278

October, 2025 Int J Agric & Biol Eng Open Access at https://www.ijabe.org

Sugarcane image stitching under transverse transport based on
improved SURF algorithm
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(1. School of Intelligent Manufacturing, Jiangnan University, Wuxi 214401, China;
2. Agro-Machinery Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China)

Abstract: This paper proposes a sugarcane image stitching algorithm based on an improved SURF method to capture high-
quality, wide-field images of complete sugarcane stalks. To enhance registration accuracy, artificial markers are introduced into
the background, helping to address the challenges posed by the smooth surface of sugarcane and low feature point matching
precision. Additionally, a mesh segmentation technique combined with an enhanced SURF algorithm is used for feature
extraction, which tackles issues such as uneven feature distribution and slow processing speed caused by global image feature
extraction. A double screening registration method is also proposed to further improve the accuracy of image mosaicing. To
reduce stitching gaps, an image fusion technique based on the optimal suture line is employed. Experimental results show that
the algorithm has an average runtime of about 2900 ms, slightly longer than the ORB algorithm at 2000 ms but significantly
faster than the original SURF at 4200 ms. In terms of stitching quality, the average image information entropy is 6.34, which is
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higher than both the SURF (6.325) and ORB (6.075) algorithms, indicating better image quality.
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1 Introduction

Sugarcane is a major sugar crop widely cultivated in tropical
and subtropical regions, with China being one of its largest
producers. Currently, sugarcane planting in China involves real-
time cutting and pre-cutting methods. However, the complex and
harsh working environment of agricultural machinery, coupled with
various on-site environmental factors, pose challenges to the
accurate and efficient sugarcane identification and cutting. In the
field of sugarcane planting mechanization, the recognition
algorithm plays a pivotal role for sugarcane inspection and cutting.
It needs to quickly and accurately detect the sugarcane nodes in
complex and dynamic working environments, as the speed and
accuracy of recognition directly affect the performance of the
cutting machine. Currently, there are several machine vision-based
methods developed for this purpose. Some scholars™ utilize
manual feature extraction, such as gradients and colors, to recognize
sugarcane stem nodes. However, these methods requires prior
knowledge and a large number of parameters, resulting in poor
robustness. More recently, references®® use deep learning-based
single-stage object detection algorithms, which improves the
accuracy and efficiency of the sugarcane stem recognition to some
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extent. Despite these advancements, the relatively long overall size
of sugarcane poses a unique challenge, as a single camera cannot
capture the node information of the entire sugarcane due to
insufficient field of view. This limitation necessitates segmented
cutting, resulting in relatively low efficiency. To address the issue
of insufficient field of view, image stitching” has become the
mainstream method due to its unique advantages of enabling the
acquisition of complete visual information through the assembly of
multiple images captured from various perspectives. Image stitching
process mainly includes image preprocessing, image registration,
and fusion™, with image registration being the most critical aspect.
Based on different registration methods, image stitching methods
can be divided into two types. One is region-based image stitching
methods, which mainly uses pixel grayscale information to find
similar template windows for matching, such as template
matching®, phase correlation"”; and extended phase correlation'’.
However, region-based image stitching methods have limited
applicability and high computational complexity. The other type is
feature-based image stitching, which is more efficient and robust,
utilizing key point information in the images for matching
exemplified by algorithms, such as the Harris corner detection,
Scale-invariant Feature Transform (SIFT)"™, Speeded Up Robust
Features (SURF)!", etc.

Region-based image stitching methods are suitable for a limited
number of scenarios and often involve a higher computational
complexity and have become the predominant method for image
stitching due to their effectiveness. Lee et al.l'” proposed a large-
disparity image stitching algorithm based on warping residuals to
address the parallax issue caused by images taken from different
planes, which existing stitching algorithms fail to solve. Bouchekara
et al.'"’ addressed the issues of limited features and low resolution in
drone images by proposing an object-based four-stage image
stitching method, which overcomes the dependency on the quality
of feature recognition in traditional stitching methods. Daniel et
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al."" introduced and evaluated four new global image stitching
algorithms, achieving the fusion of high-noise and low-contrast
SEM images. Chen et al.™® proposed a drone image stitching
method based on an optimal seam blending algorithm and semi-
projection transformation to eliminate deformation and angle
distortion caused by image registration. This method effectively
preserves the original information of the images and achieves the
desired stitching effect. Subramanyam et al."” proposed a hybrid
descriptor that effectively stitches multiple camera-captured ground
texture images using defect detection. This method outperforms
existing feature descriptors in terms of matching accuracy,
achieving a matching accuracy of 91% with an execution time of 49
milliseconds, enabling seamless stitching. Li et al.” proposed a pre-
alignment image stitching method for a scanning imaging system
based on Risley prisms. This method reduces the computational
complexity of feature extraction and image registration. Huang et
al.”"! constructed a novel convolutional network called DPH-Net,
which incorporates depth information and pixel-level homography
estimation into image registration for image matching. Based on the
analysis above, image stitching is a promising method to effectively
obtain high-quality images of large objects that cannot be captured
within the limited field of view of a regular industrial camera.
Considering stitching quality and speed, in the case of the sugarcane
recognition and cutting system, this study focuses on refining
stitching methods to obtain high-quality, wide-field-of-view images
of complete sugarcane stalks.

