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Abstract: Currently,  irrigation  decisions  in  coffee  cultivation  primarily  rely  on  empirical  knowledge,  resulting  in  inefficient
practices.  Combining  real-time  leaf  water  content  (LWC)  data  can  help  improve  the  accuracy  of  the  irrigation  planning.
Spectral remote sensing is a fast, reliable, and non-invasive method to detect vegetation moisture content. In this study, a model
to  estimate  the  LWC  of Coffea  arabica  L.  was  built  using  hyperspectral  reflectance  of  the  canopy  under  various  irrigation
levels.  For  this  purpose,  common  spectral  indices,  two-band  spectral  indices  [ratio  spectral  index  (RSI);  difference  spectral
index (DSI); and normalized difference spectral index (NDSI)], and three-band spectral indices were constructed. Feature bands
were extracted using the successive projections algorithm (SPA). Optimal spectral indices were extracted using the correlation
coefficient method, and the feature wavebands and spectral indices were combined into five datasets. These datasets were split
into  modeling  and  validation  datasets  by  sample  set  partitioning  based  on  the  joint x-y  distance  (SPXY)  algorithm.  A linear
model [partial least squares regression (PLSR)] and three non-linear models [support vector machine (SVM); extreme learning
machine (ELM); back propagation artificial neural network (BPANN)] were built to estimate LWC of Coffea arabica L. The
results indicated that the non-linear models surpassed the linear model. The accuracy was the highest when the modeling was
performed  using  the  dataset  combination  5.  Among  various  modeling  methods,  the  predictive  performance  of  ELM was  the
best (modeling dataset: R2=0.745, RMSE=2.241%, RRMSE=3.482%; validation dataset: R2=0.721, RMSE=2.142%, RRMSE=
3.364%). ELM outperformed PLSR, SVM, and BPANN in LWC retrieval. The obtained results indicated that the dataset built
by the combined use of different methods was superior to those from a single data source in accuracy. This study provides a
scientific  basis  for  the  quantitative  diagnosis  of  coffee  tree  water  status,  with  significant  implications  for  optimizing  field
irrigation management.
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 1    Introduction
Coffee is  an important  cash crop in Yunnan Province.  Coffee,

tea,  and  cocoa  are  the  most  abundant  beverages  worldwide,  and
coffee  is  the  most  popular  beverage  today[1].  Leaves  are  the  vital
constituent  of  the  plant  canopy  and  also  the  locale  where  major
biochemical  processes  take  place.  Leaf  water  content  (LWC) is  an
important  indicator  reflecting  the  overall  water  status  of  crops  and
can be used to guide crop irrigation[2,3]. The leaf sampling and drying
method  is  a  time-  and  labor-consuming  method  to  detect  LWC.
Besides,  this  method  is  destructive  and  unable  to  determine  the

LWC of coffee leaves in a fast, non-invasive, and real-time manner.
Leaf  sampling  and  drying  method  is  not  suitable  for  dynamic
monitoring  of  plant  LWC[4].  There  is  an  urgent  need  for  fast  and
accurate  LWC  estimation  in  coffee  leaves  to  inform  irrigation
regimens and water resource conservation[5].

Hyperspectral  remote  sensing  offers  the  benefits  of  fastness,
economic  efficiency,  and  non-invasiveness  in  target  detection  and
measures the spectral characteristics of plant canopy at wavelengths
ranging  from  350  to  2500  nm.  Spectra  in  the  near-infrared  region
(780-2500  nm)  are  more  sensitive  to  water  and  can  be  used  to
estimate the canopy water content. Spectra in the shortwave infrared
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region  (1300-2500  nm)  are  insensitive  to  noises  posed  by  the
internal  structure  of  leaves,  but  there  are  also  bands  that  are
sensitive to moisture. For this reason, this spectral region is suitable
for monitoring water content changes of plants[6].

