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Abstract: With the nature of the high wind and sand in western China, the Chinese wolfberry recognition shows a strong
relationship with the sandy noise and needs a high-accuracy algorithm. To address this issue, this study aimed to develop an
algorithm for accurately detecting and recognizing wolfberries. YOLOvVS, an algorithm promoted by Ultralytics, supports
image classification, object detection, and instance segmentation tasks. To enhance the performance of the original YOLOVS8
model, a novel YOLOVS algorithm incorporating FasterNet, RepBiFPN, and Lightweight Asymmetric Dual-Head was
proposed. Firstly, thousands of Chinese wolfberry images were collected from the Ningxia Academy of Agriculture and
Forestry Science, China, and random noises were added to simulate the wind and sand conditions typical of spring. Secondly,
leveraging the advantages of YOLOvV8n, such as its high speed and accuracy, this research innovatively integrated the FasterNet
block into the C2f module of YOLOVS to improve the effective handling of data uncertainty and noise. Additionally, an
innovative RepViT+BiFPN, a new detective head, and a Lightweight Asymmetric Dual-Head were introduced to improve the
training efficiency of the YOLOv8 network. Finally, to evaluate the effectiveness of improved YOLOvVS for the recognition of
wolfberry, the dataset of wolfberry images was divided into a training set, a validation set, and a testing set to assess the
performances of different models. Experiment results demonstrate that the YOLOv8-FasterNet+tLADH-+RepBiFPN model
outperforms other models in terms of mAP@0.50-0.95, achieving a 4.5% improvement on the validation set compared to the
original YOLOvVS8n. This research addresses the high-speed and accurate recognition of the Chinese wolfberry under strong
winds and sand noise through algorithmic improvements and integration, which can facilitate the automation and intelligence of

Chinese wolfberry harvesting and contribute to the advancement of agricultural mechanization.
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1 Introduction

With the increasing market demand and the strong support
from government policy aimed at promoting agriculture, the
planting area of Chinese wolfberry has been expanding
significantly. China, as a major exporter of wolfberry, had an
approximate planting area of 29 677 hm? by the end of 2022. The
annual production reached 86 300 t, accounting for over 95% of the
global output, and the export volume amounted to 11 932.24 t.
From January to March 2023, the cumulative export of wolfberries
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reached 3277.42 t, valued at 164.57 million RMB yuan. China has
incorporated wolfberry picking and processing into more
comprehensive development planning as an important part of rural
revitalization and poverty alleviation.

The rapid development of machine vision technology has made
object detection one of the most promising areas for application in
fruit picking'". As a large agricultural production country, China has
always been exploring and promoting the development of
agricultural architecture. In recent years, with the support of new
information technology and robotics, agricultural products’ picking
precision, accuracy, and efficiency have been greatly improved but
still need to face up to their shortcomings. For example, China’s
wolfberry picking relies on artificial breeding, while with the
increasing aging of the population, the labor force is in short supply.
However, as the labor demand as well as its cost continue to
increase, the competitiveness of the Chinese wolfberry industry in
the international market is gradually weakened. Therefore, machine
vision technology has been introduced into agricultural picking®,
and the automation of wolfberry picking has become the recognized
development trend.

By employing machine vision technology, the precise
recognition, accurate positioning, and growth prediction of
wolfberry can be achieved, and the efficiency and quality of
wolfberry picking will be significantly enhanced. The mainstream
direction of visual recognition research in the current market can be
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divided into two categories: fruit recognition under strong noise and
fruit recognition under occlusion and overlap, as explained below:

1) Fruit recognition under strong noise

Strong noise refers to the noise in the image that is obvious and
severely affects the observation, processing, or analysis®. This type
of noise can be generated by a number of factors, including sensor
problems in the acquisition equipment itself, environmental
conditions, abnormal interference in image acquisition, etc.
Commonly, strong noises include light noise, rain, fog, snow, frost
noise, vibration noise, etc., which can lead to blurring and distortion
of image details, which has a detrimental impact on image analysis.
Scholars at home and abroad have done numerous research studies
in this field. For the problem of low light, a recognition method of
tomato fruit at night based on improved YOLOvVS was proposed by
He et al.”! A total of 2000 tomato images in the night environment
were collected as the initial training samples, the original loss
function was improved by establishing a CloU target position loss
function based on intersection and union ratio, and the optimal
anchor frame was generated based on the computational function
anchor. An improved YOLOvVS5 network model was constructed,
which improved the recognition accuracy of feature objects in the
dark. Facing the complex and changing environment, Zhao et al.l”
proposed an improved fruit recognition algorithm based on deep
learning to address the issue of low performance of traditional fruit
recognition algorithms in complex environments. This algorithm
incorporated residual modules and Cross Stage Partial Networks
(CSP Net), integrated Spatial Pyramid Pooling (SPP) modules into
the recognition network of YOLOvVS, and replaced the Non-
Maximum Suppression (NMS) algorithm with the Soft NMS
algorithm. Finally, the algorithm was improved by constructing a
joint loss function based on focal and CloU loss, which led to a
higher recognition accuracy. Aiming at the adverse effects of
complex environmental factors on the detection and recognition of
safflower silk, Wang et al." proposed an improved model based on
YOLOV7 to create a real safflower sample dataset to establish a
complex picking environment aiming at the problem of inaccurate
recognition of safflower mechanized harvesting caused by complex
environments such as light, shade, density, and uneven number of
samples, which creates a safflower sample dataset to establish the
complex environment data of real picking, and increases the
attention mechanism of Swin Transformer to improve the accuracy
of the model in detecting each classified sample.

In addition, Li et al.”” addressed the difficulty of picking robots
to accurately locate the fruit in the case of fruit oscillation. An
oscillating fruit recognition and localization method based on
monocular vision and ultrasound detection was proposed and
ultimately achieved a recognition and picking success rate
exceeding 86%.

It is summarized that the existing strong noise is mostly based
on light noise, rain, fog, snow and frost noise, and vibration noise.
However, there are few noise reduction studies based on wind and
sand. China’s wolfberry is mainly distributed in Ningxia Hui
Autonomous Region and other places where the windy and sandy
weather is very common. Recognition of wolfberries with noise and
sand forms the research foundation for fruit positioning, occlusion
restoration, growth prediction, and precision picking. However, this
specific field has not yet undergone in-depth investigation.

2) Recognition of overlapping fruit

Strong noise is the main concern of fruit picking research, but
dealing with the overlapping problem of fruit has also become a
major challenge. To address the challenges of missed and false

detections in citrus fruit detection caused by environmental factors
such as leaf occlusion, fruit overlap, and variations in natural light
in hilly and mountainous orchards, Yu et al.® proposed a citrus
detection model based on an improved YOLOVS algorithm, which
introduced receptive field convolutions with full 3D weights
(RFCF). The model overcomes the issue of parameter sharing in
convolution operations, and it enhances detection accuracy. Due to
the unstructured characteristics of the orchard environment, Li et
al.”! proposed an ensemble U-Net segmentation model suitable for
small sample datasets, in which edge structures are designed by
integrating residual blocks and gated convolutions to obtain the
boundary semantic information of the target image; atrous
convolutions are applied to resolve the contradiction between the
resolution of the feature map and the receiving field, retain more
multi-scale context information, and achieve target fruit
segmentation. Yang et al.'’ designed a new attention module,
NCBAM, to improve the ability to extract blueberry features in
response to the problems of adherence densities and severe
occlusion of blueberries. Then, a small target detection layer was
added to improve the multi-scale recognition ability of blueberries.
Finally, the C3Ghost module was introduced into the backbone
network to reduce the number of model parameters, which reduces
the complexity of the model to a certain extent. A method of tomato
segmentation based on RGB-D depth images and K-means
optimized SOM neural network was proposed by Li et al.'"" to solve
the problem of automatic recognizing and localizing difficulties
caused by fruit overlapping and adherence. By extracting both the
planar and depth information of fruit contour points, and employing
a K-means optimized Self-Organizing mAP (SOM) neural network
to construct clustered points that fit the position and contour shape
of tomatoes, this approach enhances the accuracy of recognizing
occluded fruits. Hao et al."” proposed a YOLO-RD-Apple orchard
heterogeneous image occlusion fruit detection model based on dual
inputs of RGB and Depth images. The lightweight MobileNetV2
and the lighter MobileNetV2-Lite were utilized as feature extractors
for RGB and Depth images, and the new SE-DWCSP3 module was
proposed to improve the PANet structure and enhance the feature
extraction capability of the network for stubby apple targets. Zhao
et al."” researched the fast-tracking and recognition of overlapping
fruits, which fit and predetermine the robot’s motion path based on
the center of the circle of the captured overlapping images, and
finally used fast normalized mutual correlation matching to match
and recognize the overlapping fruits, which improved the robot’s
recognition of the picking timeliness.