2 Materials and methods

2.1 Image acquisition and preprocessing

To improve the image resolution while minimizing the
hardware demands, we employed the Mercury series MER-531-
20GC-P camera from Daheng Imaging Co. Ltd., equipped with an
HN-0826-20M-C1/X1 fixed-focus lens. A camera polarizing filter
(CPL) was added to the lens to eliminate glare and improve image
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quality. Two LS200F-HW line scan LED light source from Daheng
Imaging were installed on both sides above the sugarcane, parallel
to the axis of the sugarcane. Figures 1 and 2 illustrate the schematic
and actual setup of our dual-camera sugarcane image acquisition

system.
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Figure 1 Schematic diagram of the dual-camera image

acquisition solution
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Figure 2 Actual setup of the dual-camera image
acquisition system

Due to the smooth surface and the presence of wax powder on
the sugarcane™, it is prone to produce glare under the illumination
of the light source. We mitigated this effect with the polarizing
filter. The contrast of the images captured before and after installing
the polarizing filter is shown in Figure 3. Artificial markers were
addedtothebackground™!,enhancingtheregistrationaccuracybyprovid-
ing high-contrast feature points for the SURF algorithm to detect.
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artificial markers Sugarcane

b. After

Figure 3 Comparison images before and after installing the polarizing filter

Meanwhile, filtering can effectively remove noise generated
from different sources'®, resample the entire image, and extract
meaningful feature information. In image processing, median
filtering can effectively suppress random noise while preserving
image edge information. It mainly applies the theory of order
statistics to denoise the image. The process is shown in Formula (1):

Y(i, j) = Median(X(, j)) (i,j)€A (1)

where, X (i, j) refers to pixel values of the points in the template
window; A refers to the fixed-size template window; and Median()
is a median function which returns the median pixel value of all

points within the template window.

The variation in window size during the median filtering
process significantly affects the filtering results. The window size is
selected through experiments.

2.2 Feature point extraction and descriptors
2.2.1 Feature extraction

1) SURF

The SURF algorithm is derived from the Scale Invariant
Feature Transform (SIFT) algorithm, with the main difference that
the SUREF introduces the concepts of integral images and box filters,
greatly reducing the computational time. The key steps of the SURF



280  October, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 5

algorithm are shown in Figure 4.

The SIFT algorithm detects feature points by constructing a
Gaussian difference pyramid, which is a computationally intensive
and time-consuming process. In contrast, the SURF algorithm
introduces the concept of integral images and box filters. It
processes the input image using three types of box filters to obtain
an approximation of the Hessian determinant. To ensure good
rotational invariance of the selected feature points, the main

orientation of each feature point needs to be determined. Unlike
SIFT, which uses gradient histograms to determine the main
orientation, SURF calculates Haar wavelet features within a
neighborhood of radius 6 s (where s is the scale of the feature point)
around the feature point to determine the main orientation, as shown
in Figure 5. The horizontal and vertical Haar wavelet feature sums
are computed in sector regions at intervals of 60°, and the sector
with the highest sum determines the main orientation.

Constract hessian
matrix

Feature point
positioning

> >

Construct feature points
cardinal direction

Construct feature
descriptors

Feature point
matching

_>

Figure 4 Key steps of the SURF algorithm

Figure 5 Main orientation of feature points

After completing the aforementioned steps, it is necessary to
generate descriptors for the feature points for subsequent
registration tasks. Based on the main orientation of the feature
points, a region with a side length of 20 s (where s is the scale of the
feature point) is selected in the vicinity of each feature point. Within
this region, the absolute values and orientations of the Haar wavelet
features are computed in 16 sub-regions. These results are in a total
of 16x4=64 parameters, as shown in Figure 6. Compared to SIFT’s
128-dimensional descriptor vector, the number of parameters in
SUREF is significantly reduced.