According  to  previous  studies,  LWC  can  be  predicted  from
spectral  indices  by  leveraging  the  correlation  between  LWC  and
hyperspectral  reflectance.  It  is  generally  believed  that  wavebands
sensitive to crop water contents include 820, 950-970, 1200, 1450,
1600,  1940,  and  2500  nm[7].  The  water  index  (WI,  R900/R950)
constructed from the reflectance at the wavelengths of 900 nm and
950  nm  can  reflect  the  water  content  of  plants[8].  LWC  of  rice,
peanuts,  soybeans,  and  wheat  is  capable  of  being  well
prognosticated  using  the  ratio  between  WI  and  normalized
difference  vegetation  index  (NDVI)[9].  However,  due  to  the
influences  of  crop  type,  plant  age,  environmental  conditions,  and
growth  factors,  the  correlations  between  different  spectral  indices
and plant traits seem to vary. As a result, the wavelengths sensitive
to  the  same  parameter  to  be  retrieved  also  vary  for  different
plants[10-12].  The  spectral  indices  need  to  be  constructed  utilizing
reflectance  at  two  or  even  three  wavelengths  to  estimate  LWC  of
coffee leaves more reliably.

Extracting  characteristic  wavebands  can  help  mitigate  data
redundancy,  reduce  data  dimensions,  and  improve  the  modeling
efficiency.  In  previous  studies,  competitive  adaptive  reweighted
sampling  (CARS)  and  genetic  algorithm  (GA),  combined  or  not
combined  with  successive  projections  algorithm (SPA),  have  been
extensively  applied  to  feature  band  selection[13-15].  Nguyen  et  al.[16]

employed  GA  for  characteristic  band  selection  and  used  extreme
gradient boosting (XGBoost) to predict soil water content with high
accuracy.  However,  predictive  studies  on  LWC  of  coffee  trees
based  on  hyperspectral  imaging  have  been  scarce.  Building  a
dataset of characteristic bands using the feature extraction method is
of high importance for predicting LWC of coffee trees.

By  leveraging  the  correlation  between  LWC  and  spectral
reflectance,  researchers  may  choose  from  a  variety  of  modeling
methods  to  reveal  the  linear  and  non-linear  features  of  such
correlation.  Statistical  and  machine  learning  techniques  commonly
used for  the  above purpose  include  partial  least  squares  regression
(PLSR),  support  vector  machine  (SVM),  and  artificial  neural
network  (ANN)[17,18].  Independent  variable  construction  is  a  critical
step in the modeling process. Feature bands and vegetation indices
are  usually  chosen  as  independent  variables,  as  they  carry
information  on  reflectance  of  vegetation  in  different  wavebands,
which  in  turn  is  related  to  water  content.  To  verify  the  reliability
and universality of the models, researchers usually need to perform
water content retrieval on different datasets. It is considered highly
necessary in predicting LWC of coffee trees to enact the combined
use  of  statistical  and machine  learning  techniques  and on  different
datasets.

The present  study was conducted to solve the above problems
and  mainly  consisted  of  the  following  contents:  1)  Datasets  from
multiple  data  sources  were  built,  consisting  of  common  spectral
indices,  spectral  indices  utilizing  reflectance  at  two  and  three
wavelengths  constructed  in  this  study,  and  feature  bands;  2)  The
datasets were combined in different ways, and the combination with
a  higher  accuracy  was  chosen  for  modeling;  3)  Models  were
constructed  using  different  techniques,  including  PLSR,  SVM,
ELM, and back-propagation artificial neural network (BPANN) and
run  on  different  datasets.  The  model  performance  was  evaluated.
This  study  may  guide  the  dataset  combination  and  the  optimal
model determination for LWC retrieval of coffee trees.