The existing research mainly focuses on large fruits such as
tomatoes and apples, and there are few studies on the recognition of
small fruits like wolfberry. By using the depth information and
considering the prior adjacent constraint between the fruit and the
stem of cherry tomatoes, Xu et al.' proposed an improved Mask R-
CNN for visual recognition of cherry tomatoes. The input layer was
modified to achieve dual-mode data fusion of RGB and depth
images, and the corresponding region generation network was
constructed to indicate the integral constraint between the fruit and
the stem. Meanwhile, multi-task loss balance and adaptive feature
pooling were adopted to overcome the limitation caused by the size
difference between fruit and stem. Liu et al."® proposed a fruit
recognition method for winter jujube based on improved YOLOvV3
(YOLOV3-SE), which strengthened effective features, weakened
ineffective or invalid features, and improved the expressive ability
of the feature map, thus improving the model recognition accuracy.
In response to the complexity and variability of grape growth
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scenarios, Sun et al."” proposed a grape detection method based on
improved YOLO-v5 for grapes with different occlusion states,
which used the lightweight network MobileNetv3 as a feature
extraction network and introduced the neck network in the RepVGG
Block. Finally, the loss based on dynamic non-monotonic focusing
mechanism (wise intersection over union loss, WIoU Loss) was
used as the bounding box regression loss function to accelerate
network convergence and improve the detection accuracy of the
model. Wang et al!” improved the YOLOV4-Tiny network
structure and proposed a network containing an Attention Module
Target Detection Network (I. YOLOv4.Tiny), which uses the
CSPDarknet53. A tiny network model as the backbone network and
the Convolution Block Attention Module (CBAM) is added to the
Feature Pyramid of the YOLOvV4. A tiny network structure, whose
network has fewer network layers and a low memory footprint, is
one way to improve the accuracy of blueberry fruit detection. Zhang
et al."¥ leveraged deep learning techniques to develop a coated seed
recognition model named YOLO-Coated Seeds Recognition
(YOLO-CSR), aiming to address the challenges posed by coated
seed recognition tasks in response to the aforementioned challenges.
The experimental results showed that YOLO-CSR achieved the best
recognition performance on the self-built coated seed image dataset.

Nevertheless, the existing research studies on the recognition of
wolfberry are relatively few. In the wolfberry’s main regions of
distribution, such as Gansu and Ningxia, where the climate is arid
and sandy'”, the conventional recognition technology cannot be
carried out effectively. Additionally, because its fruit is more dense,
it is very easy for the fruit to block each other, which increases the
difficulty of recognition. Therefore, research on the recognition
algorithm of wolfberry under the influence of strong noise has high
scientific significance and engineering urgency.

In summary, the application of target detection algorithms has
been gradually popularized in fruit recognition and picking, and the
strong adaptability and wide application prospects of machine
vision in fruit recognition® have been demonstrated. However,
influenced by environmental and lighting conditions, equipment
vibration, fruit size, and other factors, the traditional fruit detection
methods still have great limitations in detecting wolfberries. Under
the environment of mature target detection algorithms and
recognition techniques, there is still room for research on wolfberry
recognition due to the special characteristics of its fruit. Besides, the
target detection algorithm is constantly updated and iterative, and
the traditional target detection algorithm no longer meets the
picking process for the recognition and recognition efficiency
needs. Therefore, this study focuses on the above difficulties related
to the small size of wolfberry fruit, growing environment with large
wind and sand, collecting picture data affected by wind and sand,
and optimizing the recognition accuracy of wolfberry as well as the
recognition efficiency, all to enhance the reliability of the target
detection algorithm for recognition of wolfberry.