>dx
dx

'Y
;dy\ ™~ Ody

Figure 6 SUREF feature point descriptors

2) ORB

The ORB algorithm™ is a feature point extraction and
description algorithm that combines the FAST algorithm®” with the
BRIEF algorithm®". It solves the problem of feature points lacking
scale invariance by using the FAST algorithm to detect feature
points at different levels of the pyramid. Additionally, the ORB
algorithm assigns a dominant orientation to each feature point. This
is done by computing the position of the intensity centroid within
the neighborhood box of the feature point. The direction from the
feature point to the intensity centroid determines the dominant
orientation, ensuring that the feature descriptors have rotational
invariance.

2.2.2 Feature point descriptors

1) SURF descriptor

The SURF descriptor is a 64-dimensional vector obtained by
computing Haar wavelet features in 16 sub-regions within a square
box of side length 20 s around the main orientation of the feature
point.

2) ORB descriptor

Due to the lack of scale invariance and rotational invariance in
the descriptors generated by the BRIEF algorithm, the ORB
algorithm addresses these issues by constructing a spatial pyramid
and assigning a main orientation to feature points. This effectively
solves the problems in BRIEF and ultimately leads to the
development of the ORB descriptor.

3) BRISK descriptor

The BRISK descriptor uses a uniform sampling pattern, as
shown in Figure 7a (only the points on the first circle are displayed
for clarity). By continuously changing the radius R of the
surrounding circle of a key point and performing uniform sampling,
a 512-bit descriptor is obtained. The Hamming distance is used to
measure the similarity of the environmental information around two
feature points based on their descriptors.

==

a. BRISK
Figure 7 Sampling pattern of the BRISK and FREAK descriptor

b. FREAK

4) FREAK descriptor

FREAK is also a binary descriptor that can be applied to all key
points detected by various algorithms such as SIFT, SURF, or ORB.
However, in FREAK, the sampling density increases as the points
get closer to the center. This means that the sampling points are
denser on the circles closer to the key point, as shown in Figure 7b.
The FREAK model consists of seven concentric circles centered
around the key point.
2.3 Feature matching improvement

(1) This article selects the SURF algorithm to extract image
feature points and uses the FREAK algorithm to describe the feature
points. However, the extracted feature points tend to cluster
together, resulting in uneven distribution and mainly concentrated in
highly textured areas. The clustering leads to two main issues: The
traditional SURF algorithm extracts feature points from the entire
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image. However, during the matching phase, only the feature points
that overlap between the reference and the stitched image are used.
Consequently, feature points in non-overlapping regions not only
prolong the matching process and reduce efficiency, but also elevate
the risk of mismatching.

(2) The traditional SURF algorithm uses a brute force matcher
to compare the feature descriptor vectors of the first image with all
the feature descriptors of the second image. The pair with the
highest similarity (i.e., the shortest distance between the two
descriptors) is selected as the best match. However, this method
often leads to a large number of incorrect matches due to the
symmetric nature of image structures, resulting in low image
registration accuracy.

To address problem (1), a grid-based feature detection method
in overlapping region was proposed, as shown in Figure 8. Firstly,
the extracted feature points from the image are divided into several
equally sized grids. The grids in the overlapping region are
extracted as the regions of interest. For each individual grid, the
SURF algorithm is used to extract feature points, and the top n
feature points with higher feature values are retained (shown as
green feature points in Figure 8). Then, the image is divided into
grids and feature extraction is performed. The feature points
retained from each individual grid are aggregated to form a
complete set of feature points for the entire image. Finally, the
FREAK algorithm is used for feature description using binary
descriptors.

Enlarged view of
a single mesh

Reference image The image to be stitched

Figure 8 Schematic diagram of feature extraction in overlapping
regions based on grid segmentation

To address problem (2), we employ a second screening-based
image registration method to reduce the chances of incorrect
matches and improve the accuracy of image registration. Firstly, a
coarse filtering is performed on the matching points based on the
Hamming distance. Then, the PROSAC algorithm® is used as a
replacement for the RANSAC algorithm in the second filtering step
to improve the accuracy of image matching.

