improvement, high efficiency, easy deployment, model compression Increased complexity, trade-off in accuracy, limited applicability, more
difficult optimization

FocalNet[28] Saliency focus, efficient computational usage, strong adaptability Strong data dependency, difficulty in handling complex backgrounds,
complex debugging

LightshiftHead High computational efficiency, resource-saving, strong adaptability,
maintains performance Limited applicability, complex model tuning, immature model

LADH High efficiency, strong flexibility, resource-saving Increased complexity, limited applicability, potential risk of overfitting
ImplicitHead Simplified model, flexible adaptation to input features Insufficient accuracy, weak domain dependency
AFPN[29] Enhanced multi-scale processing capability, optimized feature fusion Increased computational complexity, complex model tuning

EffQAFPN[30] High accuracy, high efficiency, flexible modular design Sensitive to noise, relatively high model complexity

RepBiFPN Efficient feature reparameterization, enhanced multi-scale detection,
bidirectional feature fusion High data dependency, large computational resource requirements

 
 

a. Training curves of YOLOv8n and YOLOv8-Fasternt+LADH+RepBiFPN

b. Prediction of YOLOv8n c. Prediction of YOLOv8-FasterNet+LADH+RepBiFPN
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Figure 9    Comparison of YOLOv8n and YOLOv8-FasterNet+LADH+RepBiFPN
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Table 3    Results of the ablation experiment

Model P R mAP@
0.5

mAP@
0.5-0.95

Frames
per

second/
fps

Para

YOLOv8n (original) 0.898 0.946 0.963 0.765 109 3 005 843

FasterNet 0.929 0.911 0.969 0.765 90 2 560 467

FocalNet 0.912 0.915 0.963 0.76 50 3 089 523

EfficientNet 0.933 0.889 0.96 0.755 91 3 086 275

FasterNet+LADH 0.927 0.941 0.973 0.778 85 2 343 779

FasterNet+LightshiftHead 0.926 0.908 0.962 0.764 96 2 601 059

FasterNet+ImplicitHead 0.905 0.948 0.967 0.776 83 2 557 990
FasterNet+LADH+

RepBiFPN 0.921 0.944 0.963 0.81 67 2 276 867

FasterNet+LADH+AFPN 0.865 0.889 0.936 0.703 67 1 628 456
FasterNet+LADH+

EffQAFPN 0.868 0.922 0.954 0.738 73 2 362 483

 

Figure  9a  presents  the  comparison  results  of  10  indicators  of
the ablation experiments. The horizontal axis for all 10 indicators of
results represents the number of epochs (the figure displays results
from  epoch  0  to  250,  with  convergence  achieved  before  250
epochs).  In  the  figure,  blue  represents  the  results  of  the  proposed
YOLOv8-FasterNet+LADH+RepBiFPN  in  this  study,  while  red
represents YOLOv8n. The 10 indicators are:

(1)  train/box_loss,  representing  the  bounding  box  regression
loss on the training set,  typically referring to the error in bounding
box predictions.

(2)  train/cls_loss,  representing  the  classification  loss  on  the
training set, indicating the prediction error for each category.

(3) train/dfl_loss,  representing the distributed focal loss on the
training set, a specific loss function related to object detection.

(4)  metrics/precision(B),  representing  the  precision  on  the
validation set, measuring the accuracy of positive class predictions.

(5)  metrics/recall(B),  representing  the  recall  on  the  validation
set, measuring the completeness of positive class samples retrieved
by the model.

(6) val/box_loss, representing the bounding box regression loss
on the validation set.

(7)  val/cls_loss,  representing  the  classification  loss  on  the
validation set.

(8)  val/dfl_loss,  representing  the  distributed  focal  loss  on  the
validation set.

(9)  metrics/mAP50(B),  representing  the  mean  average
precision  (mAP)  at  an  IoU  (Intersection  over  Union)  threshold
of 50%.

(10)  metrics/mAP50-95(B),  representing  the  mean  average
precision at different IoU thresholds (from 50% to 95%).

For Indicators (1)-(3) and Indicators (6)-(8), which are all loss
values, the smaller, the better. The results show that, whether in the
training  process  or  the  testing  process,  the  YOLOv8-FasterNet+
LADH+RepBiFPN  demonstrates  comparable  or  superior  loss
performance compared to the YOLOv8n.