2 Improved recognition algorithm architecture for
YOLOvS8

2.1 YOLOVS algorithm

YOLOVS is the model of the YOLO series with high accuracy
and speed of detection™". According to the depth of the network and
the width of the feature map, the YOLOVS algorithm is divided into
five versions: YOLOv8-n, YOLOvVS-s, YOLOv8-m, YOLOVS8-I,
and YOLOvS8-x. The network structure of YOLOVS is composed of
four sections: Input, Backbone, Neck, and Head. The input part is

the image input link, and the Backbone part references the
CSPDarkNet-53 network, which consists of the convolution module
Conv, C2f structure, and SPPF module®. Compared with YOLOVS’s
C3 module, YOLOV8’s C2f module adds more layer-hopping
connections, and the amount of computation is significantly
reduced, which effectively improves the convergence speed and the
convergence effect. The Focus module mainly operates for image
slicing, which is capable of further extracting the target features.
The PANet structure is adopted by the Neck part, which deletes the
convolution operation at the sampling stage on YOLOvVS, and
effectively integrates and utilizes features of different scales to
capture the various scales and features of the detected target more
accurately. The Head part is responsible for the computation of the
enhanced target features and finally getting the confidence level and
position of the target.

2.2 Improvement of the backbone

To achieve faster networks, commonly used operators were
revisited by Chen et al.””), and it was demonstrated that low FLOPS
are mainly caused by frequent memory access, particularly in
depthwise convolutions. Consequently, a novel Partial Convolution
(PConv) was proposed, enabling the more efficient extraction of
spatial features by simultaneously reducing redundant computation
and memory access. Building on PConv, FasterNet was further
developed, achieving significantly faster performance across
various devices while maintaining accuracy in a wide range of
visual tasks.

Specifically, the authors proposed a simple Partial Convolution
(PConv) to simultaneously reduce computational redundancy and
memory access, and the working principle of PConv is illustrated in
Figure 1. In light of the novel PConv and the readily available
PWConv as the primary operator, FasterNet was further proposed. It
is structured into four hierarchical stages as shown in Figure 2, with
each stage composed of a set of FasterNet blocks, preceded by an
embedding layer or a merging layer. The final three layers are used
for feature classification. Within each FasterNet block, a PConv
layer is followed by two PwConv layers. To maintain feature
diversity and achieve lower latency, normalization and activation
layers are set only after the intermediate layer.

a. Convolution

b. Depthwise/Group convolution

&7 Input/output
* & Filter
a % Convolution

c. Partial convolution —> Identity

Figure 1  Architecture of the PConv used in this study
2.3 Improvement of FPN

A fusion mechanism, RepBiFPN (BiFPN + RepViT), was
proposed in this study.
2.3.1 RepViT

Although lightweight Vision Transformers (ViTs)*¥ have
demonstrated excellent performance due to their ability to learn
global representations, the architectural differences between
lightweight CNNs and lightweight ViTs have not been fully
explored. Therefore, the efficient architectural design of lightweight
ViTs was integrated, and standard lightweight CNNs (particularly
MobileNetV3) were gradually improved to create a series of novel
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pure CNN models, referred to as RepViT®!. These models have
been shown to perform well across various visual tasks and are

more efficient than existing lightweight ViTs. Figure 3 shows the
overview of RepViT.
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Figure 3 Overview of RepViT
2.3.2 BiFPN detection efficiency and accuracy. Traditional YOLO detectors

BiFPN (Bidirectional Feature Pyramid Network), an efficient
multi-scale feature fusion network, is optimized based on the
traditional Feature Pyramid Network (FPN).

Figure 4 illustrates the specific details of the EfficientNet
architecture, including the use of EfficientNet as the backbone and
BiFPN as the feature network. In this architecture, BiFPN layers are
employed to receive multi-scale input features from the EfficientNet
backbone through their bidirectional feature fusion capability and
then generate expressive features for object classification and
bounding box prediction.