The specific process of PROSAC is shown in Figure 9. This
method can exclude matching items with large differences between
descriptors during the filtering process, but a threshold needs to be
set in advance. Since the difference between descriptors varies
greatly for different images, this paper adopts an automatic
threshold calculation method for filtering. Firstly, the Hamming
distance of all matching point pairs is calculated, and the minimum
distance of the key point pairs is obtained. Then, the Hamming
distance of all matching points is compared with k times d;,, and
the matching items with a difference smaller than the threshold (i.e.,
k times d,;,) are retained. By introducing a threshold coefficient £,
the problem of significantly different thresholds between different
images is effectively solved, allowing the algorithm to select a
reasonable threshold based on its own image characteristics
combined with the threshold coefficient.

Sets, p

Iterations>s

A 4

No Ranking and select the top m .
solution high-quality matching point Iterations+1
pairs Y

Remove n data randomly,
calculate the number of
interior points with an error
less than the threshold

Number of inside
points>p

Returns the number of interior
points and model parameters

End

Figure 9 Flowchart of the PROSAC algorithm

2.4 Image transformation and image fusion

After two rounds of filtering, the misaligned point pairs in the
matching point pairs are eliminated one by one, and only the
optimal matching point pairs set, f,(x,y) and f;(x,y), are retained. The
optimal homographic matrix H is then computed using the optimal
matching point pairs set to perform a perspective transformation,
mapping the two images onto the same coordinate system. The
transformation process is shown in Equation (2):

Xp Xq hy hy Xq
) =H| y, = hy hy  hs Ya (2)
1 1 0 0 1 1

where, hy, hy, h3, h, represents the rotational component of the
perspective transformation, and #%,, hs represents the translational
component of the perspective transformation.

In practical acquisition systems, the images stitched are
captured by two cameras, and there are slight differences in camera
parameters. The captured images also have subtle differences in
grayscale and lighting conditions. After stitching, there are traces
left at the stitching positions of the overall image, so it is necessary
to process the stitching traces through image blending. A fusion
algorithm is adopted to blend the images based on the optimal seam
line®™. It mainly calculates the intensity values and then uses
dynamic programming to find the optimal path with the highest
intensity values in the overlapping region, resulting in the best seam
line. The Sobel operator is commonly used to calculate the
structural difference intensity, as shown in Equation (3):

E (x,y) = (S X (1(x,y) = LOx,y))* + (S, X (L (x, ) = L(x,y))*  (3)

where, S, and §, represent the horizontal and vertical direction
Sobel operators.
Then, through the dynamic programming approach, the
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scanning is performed from top to bottom. The starting point of the
optimal seam line is set as the corresponding point in the first row
of pixels. Then, the intensity values of the left, middle, and right
points in the next row are calculated, and the point with the

minimum intensity value is selected to continue the iteration until
the last row. Finally, the line with the minimum intensity value is
chosen as the optimal seam line for image fusion. The overall
process of image stitching is shown in Figure 10.

Input two
pictures

Image
pretreatment

Grayscale

Median
filtering

3 Experiment results and analysis

___________________ 1
| Image registration method of sugarcane based on mesh segmentation and secondary screening |
| I
SURF-based grid Matching point pair Feature point pair |
l Segmentation image ~ —| Based on BFMatcher —p  coarse filtering based —»{  precision screening
| Feature point Brute force fea}ture on hamming norm based on PROSAC l
. point matching : ; |
| Extraction method distance algorithm
| |
Perspective
transform
Image fusion
based on
optimal sutures
End
Figure 10 Horizontal transport-based sugarcane image stitching method
g P g g g
indicates clearer texture details in the entire image.
255
The experiments in this study were conducted on a PC machine IE = - E P(Dlog, P(i) “4)

with an Intel (CITM) i7-9750 CPU, 16 GB of RAM, running a 64-
bit Windows 10 operating system. The programming software used
was PyCharm, and the programming language used was Python.

