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Abstract: This  paper  proposes  a  sugarcane  image  stitching  algorithm based  on  an  improved  SURF method  to  capture  high-
quality, wide-field images of complete sugarcane stalks. To enhance registration accuracy, artificial markers are introduced into
the background, helping to address the challenges posed by the smooth surface of sugarcane and low feature point  matching
precision.  Additionally,  a  mesh  segmentation  technique  combined  with  an  enhanced  SURF  algorithm  is  used  for  feature
extraction, which tackles issues such as uneven feature distribution and slow processing speed caused by global image feature
extraction.  A double screening registration method is  also proposed to further  improve the accuracy of  image mosaicing.  To
reduce stitching gaps, an image fusion technique based on the optimal suture line is employed. Experimental results show that
the algorithm has an average runtime of about 2900 ms, slightly longer than the ORB algorithm at 2000 ms but significantly
faster than the original SURF at 4200 ms. In terms of stitching quality, the average image information entropy is 6.34, which is
higher than both the SURF (6.325) and ORB (6.075) algorithms, indicating better image quality.
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 1    Introduction
Sugarcane  is  a  major  sugar  crop  widely  cultivated  in  tropical

and  subtropical  regions,  with  China  being  one  of  its  largest
producers.  Currently,  sugarcane  planting  in  China  involves  real-
time  cutting  and  pre-cutting  methods.  However,  the  complex  and
harsh working environment of agricultural machinery, coupled with
various  on-site  environmental  factors,  pose  challenges  to  the
accurate  and  efficient  sugarcane  identification  and  cutting.  In  the
field  of  sugarcane  planting  mechanization,  the  recognition
algorithm plays a pivotal role for sugarcane inspection and cutting.
It  needs  to  quickly  and  accurately  detect  the  sugarcane  nodes  in
complex  and  dynamic  working  environments,  as  the  speed  and
accuracy  of  recognition  directly  affect  the  performance  of  the
cutting machine.  Currently,  there are  several  machine vision-based
methods  developed  for  this  purpose.  Some  scholars[1-4]  utilize
manual feature extraction, such as gradients and colors, to recognize
sugarcane  stem  nodes.  However,  these  methods  requires  prior
knowledge  and  a  large  number  of  parameters,  resulting  in  poor
robustness.  More  recently,  references[5,6]  use  deep  learning-based
single-stage  object  detection  algorithms,  which  improves  the
accuracy and efficiency of the sugarcane stem recognition to some

extent. Despite these advancements, the relatively long overall size
of  sugarcane  poses  a  unique  challenge,  as  a  single  camera  cannot
capture  the  node  information  of  the  entire  sugarcane  due  to
insufficient  field  of  view.  This  limitation  necessitates  segmented
cutting,  resulting  in  relatively  low efficiency.  To  address  the  issue
of  insufficient  field  of  view,  image  stitching[7]  has  become  the
mainstream  method  due  to  its  unique  advantages  of  enabling  the
acquisition of complete visual information through the assembly of
multiple images captured from various perspectives. Image stitching
process  mainly  includes  image  preprocessing,  image  registration,
and fusion[8],  with image registration being the most critical aspect.
Based  on  different  registration  methods,  image  stitching  methods
can be divided into two types. One is region-based image stitching
methods,  which  mainly  uses  pixel  grayscale  information  to  find
similar  template  windows  for  matching,  such  as  template
matching[9],  phase  correlation[10],  and  extended  phase  correlation[11].
However,  region-based  image  stitching  methods  have  limited
applicability and high computational  complexity.  The other type is
feature-based  image  stitching,  which  is  more  efficient  and  robust,
utilizing  key  point  information  in  the  images  for  matching
exemplified  by  algorithms,  such  as  the  Harris  corner  detection[12],
Scale-invariant  Feature  Transform  (SIFT)[13],  Speeded  Up  Robust
Features (SURF)[14], etc.