2.4 Improvement of head

To further improve the performance of YOLO, an innovative
Lightweight Asymmetric Dual-Head (LADH, as in Figure 5)*
detection head was proposed. The detection head utilizes
asymmetric multi-stage compression technology for enhancing

typically use symmetric multi-stage compression structures, where
the compression ratios of all detection heads are the same.
Howeversincethecomplexityofobjectsindifferentcategoriesvaries amsy-
mmetric multi-stage compression strategy was introduced. Different
compression ratios are applied to different categories to better adapt
to various feature representations and target size distributions,
thereby improving the generalization capability of the detector.

The LADH detection head mainly consists of two parts:
AsymmetricHead and Dual-Head. AsymmetricHead is responsible
for asymmetric compression of features from different categories to
handle the differences in category complexity, while Dual-Head
combines the outputs of two AsymmetricHeads to generate the final
detection results. By incorporating these two components, LADH
enhances detection performance and accuracy while maintaining a
lightweight model.
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Figure 4 Overview of EfficientNet
1024 prediction (fps). The calculations are as follows, and the improved
HxW=C{ 512 YOLOVS architecture is proposed in Figure 6.
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In order to validate the effectiveness of the improved method,
the following metrics were used to evaluate the model: precision fps = 1000 (5)

(P), recall (R), mean accuracy (mAP), and the rate of model

B preprocess(ms) +inf erence(ms) + postprocess(ms)

RepBiFPN
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RepBiFPN
Upsampling

Backbone Neck

Concat

Figure 6 Improved YOLOvVS architecture
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3 Data sample collection and preprocessing

3.1 Data acquisition

The wolfberry fruits used in this experiment were collected
from the Ningxia Academy of Agriculture and Forestry Science. A
total of 990 images of wolfberry were collected, which were

2 it

3.2 Preprocessing and image enhancement of sample datasets
In the collected LBP images, due to different shooting angles
and different light conditions under different weather, the color of
the collected images differed to some extent, which led to the
difficulty of extracting the features of wolfberry. In order to obtain
accurate data parameters, the screened and classified wolfberry
images were manually labeled with Labellmg. To ensure the
effectiveness of the training, reduce the impact of noise during
shooting, and avoid overfitting of deep learning models during
training, the Opencv was employed for data enhancement on the

Figure 7 Examples of wolfberry bush image

captured by a DJI hand-held camera at a distance of 50 cm from the
wolfberry fruits. The original format of the photographed images
was JPG, with a resolution of 2976x1984. The wolfberry samples
are shown in Figure 7, and a collection of images of wolfberry are
available at:  https:/pan.baidu.com/s/104dNaoGWilL2lq TLRS5
VAtQ?pwd=hckl.

990 images collected for training and testing, with which the
samples were expanded to 3840 images. The samples of images
with noises added are shown in Figure 8.

After expanding the images, labeling software was used to
annotate the targets of wolfberries in the images to obtain the XML
files in VOC format. During the labeling process, the size of
wolfberries in the obscured situation was in accordance with the
real size. The labeled wolfberries’ dataset was divided into a
training set, a validation set, and a test set, which were randomly
assigned according to the ratio of 8:1:1 of the total dataset.

b. Gaussian noise

c. Sault noise

d. Turning around

Figure 8 Image of wolfberries after data enhancement process

4 Experimental validation of YOLOv8 based on
improvement of different parts

4.1 Experimental environment and parameters

Model training and testing were performed on the same
computer with a hardware configuration of 12thGen Intel(R) Core
(TM) 17-12700H2.30 GHz, GeForceGTX3060GPU, 16 GB of
operating memory, a software environment of ubuntul8.04

operating system, and a model training framework of Pytorchl.12.
The relevant training parameters are listed in Table 1.

Table 1 Model training parameters

Parameter Value Parameter Value
LearningRate 0.01 Epochs 220

BatchSize 16 Momentum 0.937

ImageSize 640x640 WeightDecay 0.0005
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4.2 Ablation experiment

In this study, three different neural network backbones—
EfficientNet, ReNLANFasterNet, and FasterNet—along with three
different  detection  heads—LightshiftHead, LAHD, and
ImplicitHead—and three different feature pyramid networks—
AFPN, EffQAFPN, and RepBiFPN—were selected and integrated
into the YOLOv8 network for training. The model’s various
performance metrics were compared. The advantages and

disadvantages of each improvement module are listed in Table 2.
From the data in Table 3 and Figure 9, it can be summarized
that the mean average precision under the IoU of 0.5-0.95 (mAP@
0.5-0.95) of YOLOVS-FasterNet+LADH+RepBiFPN is the highest,
at about 0.81. Although the speed of YOLOv8-FasterNet+LADH+
RepBiFPN slightly decreases compared to YOLOv8n, its
performance of other metrics is better than the original model.
Table 3 lists some more information about the ablation experiment.