From  Indicators  (4)  and  (5)  and  Indicators  (9)  and  (10),  it  is
evident that YOLOv8-FasterNet+LADH+RepBiFPN exhibits better
average recognition accuracy compared to YOLOv8n, as shown in
Figures 9b and 9c. 

4.3    Comparative experiment
This study aims to evaluate the performance of YOLOv5, SSD,

YOLOv7,  YOLOv8,  and  YOLOv8-FasterNet+LightshiftHead+
RepBIFPN  models  in  the  task  of  detecting  defects  in  wolfberries.
To ensure a  robust  comparison,  the same dataset  was employed as

the baseline, and all parameters were standardized prior to training.
Specifically,  it  was  ensured  that  the  parameters  across  all  models
remained consistent. A controlled and fair testing environment was
established  to  facilitate  a  more  accurate  evaluation  of  the  models’
performance  under  identical  conditions.  The  mean  average
precision (mAP) scores of the five models obtained after testing are
listed in Table 4.
 
 

Table 4    Comparison of accuracy across different
network models

Model mAP@0.50 mAP@0.50-0.95

YOLOv5s 0.875 0.641

YOLOv7-tiny 0.894 0.697

YOLOv8n 0.963 0.765

YOLOv8-FasterNet+LADH+RepBiFPN 0.963 0.810

SSD 0.832 0.608
 

As  listed  in  Table  4,  the  YOLO  algorithm  outperforms  SSD.
Furthermore,  among  the  YOLO  series  models,  YOLOv8
demonstrates  superior  detection  accuracy on this  dataset  compared
to  YOLOv5  and  YOLOv7.  Notably,  the  improved  YOLOv8-
FasterNet+LightshiftHead+RepBiFPN  achieves  signifi-
cantly  higher  mAP@0.5-0.95  accuracy  than  the  original  YOLOv8
model.  These  comparative  experiments  further  validate  the
effectiveness  of  the  improved  YOLOv8  neural  network  in
enhancing  the  detection  and  recognition  performance  of  Chinese
wolfberries. 

5    Conclusions
Based on the YOLOv8 model, this study proposed an improved

YOLOv8  model  for  recognition  of  wolfberry,  named  YOLOv8-
FasterNet+LADH+RepBiFPN, which weakened the impact of noise
while  collecting  images  of  wolfberry  and  realized  the  accurate
detection  of  wolfberries  influenced  by  sand  and  wind,  providing
some theoretical support for the realization of automated wolfberry
picking.

Based  on  the  self-constructed  wolfberry  dataset,  several
random  noises  were  innovatively  added  to  the  original  images  to
imitate the noise of sandy and windy weather, which enhanced the
robustness and generality of the model while training.

This  study  introduced  several  improvements  to  the  YOLOv8
model  to  enhance  its  accuracy  in  wolfberry  recognition.
Specifically, FasterBlock was incorporated into the C2f layer of the
backbone,  and  the  original  detection  head  was  replaced  with  the
novel LADH. Additionally, the YOLOv8 Feature Pyramid Network
(FPN)  was  enhanced  by  integrating  RepViT  (Revisiting  Mobile
CNN  from  ViT  Perspective)  and  BiFPN  (Bidirectional  Feature
Pyramid  Network).  Ablation  experiments  were  conducted  to
compare the effects  of  improvements  made to  the  backbone,  neck,
and  detection  head.  Furthermore,  the  improved  model  was
benchmarked against  various network models,  including YOLOv5,
SSD,  and  YOLOv7-tiny,  through  horizontal  comparisons,  further
demonstrating the effectiveness of the proposed enhancements.

As  a  kind  of  small  fruit,  wolfberry  grows  densely  and  shows
the phenomenon of fruit overlapping, so it is proposed to carry out
the next research in the fields of fruit localization, shade repair, etc.
to  form  a  complete  technological  closed  loop  with  growth
prediction,  accurate  picking,  etc.  This  will  provide  the  necessary
support  for  the  development  of  intelligent  technology  in  the
wolfberry industry. 
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