Region-based image stitching methods are suitable for a limited
number  of  scenarios  and  often  involve  a  higher  computational
complexity  and  have  become  the  predominant  method  for  image
stitching  due  to  their  effectiveness.  Lee  et  al.[15]  proposed  a  large-
disparity  image  stitching  algorithm  based  on  warping  residuals  to
address  the  parallax  issue  caused  by  images  taken  from  different
planes, which existing stitching algorithms fail to solve. Bouchekara
et al.[16] addressed the issues of limited features and low resolution in
drone  images  by  proposing  an  object-based  four-stage  image
stitching  method,  which  overcomes  the  dependency  on  the  quality
of  feature  recognition  in  traditional  stitching  methods.  Daniel  et
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al.[17]  introduced  and  evaluated  four  new  global  image  stitching
algorithms,  achieving  the  fusion  of  high-noise  and  low-contrast
SEM  images.  Chen  et  al.[18]  proposed  a  drone  image  stitching
method  based  on  an  optimal  seam  blending  algorithm  and  semi-
projection  transformation  to  eliminate  deformation  and  angle
distortion  caused  by  image  registration.  This  method  effectively
preserves  the  original  information  of  the  images  and  achieves  the
desired  stitching  effect.  Subramanyam  et  al.[19]  proposed  a  hybrid
descriptor that effectively stitches multiple camera-captured ground
texture  images  using  defect  detection.  This  method  outperforms
existing  feature  descriptors  in  terms  of  matching  accuracy,
achieving a matching accuracy of 91% with an execution time of 49
milliseconds, enabling seamless stitching. Li et al.[20] proposed a pre-
alignment  image  stitching  method  for  a  scanning  imaging  system
based  on  Risley  prisms.  This  method  reduces  the  computational
complexity  of  feature  extraction  and  image  registration.  Huang  et
al.[21]  constructed  a  novel  convolutional  network  called  DPH-Net,
which  incorporates  depth  information  and  pixel-level  homography
estimation into image registration for image matching. Based on the
analysis above, image stitching is a promising method to effectively
obtain high-quality images of large objects that cannot be captured
within  the  limited  field  of  view  of  a  regular  industrial  camera.
Considering stitching quality and speed, in the case of the sugarcane
recognition  and  cutting  system,  this  study  focuses  on  refining
stitching methods to obtain high-quality, wide-field-of-view images
of complete sugarcane stalks.

 2    Materials and methods
 2.1    Image acquisition and preprocessing

To  improve  the  image  resolution  while  minimizing  the
hardware  demands,  we  employed  the  Mercury  series  MER-531-
20GC-P camera  from Daheng Imaging Co.  Ltd.,  equipped with  an
HN-0826-20M-C1/X1  fixed-focus  lens.  A  camera  polarizing  filter
(CPL) was added to the lens to eliminate glare and improve image

quality. Two LS200F-HW line scan LED light source from Daheng
Imaging were installed on both sides above the sugarcane,  parallel
to the axis of the sugarcane. Figures 1 and 2 illustrate the schematic
and  actual  setup  of  our  dual-camera  sugarcane  image  acquisition
system.
 
 

Sugarcane

Left camera Right camera

Figure 1    Schematic diagram of the dual-camera image
acquisition solution
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Figure 2    Actual setup of the dual-camera image
acquisition system

 

Due to the smooth surface and the presence of wax powder on
the sugarcane[22], it is prone to produce glare under the illumination
of  the  light  source.  We  mitigated  this  effect  with  the  polarizing
filter. The contrast of the images captured before and after installing
the  polarizing  filter  is  shown  in  Figure  3.  Artificial  markers  were
added to the background[23], enhancing the registration accuracy by provid-
ing high-contrast feature points for the SURF algorithm to detect.

 
 

Introduced

artificial markers Sugarcane

Introduced

artificial markers Sugarcane

a. Before b. After

Figure 3    Comparison images before and after installing the polarizing filter
 

Meanwhile,  filtering  can  effectively  remove  noise  generated
from  different  sources[18],  resample  the  entire  image,  and  extract
meaningful  feature  information.  In  image  processing,  median
filtering  can  effectively  suppress  random  noise  while  preserving
image  edge  information.  It  mainly  applies  the  theory  of  order
statistics to denoise the image. The process is shown in Formula (1):

Y(i, j) =Median(X(i, j)) (i, j) ∈ A (1)

X (i, j)
A Median()

where,    refers  to  pixel  values  of  the  points  in  the  template
window;   refers to the fixed-size template window; and 
is  a  median  function  which  returns  the  median  pixel  value  of  all

points within the template window.
The  variation  in  window  size  during  the  median  filtering

process significantly affects the filtering results. The window size is
selected through experiments.
 2.2    Feature point extraction and descriptors
 2.2.1    Feature extraction