To evaluate the speed of image stitching, we use the time taken
for image stitching as the evaluation metric. Meanwhile, during the
stitching process, the evaluation of the stitching quality is primarily
based on visual observation, which is subjective and influenced by
personal preferences. Therefore, this paper introduces the concept
of image entropy” to analyze and evaluate the stitched images.
Image entropy is commonly used to assess the quality of processed
images and reflects the average amount of information in an image.
It is calculated using Equation (4), where a higher entropy value

¢. 5x5 window ﬁléering effect
Figure 11
3.2 Experiments for feature point extraction algorithms and

descriptors comparison
We conducted experiments by combining different feature

i=0

In the equation, P(i) represents the probability of grayscale
value i in the entire image.
3.1 Experiments for decision of window size

Three window sizes, namely 3x3, 5x5, and 7x7, are selected to
perform median filtering on the sugarcane image contaminated with
salt-and-pepper noise. The results are shown in Figure 11. It can be
observed that when using a 5x5 or 7x7 window for filtering, the
image becomes distorted due to the large window size. On the other
hand, the 3x3 filter size can effectively remove salt-and-pepper
noise while preserving image features. Therefore, this study adopts
a 3x3 filter size for median filtering.

d. 7x7 window filtering effect

Magnified view of the median filtering results with different window sizes

point extraction and description methods to
performance on the collected images. From these experiments, we
selected the best method as the baseline method. During the

compare their
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matching process, fast nearest neighbor search was used for feature
point filtering. Finally, the number of feature points extracted is
compared based on the time required for feature extraction and
matching, and the misalignment rate for different combinations of
methods, and evaluated their performance.

From Table 1, it can be observed that the ORB feature
extraction algorithm has the fastest speed but extracts fewer
effective feature points, resulting in a higher misalignment rate. On
the other hand, the SURF algorithm has a lower speed compared to
ORB but offers higher accuracy. When the SURF feature extraction
algorithm is combined with the FREAK descriptor, it retains more
effective feature points, ensuring both registration accuracy and
higher speed compared to the original algorithm. Therefore, the
combination of SURF and FREAK algorithms is selected as the
baseline method.

Table 1 Experimental data for comparing different feature
point extraction algorithms

Hessian
matrix ) Number of Time o
Combination threshold/ Coefficient feaFure consumed/ Misalignment
number of k points rate
feature before/after ms
points
0.25 3132/66 4218 None
SURFfSURF 2000 0.35 3132/203 4328 None
descriptor 0.45 3132/365 4062 None
0.55 3132/522 4422 Fewer
0.25 2000/15 2125 None
ORB+‘ORB 2000 0.35 2000/75 1594 Fewer
descriptor 0.45 2000/186 2812 Few
0.55 2000/318 1610 More
0.25 2719/83 2647 None
SURF+EREAK 2000 0.35 2719/252 2812 None
descriptor 0.45 2719/405 2875 Fewer
0.55 2719/549 2938 Few
0.25 2957/128 4735 None
SURF+BRISK 2000 0.35 2957/274 4954 None
descriptor 0.45 2957/437 4610 Fewer
0.55 2957/580 5156 Few
0.25 1520/14 1500 Fewer
ORB+FREAK 2000 0.35 1520/61 1750 Much more
descriptor 0.45 1520/164 1766 Much
0.55 1520/304 304 Much
0.25 1880/32 4156 Fewer
0RB+BRISK 2000 0.35 1880/123 3750 Few
descriptor 0.45 1880/236 3641 Much
0.55 1880/359 3641 Much

3.3 Experiment result of grid segmentation for feature
extraction
After comparing different feature extraction algorithms, the

"
>
2
8%,

'3

SUREF algorithm was selected for feature point extraction, combined
with the FREAK algorithm for feature point description. The results
of image feature extraction are shown in Figure 12, where the image
is in grayscale and the feature points are represented in color. As
shown in Figure 12, it can be observed that the extracted feature
points are clustered and unevenly distributed, mainly concentrated
in highly textured areas. Figure 13 shows the results of SURF
feature point extraction based on grid segmentation.

Figure 12 SURF

— A S

Figure 13 SURF and grid segmentation

3.4 Experiment result of image registration with secondary
filtering

The traditional SURF algorithm uses brute-force matching,
which generates many mismatched point pairs, as shown in
Figure 14. To address this issue, a preliminary filtering step is
performed by calculating the Hamming distance. This step helps
eliminate a large number of mismatched point pairs, as shown in
Figure 15. However, despite the preliminary filtering, some
mismatched point pairs still remain. To further improve the
matching results, the PROSAC algorithm is introduced. The final
matching results are shown in Figure 16, demonstrating the effecti-
veness of the proposed secondary filtering image registration method
in eliminating mismatched points during the stitching process.