 2    Materials and method
 2.1    Experimental design

Experiments  were conducted in  the greenhouse of  the College
of  Modern  Agricultural  Engineering,  Kunming  University  of
Science and Technology in Yunnan, China, from April 2022 to June
2023. The test base (102°51′49.5″E, 24°84′40.6″N) has an average
altitude of 1778.9 m and belongs to the subtropical plateau monsoon
climate. The annual average temperature is 21°C in the greenhouse
where the experiments were conducted, with a relative humidity of
45% to 70%. The typical red soil in the test base has a pH value of
6.5-7.5. The organic matter content is 15.05 g/kg; the total nitrogen,
phosphorus,  and  potassium  contents  are  0.87  g/kg,  0.68  g/kg,  and
13.9  g/kg,  respectively;  the  initial  contents  of  nitrate  nitrogen,
rapidly available phosphorus, and rapidly available potassium were
57.48  mg/kg,  12.61  mg/kg,  and  85.53  mg/kg,  respectively.  The
planting  area  of  coffee  trees  was  120  m2  (12  m×10  m),  and  four-
year-old  Arabica  coffee  trees  with  consistent  growth  status  were
chosen as research subjects (canopy diameter about 0.8 m and plant
height about 1.0 m). The trees were spaced apart by 0.8 m and the
rows  by  1.2  m.  Each  tree  occupied  an  area  of  0.96  m2.  Four
irrigation levels were set up by reference to previous studies[19]. That
was,  1.0  L/tree,  1.5  L/tree,  2.0  L/tree,  and 2.5  L/tree,  respectively,
and the irrigation cycle  was approximately once every seven days.
A  water-soluble  fertilizer  (N-P2O5-K2O,  20%-20%-20%)  was
applied  at  20  g/tree  through  a  fertigation  system.  Fertilization  was
conducted  five  times  during  the  experimental  period  (1  July  2022,
28 September 2022, 31 January 2023, 5 April 2023, 20 May 2023).
As shown in Figure 1,  the soil  water  content  monitored during the
experiment indicated that  the treatment had significant  differences.
Five replicates were set up for each irrigation level, and a total of 20
trees were included for the experiments. The choice of fertilization
regimen at each growth stage of coffee trees was based on existing
literature[20].
 
 

10

15

20

25

30

35

40

S
o
il

 w
a
te

r 
c
o
n
te

n
t/

%

Date

1.0 L∙tree−1 1.5 L∙tree−1

2.0 L∙tree−1 2.5 L∙tree−1

15
-J

un
-2

3

27
-M

ar
-2

3

6-
Ja

n-
23

18
-0

ct
-2

2

30
-J

ul
-2

2

Figure 1    The average soil water content in 0-40 cm soil layer
during the experimental period

 

 2.2    Measurement indicators and methods
 2.2.1    Spectral  data  acquisition  from  the  canopy  layer  of  coffee
trees

The canopy spectra were acquired using the SR-2500 portable
ground-object  spectroradiometer  (Spectral  Evolution,  Inc.  1  Canal
St.  Unit  B-1  Lawrence,  MA  01840  USA).  The  spectroradiometer
spans  a  wavelength  range  from  350  to  2500  nm  and  has  2151
channels. The spectral resolution in the wavelength range from 350
to  1000  nm  is  3.5  nm,  with  a  sampling  interval  of  1.4  nm;  the
spectral  resolution is  22 nm in the wavelength scope from 1000 to
2500 nm, with a sampling interval of 6 nm. The spectroradiometer’s
data output interval is 1 nm. A 1.5 m long-length optical fiber was
used  for  spectral  acquisition,  the  field  of  view  being  8°.  Canopy
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spectra  were  measured  at  10:00-14:00  local  time  on  sunny  and
cloudless  days  to  ensure  data  integrity  and  an  appropriate  solar
elevation  angle  for  the  acquisition.  Twenty  trees  were  measured
each time. The spectroradiometer was preheated for 40 min before
the  measurement  to  ensure  stability.  For  spectral  data  acquisition,
the fiber optic probe was directed straight down at the target from a
height of 1 m above the canopy. The range covered by the field of
view did not exceed the canopy. Ten spectral curves were acquired
for  each tree and averaged to obtain the spectral  reflectance of  the
canopy.  Before  each  measurement,  the  spectroradiometer  was
calibrated  using  the  standard  whiteboard.  The  time  for  spectral
measurement and sampling number are listed in Table 1.
  