1) SURF
The  SURF  algorithm  is  derived  from  the  Scale  Invariant

Feature  Transform (SIFT) algorithm, with the main difference that
the SURF introduces the concepts of integral images and box filters,
greatly reducing the computational time. The key steps of the SURF
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algorithm are shown in Figure 4.
The  SIFT  algorithm  detects  feature  points  by  constructing  a

Gaussian difference pyramid,  which is  a  computationally  intensive
and  time-consuming  process.  In  contrast,  the  SURF  algorithm
introduces  the  concept  of  integral  images  and  box  filters.  It
processes the input image using three types of box filters to obtain
an  approximation  of  the  Hessian  determinant.  To  ensure  good
rotational  invariance  of  the  selected  feature  points,  the  main

orientation  of  each  feature  point  needs  to  be  determined.  Unlike
SIFT,  which  uses  gradient  histograms  to  determine  the  main
orientation,  SURF  calculates  Haar  wavelet  features  within  a
neighborhood of radius 6 s (where s is the scale of the feature point)
around the feature point to determine the main orientation, as shown
in Figure 5. The horizontal and vertical Haar wavelet feature sums
are  computed  in  sector  regions  at  intervals  of  60°,  and  the  sector
with the highest sum determines the main orientation.

 
 

Constract hessian

matrix

Feature point 

positioning

Construct feature points

cardinal direction

Construct feature 

descriptors

Feature point 

matching

Figure 4    Key steps of the SURF algorithm
 
 
 

Figure 5    Main orientation of feature points
 

After  completing  the  aforementioned  steps,  it  is  necessary  to
generate  descriptors  for  the  feature  points  for  subsequent
registration  tasks.  Based  on  the  main  orientation  of  the  feature
points, a region with a side length of 20 s (where s is the scale of the
feature point) is selected in the vicinity of each feature point. Within
this region, the absolute values and orientations of the Haar wavelet
features are computed in 16 sub-regions. These results are in a total
of 16×4=64 parameters, as shown in Figure 6. Compared to SIFT’s
128-dimensional  descriptor  vector,  the  number  of  parameters  in
SURF is significantly reduced.
 
 

dx

dy

∑dx
∑|dx| 
∑dy
∑|dy| 

Figure 6    SURF feature point descriptors
 

2) ORB
The  ORB  algorithm[19]  is  a  feature  point  extraction  and

description algorithm that combines the FAST algorithm[20] with the
BRIEF algorithm[21].  It solves the problem of feature points lacking
scale  invariance  by  using  the  FAST  algorithm  to  detect  feature
points  at  different  levels  of  the  pyramid.  Additionally,  the  ORB
algorithm assigns a dominant orientation to each feature point. This
is  done  by  computing  the  position  of  the  intensity  centroid  within
the  neighborhood  box  of  the  feature  point.  The  direction  from the
feature  point  to  the  intensity  centroid  determines  the  dominant
orientation,  ensuring  that  the  feature  descriptors  have  rotational
invariance.

 2.2.2    Feature point descriptors
1) SURF descriptor
The  SURF  descriptor  is  a  64-dimensional  vector  obtained  by

computing Haar wavelet features in 16 sub-regions within a square
box  of  side  length  20  s  around  the  main  orientation  of  the  feature
point.

2) ORB descriptor
Due to the lack of scale invariance and rotational invariance in

the  descriptors  generated  by  the  BRIEF  algorithm,  the  ORB
algorithm addresses  these  issues  by  constructing  a  spatial  pyramid
and assigning a  main orientation to feature points.  This  effectively
solves  the  problems  in  BRIEF  and  ultimately  leads  to  the
development of the ORB descriptor.

3) BRISK descriptor
The  BRISK  descriptor  uses  a  uniform  sampling  pattern,  as

shown in Figure 7a (only the points on the first circle are displayed
for  clarity).  By  continuously  changing  the  radius  R  of  the
surrounding circle of a key point and performing uniform sampling,
a  512-bit  descriptor  is  obtained.  The  Hamming  distance  is  used  to
measure the similarity of the environmental information around two
feature points based on their descriptors.
 