Figure 14 Brute-force matching results



284  October, 2025 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 18 No. 5

o
>
L
S
o

™

Figure 16 Final matching results

3.5 Experiment result of image transformation and image pairs, a perspective transformation was applied to map the two
fusion images onto the same coordinate system.

After two rounds of filtering, the mismatched point pairs in the Two fusion algorithms were then employed to merge the

matching results were eliminated one by one, leaving only the transformed images. A local region of the fused images was

optimal set of matching point pairs, denoted as f,(x,y) and f,(x,»), selected for comparison, as shown in Figure 17. From the

between the two images. Using this optimal set of matching point highlighted region in Figure 17a, it can be observed that the image
Ghosting No ghosting

#3m
(e

OpenCV

RPN
OpenCV
SRR s

it

a. Fade-in and fade-out fusion method b. Best seam line fusion method

Figure 17 Comparison of fusion results

=10
]
=
s

OpencCV3

Figure 18 Final stitched image
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fused using the fade-in and fade-out fusion method exhibits
ghosting artifacts. However, the image fused using the best seam
line fusion method effectively resolves the ghosting issue. The final
stitched image is shown in Figure 18, which demonstrates the
successful fusion of the two images after the perspective
transformation and the application of the optimal fusion algorithm.
3.6 Comparison of image stitching speed and quality

To validate the improvement in stitching speed achieved by our
algorithm, we conducted a comparative experiment using randomly
selected sets of 10 sugarcane images. The algorithms with the
SUREF algorithm and the ORB algorithm are compared as shown in
Figure 19. As shown in Figure 19, it can be observed that the ORB
algorithm has the shortest runtime, while our algorithm has a
slightly longer runtime than the ORB algorithm, but is significantly
lower than the SURF algorithm. This is because our algorithm
focuses only on the repetitive regions for grid segmentation and
feature extraction, reducing the overall processing time.
Additionally, the PROSAC algorithm, used in our approach,
eliminates ineffective iterations compared to the RANSAC
algorithm, reducing the time required for the second filtering step.
The overall average stitching time using our improved algorithm is

reduced by 1314 ms compared to the unimproved SURF algorithm.

-+ SURF Ours ORB

4500 4218 B 4155 429 072 a115 900 go95 D11 4194
£ 4000
S 3500
g 3000 L 2960 3004 2827 2967 5764 2809 3201 5771 2988 2857
2 2500
=}
g 2000 2359 4309
1975 2155
£ 1500 1778 2023 1645 1736 1355 1823
ool L
0 1 2 3 4 5 6 7 8 9 10

Image group
Figure 19 Speed comparison of different algorithms for image
stitching

The final results of image stitching using different algorithms
are shown in Table 2, and the computation of IE is given by
Equation (4).

Table 2 Quality comparison of image stitching using different

algorithms
. IE
Algorithm
Group 1 Group 2
SURF 6.36 6.29
ORB 6.09 6.06
Ours 6.37 6.31

According to Table 2, it can be observed that the improved
algorithm yields significantly higher image entropy compared to the
ORB algorithm. Additionally, the overall stitching speed of the
algorithm is reduced by 1314 ms compared to the traditional SURF
algorithm, which is demonstrated effectively.

4 Conclusions

The excessive length of sugarcane poses a challenge in
obtaining a comprehensive image of the entire cane during
horizontal transportation, leading to reduced efficiency in cutting
and planting operations. To address this issue, this paper proposes
an improved image stitching algorithm based on the SURF
algorithm. The main results are as follows:

1) The artificial markers are introduced to extract sufficient
feature points for assisted matching, which can overcome the low

matching accuracy due to the smooth surface of sugarcane.

2) The mainstream feature extraction algorithms and
descriptors are introduced, and the SURF algorithm combined with
FREAK is selected as the basic algorithm based on experimental
results. Furthermore, to address the issue of slow image stitching
caused by the need to extract global image feature points and the
uneven distribution of feature points, this paper improves the SURF
algorithm by using the idea of grid segmentation. Experimental
results demonstrate that grid segmentation can significantly reduce
useless feature points and improve the speed of feature matching.

3) A secondary screening-based image registration method is
proposed to improve the issue of incorrect feature point matching.
To address the problem of overlapping during stitching, the paper
introduces the image fusion method using the best seam line and
verifies its effectiveness through experiments. The experimental
results show that the proposed algorithm achieves good results in
terms of stitching speed and quality, enabling high-quality and wide-
angle sugarcane image stitching.
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