Table 1    Time points for spectral data acquisition
Spectral measurement and sampling time Number of samples

August 3, 2022 20
November 1, 2022 20
March 1, 2023 20
May 19, 2023 20
June 20, 2023 20
Subtotal 100

 

 2.2.2    LWC determination
With  spectral  reflectance  of  the  coffee  tree  canopy  acquired,

LWC  was  determined  simultaneously  using  the  drying  method,
which  has  proved accurate  in  LWC measurement.  From each tree,
20 mature leaves with consistent size and shape and free from pests,
diseases,  and  mechanical  damage  were  collected  from  the  above
and below parts and in the periphery of the canopy. The leaves were
weighed using an electronic balance scale with a precision of 0.01,
and  the  fresh  leaf  mass  Fw  was  obtained.  Then  the  leaves  were
placed  into  an  oven  at  105°C for  30  min.  Finally,  the  leaves  were
dried at 80°C until reaching constant mass, and the dry leaf mass Dw

was determined. LWC is calculated by Equation (1):

LWC(%) =
Fw −Dw

Fw

×100 (1)

where,  LWC  is  the  leaf  water  content,  %;  Fw  is  the  leaf  fresh
weight, g; and Dw is the leaf dry weight, g.
 2.2.3    Leaf area index determination

The leaf  area index (LAI) was measured using a plant  canopy
analyzer  (Win  Scanopy,  Regent  Instruments  Inc.,  Canada)
immediately after the acquisition of hyperspectral data. This device
is  composed  of  a  high-definition  digital  camera,  a  hemispherical
fisheye  lens,  and  a  self-balancing  frame.  During  the  measurement,
the fisheye lens was placed 10 cm away from the tree trunk. After
horizontal  correction,  two  photos  were  taken  on  the  east  and  west
sides  of  the  tree,  respectively,  making  a  total  of  four  images.
Subsequently,  the  images  were  processed  through  a  dedicated
analysis software to calculate the LAI of the corresponding images.
The  average  value  of  the  four  images  was  taken  as  the  LAI  data
measurement of the coffee tree.
 2.3    Dataset construction
 2.3.1    Spectral data preprocessing and dataset splitting

Considering the influences of atmospheric moisture and noises
on  spectral  reflectance,  spectral  reflectance  data  in  the  wavelength
ranges  from  350  to  1349  nm,  1541  to  1799  nm,  and  1951  to
2449 nm (totaling 1848 wavelengths) were chosen for further study.
Disturbances  to  spectral  measurement  are  usually  caused  by  stray
lights and baseline drift,  which further interferes with spectral data
analysis.  In  this  study,  the spectral  data  were first  preprocessed by
multiplicative  scatter  correction  to  eliminate  spectral  variabilities
caused  by  different  scattering  levels,  thereby  enhancing  the
correlations between the spectrum and the data[21].

For the sake of representativeness and independence of dataset
splitting,  sample  set  partitioning  based  on  the  joint  x-y  distance
(SPXY)  algorithm[22]  was  employed  to  split  the  dataset  into  the
modeling dataset and the validation dataset at a ratio of 2:1.
 2.3.2    Common spectral indices

Spectral  indices  are  commonly  used  parameters  for  predicting
plant  water status through spectral  reflectance.  Based on published
studies, 18 spectral indices related to plant water status were chosen
for the research, as listed in Table 2.