 

a. BRISK b. FREAK

Figure 7    Sampling pattern of the BRISK and FREAK descriptor
 

4) FREAK descriptor
FREAK is also a binary descriptor that can be applied to all key

points detected by various algorithms such as SIFT, SURF, or ORB.
However,  in  FREAK,  the  sampling  density  increases  as  the  points
get  closer  to  the  center.  This  means  that  the  sampling  points  are
denser on the circles closer to the key point, as shown in Figure 7b.
The  FREAK  model  consists  of  seven  concentric  circles  centered
around the key point.
 2.3    Feature matching improvement

(1)  This  article  selects  the  SURF  algorithm  to  extract  image
feature points and uses the FREAK algorithm to describe the feature
points.  However,  the  extracted  feature  points  tend  to  cluster
together, resulting in uneven distribution and mainly concentrated in
highly textured areas. The clustering leads to two main issues: The
traditional  SURF  algorithm  extracts  feature  points  from  the  entire
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image. However, during the matching phase, only the feature points
that overlap between the reference and the stitched image are used.
Consequently,  feature  points  in  non-overlapping  regions  not  only
prolong the matching process and reduce efficiency, but also elevate
the risk of mismatching.

(2) The traditional SURF algorithm uses a brute force matcher
to compare the feature descriptor vectors of the first image with all
the  feature  descriptors  of  the  second  image.  The  pair  with  the
highest  similarity  (i.e.,  the  shortest  distance  between  the  two
descriptors)  is  selected  as  the  best  match.  However,  this  method
often  leads  to  a  large  number  of  incorrect  matches  due  to  the
symmetric  nature  of  image  structures,  resulting  in  low  image
registration accuracy.

To address problem (1), a grid-based feature detection method
in overlapping region was proposed, as shown in Figure 8.  Firstly,
the extracted feature points from the image are divided into several
equally  sized  grids.  The  grids  in  the  overlapping  region  are
extracted  as  the  regions  of  interest.  For  each  individual  grid,  the
SURF  algorithm  is  used  to  extract  feature  points,  and  the  top  n
feature  points  with  higher  feature  values  are  retained  (shown  as
green  feature  points  in  Figure  8).  Then,  the  image  is  divided  into
grids  and  feature  extraction  is  performed.  The  feature  points
retained  from  each  individual  grid  are  aggregated  to  form  a
complete  set  of  feature  points  for  the  entire  image.  Finally,  the
FREAK  algorithm  is  used  for  feature  description  using  binary
descriptors.
  

Reference image The image to be stitched

Enlarged view of 

a single mesh

Figure 8    Schematic diagram of feature extraction in overlapping
regions based on grid segmentation

 

To address  problem (2),  we  employ  a  second  screening-based
image  registration  method  to  reduce  the  chances  of  incorrect
matches  and improve  the  accuracy of  image registration.  Firstly,  a
coarse  filtering  is  performed  on  the  matching  points  based  on  the
Hamming  distance.  Then,  the  PROSAC  algorithm[24]  is  used  as  a
replacement for the RANSAC algorithm in the second filtering step
to improve the accuracy of image matching.

The  specific  process  of  PROSAC  is  shown  in  Figure  9.  This
method can exclude matching items with large differences between
descriptors during the filtering process, but a threshold needs to be
set  in  advance.  Since  the  difference  between  descriptors  varies
greatly  for  different  images,  this  paper  adopts  an  automatic
threshold  calculation  method  for  filtering.  Firstly,  the  Hamming
distance of all matching point pairs is calculated, and the minimum
distance  of  the  key  point  pairs  is  obtained.  Then,  the  Hamming
distance  of  all  matching  points  is  compared  with k  times dmin,  and
the matching items with a difference smaller than the threshold (i.e.,
k  times dmin) are retained. By introducing a threshold coefficient k,
the  problem  of  significantly  different  thresholds  between  different
images  is  effectively  solved,  allowing  the  algorithm  to  select  a
reasonable  threshold  based  on  its  own  image  characteristics
combined with the threshold coefficient.
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Figure 9    Flowchart of the PROSAC algorithm
 

 2.4    Image transformation and image fusion
After two rounds of filtering, the misaligned point pairs in the

matching  point  pairs  are  eliminated  one  by  one,  and  only  the
optimal matching point pairs set, fa(x,y) and fb(x,y), are retained. The
optimal homographic matrix H is then computed using the optimal
matching  point  pairs  set  to  perform  a  perspective  transformation,
mapping  the  two  images  onto  the  same  coordinate  system.  The
transformation process is shown in Equation (2): xb

yb

1

 = H

 xa

ya

1

 =
 h0 h1 h2

h3 h4 h5

0 0 1

 xa

ya

1

 (2)

where,  h0,  h1,  h3,  h4  represents  the  rotational  component  of  the
perspective  transformation,  and  h2,  h5  represents  the  translational
component of the perspective transformation.