Table 2 Comparison of different YOLO models

Model Advantages Disadvantages
. Efficient parameter usage, excellent performance, strong scalability, and Longer training time, high hardware resource requirements, complex
EfficientNet L 2 z R
good generalization ability architecture, limited inference speed
. . . . Increased complexity, trade-off in accuracy, limited applicability, more
7]
FasterNet! Speed improvement, high efficiency, easy deployment, model compression difficult optimization
FocalNet™  Saliency focus, efficient computational usage, strong adaptability Strong data depepdency, difficulty in handling complex backgrounds,
complex debugging
LightshiftHead ngh ct_)mputatlonal efficiency, resource-saving, strong adaptability, Limited applicability, complex model tuning, immature model
maintains performance
LADH High efficiency, strong flexibility, resource-saving Increased complexity, limited applicability, potential risk of overfitting
ImplicitHead Simplified model, flexible adaptation to input features Insufficient accuracy, weak domain dependency
AFPN®™  Enhanced multi-scale processing capability, optimized feature fusion Increased computational complexity, complex model tuning
EffQAFPN" High accuracy, high efficiency, flexible modular design Sensitive to noise, relatively high model complexity
. Efficient feature reparameterization, enhanced multi-scale detection, . . .
RepBiFPN bidirectional feature fusion High data dependency, large computational resource requirements
Train/box_loss Train/cls_loss Train/dfl_loss Metrics/precision(B) Metrics/recall(B)
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a. Training curves of YOLOv8n and YOLOv8-Fasternt+LADH+RepBiFPN

=

b. Prediction of YOLOv8n

c. Prediction of YOLOv8-FasterNet+LADH+RepBiFPN
Figure 9 Comparison of YOLOv8n and YOLOv8-FasterNet+LADH+RepBiFPN
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Table 3 Results of the ablation experiment

Frames
mAP@ mAP@  per

Model PR 05 05095 second/ T
fps

YOLOvSn (original) ~ 0.898 0.946 0.963 0765 109 3005 843
FasterNet 0929 0911 0969 0765 90 2560467
FocalNet 0912 0915 0963 076 50 3089523
EfficientNet 0933 0.889 096 0755 91 3086275
FasterNetrLADH 0927 0.941 0973 0778 85 2343779
FasterNet+LightshiftHead 0.926 0.908 0962 0.764 96 2601 059
FasterNet+ImplicitHead 0.905 0.948 0.967 0776 83 2557990
FaSt‘;{;gFLP‘?\IDm 0921 0.944 0963 081 67 2276867
FasterNet-LADH+AFPN 0.865 0.889 0936 0703 67 1628456
FaStE}TSKFLS\?m 0.868 0922 0954 0738 73 2362483

Figure 9a presents the comparison results of 10 indicators of
the ablation experiments. The horizontal axis for all 10 indicators of
results represents the number of epochs (the figure displays results
from epoch 0 to 250, with convergence achieved before 250
epochs). In the figure, blue represents the results of the proposed
YOLOv8-FasterNet+LADH+RepBiFPN in this study, while red
represents YOLOv8n. The 10 indicators are:

(1) train/box_loss, representing the bounding box regression
loss on the training set, typically referring to the error in bounding
box predictions.

(2) train/cls_loss, representing the classification loss on the
training set, indicating the prediction error for each category.

(3) train/dfl_loss, representing the distributed focal loss on the
training set, a specific loss function related to object detection.

(4) metrics/precision(B), representing the precision on the
validation set, measuring the accuracy of positive class predictions.

(5) metrics/recall(B), representing the recall on the validation
set, measuring the completeness of positive class samples retrieved
by the model.