 
 

Table 2    Conventional spectral indices to estimate LWC
Index number Moisture spectral index Expression References

1 Normalized Difference Moisture Index (NDWI) (R820 −R1240)/(R820 +R1240) [23]
2 Water Stress Index (MSI) R1600/R820 [24]
3 Moisture Index (WI) R900/R970 [25]
4 Moisture Band Index (WBI) R950/R900 [26]
5 Normalized Difference Vegetation Index (NDVI) (Rnir −Rred)/(Rnir +Rred) [27]
6 Simple Ratio Water Index (SRWI) R820/R1200 [28]
7 Normalized Difference Infrared Index (NDII) (R850 −R1650)/(R850 +R1650) [29]
8 Enhanced Vegetation Index (EVI) [2.5(Rnir −Rred)]/(1+Rnir +6Rred −7.5R460)] [30]
9 Ratio Index (RI) R1650/R2220 [31]
10 Hyperspectral Normalized Difference Vegetation Index (hNDVI) (R900 −R680)/(R900 +R680) [32]
11 Vegetation Dryness Index (VDI) (R970 −R900)/(R970 +R900) [25]
12 Normalized Difference Moisture Index (NDMI) (R1649 −R1722)/(R1649 +R1722) [33]
13 Normalized Heading Index (NHI) [(R1100 −R1200)/(R1100 +R1200)]/[(R850 −R670)/(R850 +R670)] [34]
14 Ratio Vegetation Index (SR) R900/R680 [35]
15 Photochemical Reflectance Index (PRI) (R570 −R531)/(R570 +R531) [36]
16 Shortwave Infrared Water Stress Index (SIWSI) (R858 −R1640)/(R858 +R1640) [37]
17 Normalized Difference Water Index (NDWI-h) (R1070 −R1200)/(R1070 +R1200) [38]
18 Moisture Index/ Normalized Index (WI/NDVI) [R900(R800 −R680)]/[R970(R800 −R680)] [39]

Note: The average reflectance in the wavelength range of 670±10 nm was represented by Rred and that in the wavelength range of 850±10 nm by Rnir.
 

 2.3.3    Construction of two-band spectral indices
Three forms of two-band spectral index were selected (Table 3).

The reflectance was measured at 1 nm wavelength intervals in each
of  the  three  wavelength  ranges,  namely,  350-1349  nm,  1401-
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1799  nm,  and  1951-2449  nm.  Two  reflectance  values  were
combined using the formula shown in Table 3.  Then,  a correlation
analysis  was  executed  among  the  spectral  indices  generated  using
this method and LWC.
 
 

Table 3    Spectral indices utilizing reflectance at two
wavelengths

Spectral index Abbreviation Expression Reference
Ratio spectral index RSI R1/R2 [33]
Normalized difference

spectral index NDSI (R1 −R2)/(R1 +R2) [33]

Difference spectral index DSI R1 −R2 [33]
Note: R1 and R2 were reflectance values at any two wavelengths within the ranges
of 350-1349 nm, 1401-1799 nm, and 1951-2449 nm.
 

 2.3.4    Construction of three-band spectral indices
Three-band  spectral  indices  were  established  based  on  those

two-band spectral indices plus a third wavelength (R3). The purpose
was to improve the modeling accuracy and resistance to disturbance
while reducing or eliminating spectral saturation that usually occurs
in  two-band  spectral  indices[40,41].  The  two  wavelengths
corresponding to the optimal spectral index (R1 and R2) were chosen
as  the  basis  for  constructing  the  three-band  spectral  indices.  The
latter  was  constructed  using  formulae  2  to  8,  respectively.
Variations  of  the  correlation  coefficient  between  the  three-band
spectral  indices  and  LWC with  the  changing  of R3 were  analyzed.
The  optimal  R3  was  determined,  along  with  the  optimal  form  of
three-band  spectral  index.  Seven  classic  forms  of  three-band
spectral indices[42] were calculated as follows:

(R1 −R2)/(R1 +R2 −R3) (2)

(R1 −R2 −R3)/(R1 +R2 +R3) (3)

(R1 −R2 +2R3)/(R1 +R2 −2R3) (4)

R1/(R2 +R3) (5)

(R1 +R3)/R2 (6)

(R1 −R3)/R2 (7)

(R1 −R3)/(R2 −R3) (8)

where, R3  is  the reflectance in any of the three wavelength ranges,
namely, 350-1349 nm, 1401-1799 nm, and 1951-2449 nm.
 2.3.5    Screening for feature bands

SPA  was  employed  for  feature  extraction  from  the
preprocessed  hyperspectral  data  of  the  canopy  to  identify
representative  wavelengths  for  modeling.  This  method  was
expected  to  promote  the  efficiency  and  precision  of  the  LWC
retrieval model.