In  practical  acquisition  systems,  the  images  stitched  are
captured by two cameras, and there are slight differences in camera
parameters.  The  captured  images  also  have  subtle  differences  in
grayscale  and  lighting  conditions.  After  stitching,  there  are  traces
left at the stitching positions of the overall image, so it is necessary
to  process  the  stitching  traces  through  image  blending.  A  fusion
algorithm is adopted to blend the images based on the optimal seam
line[25].  It  mainly  calculates  the  intensity  values  and  then  uses
dynamic  programming  to  find  the  optimal  path  with  the  highest
intensity values in the overlapping region, resulting in the best seam
line.  The  Sobel  operator  is  commonly  used  to  calculate  the
structural difference intensity, as shown in Equation (3):

Eg(x,y) = (Sx × (I1(x,y)− I2(x,y)))2 + (Sy × (I1(x,y)− I2(x,y)))2 (3)

where,  Sx  and  Sy  represent  the  horizontal  and  vertical  direction
Sobel operators.

Then,  through  the  dynamic  programming  approach,  the
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scanning is performed from top to bottom. The starting point of the
optimal seam line is set as the corresponding point in the first  row
of  pixels.  Then,  the  intensity  values  of  the  left,  middle,  and  right
points  in  the  next  row  are  calculated,  and  the  point  with  the

minimum intensity  value  is  selected  to  continue  the  iteration  until
the  last  row.  Finally,  the  line  with  the  minimum intensity  value  is
chosen  as  the  optimal  seam  line  for  image  fusion.  The  overall
process of image stitching is shown in Figure 10.
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Figure 10    Horizontal transport-based sugarcane image stitching method
 

 3    Experiment results and analysis
The experiments in this study were conducted on a PC machine

with an Intel (CITM) i7-9750 CPU, 16 GB of RAM, running a 64-
bit Windows 10 operating system. The programming software used
was PyCharm, and the programming language used was Python.

To evaluate the speed of image stitching, we use the time taken
for image stitching as the evaluation metric. Meanwhile, during the
stitching process, the evaluation of the stitching quality is primarily
based on visual observation, which is subjective and influenced by
personal  preferences.  Therefore,  this  paper  introduces  the  concept
of  image  entropy[26]  to  analyze  and  evaluate  the  stitched  images.
Image entropy is commonly used to assess the quality of processed
images and reflects the average amount of information in an image.
It  is  calculated  using  Equation  (4),  where  a  higher  entropy  value

indicates clearer texture details in the entire image.

IE = −
255∑
i=0

P(i)log2P(i) (4)

In  the  equation,  P(i)  represents  the  probability  of  grayscale
value i in the entire image.
 3.1    Experiments for decision of window size

Three window sizes, namely 3×3, 5×5, and 7×7, are selected to
perform median filtering on the sugarcane image contaminated with
salt-and-pepper noise. The results are shown in Figure 11. It can be
observed  that  when  using  a  5×5  or  7×7  window  for  filtering,  the
image becomes distorted due to the large window size. On the other
hand,  the  3×3  filter  size  can  effectively  remove  salt-and-pepper
noise while preserving image features. Therefore, this study adopts
a 3×3 filter size for median filtering.

 
 

a. Local enlarged image with salt and pepper noise b. 3×3 window filtering effect

c. 5×5 window filtering effect d. 7×7 window filtering effect

Figure 11    Magnified view of the median filtering results with different window sizes
 

 3.2    Experiments  for  feature  point  extraction  algorithms  and
descriptors comparison

We  conducted  experiments  by  combining  different  feature

point  extraction  and  description  methods  to  compare  their
performance  on  the  collected  images.  From these  experiments,  we
selected  the  best  method  as  the  baseline  method.  During  the
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matching process, fast nearest neighbor search was used for feature
point  filtering.  Finally,  the  number  of  feature  points  extracted  is
compared  based  on  the  time  required  for  feature  extraction  and
matching,  and  the  misalignment  rate  for  different  combinations  of
methods, and evaluated their performance.