(6) val/box_loss, representing the bounding box regression loss
on the validation set.

(7) val/cls loss, representing the classification loss on the
validation set.

(8) val/dfl_loss, representing the distributed focal loss on the
validation set.

(9) metrics/'mAP50(B), representing the average
precision (mAP) at an IoU (Intersection over Union) threshold
of 50%.

(10) metrics/mAP50-95(B), representing the mean average
precision at different IoU thresholds (from 50% to 95%).

For Indicators (1)-(3) and Indicators (6)-(8), which are all loss
values, the smaller, the better. The results show that, whether in the
training process or the testing process, the YOLOvVS-FasterNet+

mean

LADH+RepBiFPN demonstrates comparable or superior loss
performance compared to the YOLOvS8n.

From Indicators (4) and (5) and Indicators (9) and (10), it is
evident that YOLOv8-FasterNet+tLADH+RepBiFPN exhibits better
average recognition accuracy compared to YOLOvVS8n, as shown in
Figures 9b and 9c.

4.3 Comparative experiment

This study aims to evaluate the performance of YOLOVS, SSD,
YOLOv7, YOLOvVS, and YOLOv8-FasterNet+LightshiftHead+
RepBIFPN models in the task of detecting defects in wolfberries.
To ensure a robust comparison, the same dataset was employed as

the baseline, and all parameters were standardized prior to training.
Specifically, it was ensured that the parameters across all models
remained consistent. A controlled and fair testing environment was
established to facilitate a more accurate evaluation of the models’
performance under identical conditions. The mean average
precision (mAP) scores of the five models obtained after testing are
listed in Table 4.

Table 4 Comparison of accuracy across different
network models

Model mAP@0.50 mAP@0.50-0.95
YOLOV5s 0.875 0.641
YOLOv7-tiny 0.894 0.697
YOLOv8n 0.963 0.765
YOLOv8-FasterNet+tLADH+RepBiFPN 0.963 0.810
SSD 0.832 0.608

As listed in Table 4, the YOLO algorithm outperforms SSD.
Furthermore, among the YOLO models, YOLOvV8
demonstrates superior detection accuracy on this dataset compared
to YOLOvS and YOLOv7. Notably, the improved YOLOvS8-
FasterNet+LightshiftHead+RepBiFPN achieves signifi-
cantly higher mAP@0.5-0.95 accuracy than the original YOLOv8
model. These comparative experiments further validate the
effectiveness of the improved YOLOvV8 neural network in
enhancing the detection and recognition performance of Chinese

series

wolfberries.

5 Conclusions

Based on the YOLOvV8 model, this study proposed an improved
YOLOv8 model for recognition of wolfberry, named YOLOVS-
FasterNet+LADH+RepBiFPN, which weakened the impact of noise
while collecting images of wolfberry and realized the accurate
detection of wolfberries influenced by sand and wind, providing
some theoretical support for the realization of automated wolfberry
picking.

Based on the self-constructed wolfberry dataset, several
random noises were innovatively added to the original images to
imitate the noise of sandy and windy weather, which enhanced the
robustness and generality of the model while training.

This study introduced several improvements to the YOLOVS
model to enhance its accuracy in wolfberry recognition.
Specifically, FasterBlock was incorporated into the C2f layer of the
backbone, and the original detection head was replaced with the
novel LADH. Additionally, the YOLOvV8 Feature Pyramid Network
(FPN) was enhanced by integrating RepViT (Revisiting Mobile
CNN from ViT Perspective) and BiFPN (Bidirectional Feature
Pyramid Network). Ablation experiments were conducted to
compare the effects of improvements made to the backbone, neck,
and detection head. Furthermore, the improved model was
benchmarked against various network models, including YOLOVS,
SSD, and YOLOv7-tiny, through horizontal comparisons, further
demonstrating the effectiveness of the proposed enhancements.

As a kind of small fruit, woltberry grows densely and shows
the phenomenon of fruit overlapping, so it is proposed to carry out
the next research in the fields of fruit localization, shade repair, etc.
to form a complete technological closed loop with growth
prediction, accurate picking, etc. This will provide the necessary
support for the development of intelligent technology in the
wolfberry industry.
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