SPA involves a vector projection analysis, which compares the
magnitude  of  projection  vectors  between  different  wavelengths[14].
The wavelength with the largest projection vector was chosen as the
candidate  wavelength,  and  the  characteristic  wavelengths  were
finally identified based on the correction model.

Let  the  initial  vector  for  iteration  be  xk(0),  the  variable  to  be
extracted  be  N,  and  the  spectral  matrix  have  J  columns.  The
algorithm consists of the following steps:

Use  the  hyperspectral  reflectance  dataset  as  the  modeling  set.
Choose  one  column (j-th  column)  of  the  spectral  matrix  randomly
from the modeling set. Assign the j-th column of the modeling set to

variable xj. Denote the value as xk(0).
Denote  the  set  comprising  of  the  positions  of  non-selected

column vector as S:

S = { j,1 ≤ j ≤ J, j < {k(0),k(1), . . . ,k(n−1)}} (9)

Calculate  the  projection  of  xj  with  respect  to  each  of  the
remaining column vectors:

Px j = x j − (xT
j · xk(n−1)) · xk(n−1) · (xT

k(n−1) · xk(n−1))−1, ( j ∈ s) (10)

Extract the wavelength k(n) with the largest projection vector:

k(n) = arg(max(∥px j∥)), j ∈ s (11)

j ∈ sLet xj=pxj,  , and calculate the cumulative sum of n. If n<N,
perform a cyclic calculation using Equation (9).

Finally,  establish  a  multiple  linear  regression  model  for  k(0)
and  N  in  each  cycle.  Implement  leave-one-out  cross-validation
(LOOCV)  to  screen  for  characteristic  wavelengths.  Calculate  the
root  mean  squared  error  of  cross-validation  (RMSECV)  for  the
modeling  set,  and  identify  the  candidate  subsets.  k(0)  and  N
corresponding  to  the  minimum  RMSECV  would  be  the  optimal
values.
 2.4    Model construction

Linear  and  non-linear  models  were  constructed  based  on  the
dataset  combination  consisting  of  common  spectral  indices,  two-
band spectral indices, three-band spectral indices, and feature bands.
Linear  model  was  built  using  partial  least  squares  regression
(PLSR). Non-linear models were built using support vector machine
(SVM),  extreme  learning  machine  (ELM),  and  back  propagation
artificial neural network (BPANN), respectively.
 2.4.1    Construction of a linear model

PLSR  is  an  integration  of  principal  component  analysis,
multiple  linear  regression  analysis,  and  least  squares  regression
method[15].  Input  variables  for  PLSR  are  compressed  into  several
latent  variables  (LVs).  Determining  the  number  of  LVs  is  an
essential  step  in  PLSR.  Here,  an  appropriate  number  of  LVs  was
chosen by cross-validation combined with the minimum RMSECV
principle.
 2.4.2    Construction of non-linear models

SVM  is  a  learning  system  that  utilizes  a  linear  function
hypothesis  in  a  high-dimensional  feature  space[41].  This  study
combined  cross-validation  with  grid  search  to  find  the  optimal
values  of  the  penalty  factor c  and  kernel  parameter g  in  the  SVM
model.  An  SVM  model  was  built  for  each  c  and  g,  and  the
RMSECV  was  calculated.  The  optimal  c  and  g  values  were
determined to construct a retrieval model based on SVM.