From  Table  1,  it  can  be  observed  that  the  ORB  feature
extraction  algorithm  has  the  fastest  speed  but  extracts  fewer
effective feature points, resulting in a higher misalignment rate. On
the other hand, the SURF algorithm has a lower speed compared to
ORB but offers higher accuracy. When the SURF feature extraction
algorithm is  combined with the FREAK descriptor,  it  retains more
effective  feature  points,  ensuring  both  registration  accuracy  and
higher  speed  compared  to  the  original  algorithm.  Therefore,  the
combination  of  SURF  and  FREAK  algorithms  is  selected  as  the
baseline method.
  

Table 1    Experimental data for comparing different feature
point extraction algorithms

Combination

Hessian
matrix

threshold/
number of
feature
points

Coefficient
k

Number of
feature
points

before/after

Time
consumed/

ms

Misalignment
rate

SURF+SURF
descriptor 2000

0.25 3132/66 4218 None
0.35 3132/203 4328 None
0.45 3132/365 4062 None
0.55 3132/522 4422 Fewer

ORB+ORB
descriptor 2000

0.25 2000/15 2125 None
0.35 2000/75 1594 Fewer
0.45 2000/186 2812 Few
0.55 2000/318 1610 More

SURF+FREAK
descriptor 2000

0.25 2719/83 2647 None
0.35 2719/252 2812 None
0.45 2719/405 2875 Fewer
0.55 2719/549 2938 Few

SURF+BRISK
descriptor 2000

0.25 2957/128 4735 None
0.35 2957/274 4954 None
0.45 2957/437 4610 Fewer
0.55 2957/580 5156 Few

ORB+FREAK
descriptor 2000

0.25 1520/14 1500 Fewer
0.35 1520/61 1750 Much more
0.45 1520/164 1766 Much
0.55 1520/304 304 Much

ORB+BRISK
descriptor 2000

0.25 1880/32 4156 Fewer
0.35 1880/123 3750 Few
0.45 1880/236 3641 Much
0.55 1880/359 3641 Much

 

 3.3    Experiment  result  of  grid  segmentation  for  feature
extraction

After  comparing  different  feature  extraction  algorithms,  the

SURF algorithm was selected for feature point extraction, combined
with the FREAK algorithm for feature point description. The results
of image feature extraction are shown in Figure 12, where the image
is  in  grayscale  and  the  feature  points  are  represented  in  color.  As
shown  in  Figure  12,  it  can  be  observed  that  the  extracted  feature
points  are  clustered  and  unevenly  distributed,  mainly  concentrated
in  highly  textured  areas.  Figure  13  shows  the  results  of  SURF
feature point extraction based on grid segmentation.

 
 

Figure 12    SURF

 
 

Figure 13    SURF and grid segmentation
 
 3.4    Experiment  result  of  image  registration  with  secondary
filtering

The  traditional  SURF  algorithm  uses  brute-force  matching,
which  generates  many  mismatched  point  pairs,  as  shown  in
Figure  14.  To  address  this  issue,  a  preliminary  filtering  step  is
performed  by  calculating  the  Hamming  distance.  This  step  helps
eliminate  a  large  number  of  mismatched  point  pairs,  as  shown  in
Figure  15.  However,  despite  the  preliminary  filtering,  some
mismatched  point  pairs  still  remain.  To  further  improve  the
matching  results,  the  PROSAC  algorithm  is  introduced.  The  final
matching results are shown in Figure 16, demonstrating the effecti-
veness of the proposed secondary filtering image registration method
in eliminating mismatched points during the stitching process.

 
 

Figure 14    Brute-force matching results

　October, 2025 Zhou D Q, et al.　Sugarcane image stitching under transverse transport based on improved SURF algorithm Vol. 18 No. 5 　 283　



 

Figure 15    Matching results after preliminary filtering
 
 

Figure 16    Final matching results
 

 3.5    Experiment  result  of  image  transformation  and  image
fusion

After two rounds of filtering, the mismatched point pairs in the
matching  results  were  eliminated  one  by  one,  leaving  only  the
optimal  set  of  matching  point  pairs,  denoted  as  fa(x,y)  and  fb(x,y),
between  the  two  images.  Using  this  optimal  set  of  matching  point

pairs,  a  perspective  transformation  was  applied  to  map  the  two
images onto the same coordinate system.

Two  fusion  algorithms  were  then  employed  to  merge  the
transformed  images.  A  local  region  of  the  fused  images  was
selected  for  comparison,  as  shown  in  Figure  17.  From  the
highlighted region in Figure 17a, it can be observed that the image

 

Ghosting No ghosting

a. Fade-in and fade-out fusion method b. Best seam line fusion method 

Figure 17    Comparison of fusion results
 

Figure 18    Final stitched image
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fused  using  the  fade-in  and  fade-out  fusion  method  exhibits
ghosting  artifacts.  However,  the  image  fused  using  the  best  seam
line fusion method effectively resolves the ghosting issue. The final
stitched  image  is  shown  in  Figure  18,  which  demonstrates  the
successful  fusion  of  the  two  images  after  the  perspective
transformation and the application of the optimal fusion algorithm.
 3.6    Comparison of image stitching speed and quality

To validate the improvement in stitching speed achieved by our
algorithm, we conducted a comparative experiment using randomly
selected  sets  of  10  sugarcane  images.  The  algorithms  with  the
SURF algorithm and the ORB algorithm are compared as shown in
Figure 19. As shown in Figure 19, it can be observed that the ORB
algorithm  has  the  shortest  runtime,  while  our  algorithm  has  a
slightly longer runtime than the ORB algorithm, but is significantly
lower  than  the  SURF  algorithm.  This  is  because  our  algorithm
focuses  only  on  the  repetitive  regions  for  grid  segmentation  and
feature  extraction,  reducing  the  overall  processing  time.
Additionally,  the  PROSAC  algorithm,  used  in  our  approach,
eliminates  ineffective  iterations  compared  to  the  RANSAC
algorithm,  reducing the  time required  for  the  second filtering  step.
The overall average stitching time using our improved algorithm is
reduced by 1314 ms compared to the unimproved SURF algorithm.
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Figure 19    Speed comparison of different algorithms for image
stitching

 

The  final  results  of  image  stitching  using  different  algorithms
are  shown  in  Table  2,  and  the  computation  of  IE  is  given  by
Equation (4).
 
 

Table 2    Quality comparison of image stitching using different
algorithms

Algorithm
IE

Group 1 Group 2
SURF 6.36 6.29
ORB 6.09 6.06
Ours 6.37 6.31

 

According  to  Table  2,  it  can  be  observed  that  the  improved
algorithm yields significantly higher image entropy compared to the
ORB  algorithm.  Additionally,  the  overall  stitching  speed  of  the
algorithm is reduced by 1314 ms compared to the traditional SURF
algorithm, which is demonstrated effectively.

 4    Conclusions
The  excessive  length  of  sugarcane  poses  a  challenge  in

obtaining  a  comprehensive  image  of  the  entire  cane  during
horizontal  transportation,  leading  to  reduced  efficiency  in  cutting
and  planting  operations.  To  address  this  issue,  this  paper  proposes
an  improved  image  stitching  algorithm  based  on  the  SURF
algorithm. The main results are as follows:

1)  The  artificial  markers  are  introduced  to  extract  sufficient
feature  points  for  assisted  matching,  which  can  overcome  the  low

matching accuracy due to the smooth surface of sugarcane.
2)  The  mainstream  feature  extraction  algorithms  and

descriptors are introduced, and the SURF algorithm combined with
FREAK  is  selected  as  the  basic  algorithm  based  on  experimental
results.  Furthermore,  to  address  the  issue  of  slow  image  stitching
caused  by  the  need  to  extract  global  image  feature  points  and  the
uneven distribution of feature points, this paper improves the SURF
algorithm  by  using  the  idea  of  grid  segmentation.  Experimental
results  demonstrate  that  grid segmentation can significantly reduce
useless feature points and improve the speed of feature matching.

3)  A  secondary  screening-based  image  registration  method  is
proposed  to  improve  the  issue  of  incorrect  feature  point  matching.
To  address  the  problem  of  overlapping  during  stitching,  the  paper
introduces  the  image  fusion  method  using  the  best  seam  line  and
verifies  its  effectiveness  through  experiments.  The  experimental
results  show  that  the  proposed  algorithm  achieves  good  results  in
terms of stitching speed and quality, enabling high-quality and wide-
angle sugarcane image stitching.
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