ELM  is  based  on  a  single-hidden  layer  feedforward  neural
network  and  has  the  benefits  of  high  learning  speed  and  strong
generalization performance[11]. ELM randomly generates connection
weights  and  thresholds  between  the  input  and  hidden  layers.  The
activation  function  residing  within  neurons  in  the  hidden  layer  is
Sigmoid  function  by  default.  The  initial  number  of  neurons  in  the
hidden layer was 5 for ELM training and increased stepwise to 50 at
an  increment  of  1.  Each  model  was  run  for  10  000  iterations.  The
optimal  number  of  neurons  was  determined,  and the  optimal  ELM
parameters were obtained.

BPANN  has  the  foundational  algorithm  of  gradient  descent,
and gradient search is implemented with the purpose of minimizing
average  value  squared  error  between  the  actual  and  forecasted
outputs  of  the  network[14].  In  this  study,  BPANN had  three  layers,
namely,  input  layer,  hidden layer,  and output  layer,  and the  model
parameters  were  optimized.  The  transfer,  training,  and  learning
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functions  of  BPANN  were  customization  options.  The  Sigmoid
function, a continuously differentiable non-linear function, was used
as  the  activation  function,  with  a  maximum step  size  of  10  000,  a
learning rate of  0.01,  a  learning goal  of  0.01 and learning rate and
momentum coefficient  of  0.01.  The steps  to  determine the number
of  neurons  in  the  hidden  layer  of  BPANN  were  consistent  with
those in ELM.
 2.5    Model evaluation indicators

The  model’s  accuracy  was  assessed  based  on  determination
coefficient  (R2),  root  mean  square  error  (RMSE),  and  relative  root
mean square error (RRMSE), as given below:

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − y)2

(12)

RMSE =

Õ
n∑

i=1

(ŷi − yi)
2

n
(13)

RRMSE = RMSE
ȳ

×100% (14)

yi ŷ ȳwhere,    is  the  measured  value;    is  the  predicted  value;    is  the
mean of the predicted value; n is the number of samples, i=1, 2, …,
n.  The  higher  the  correlation  coefficient  and  the  lower  the  RMSE,
the  higher  the  predictive  accuracy.  The  predictive  accuracy  was
considered very high when RRMSE was below 10%; the accuracy
was fairly high when RRMSE was above 10% and below 30%; the
accuracy was poor when RRMSE was above 30%.
 2.6    Analytical software

Spectral preprocessing was conducted using the Unscrambler X
10.4.  Statistical  analysis  and  plotting  were  carried  out  using
Microsoft  Excel,  SPSS,  and  Origin  2022.  Spectral  matrix
construction, correlation coefficient calculation, plotting of isolines
of  correlation  coefficient,  and  retrieval  model  construction  were
realized in Matlab 2020b.

 3    Results and analysis
 3.1    Descriptive statistics of LWC and sample splitting

Multiple comparisons were done for data acquired at each time
point  (p<0.05).  Generally  speaking,  the  LWC  increased
significantly  as  the  irrigation  level  increased.  LWC of  coffee  trees
varied significantly across the irrigation levels (Figure 2), indicating
that the design of irrigation regimens was reasonable.

Figure 3 shows the spectral  curves under each irrigation level.
It  can  be  seen  that  the  hyperspectral  reflectance  was  lower  in  the
range from 400 to 720 nm, and the reflectance was not significantly
correlated  with  the  irrigation  level,  either  positively  or  negatively.
At  around  720  nm,  as  the  irrigation  level  increased,  the  spectral
curve  showed  a  redshift,  indicating  a  better  growth  status;  the
determination  of  leaf  area  index  could  also  confirm  this
phenomenon (Figure 4). In the near-infrared region (780-1350 nm),
the reflectance of the hyperspectral curve varies in direct proportion
to  the  amount  of  irrigation  per  plant.  The  differences  in  the
hyperspectral  curves  under  different  irrigation  levels  in  the  near-
infrared  region  (1450-2450  nm)  might  be  attributed  to  the
influences of atmospheric moisture and soil background.

A  total  of  100  groups  of  leaf  samples  were  collected  in  the
course  of  the  experiments.  The  data  were  split  into  modeling  and

validation  datasets,  whose  sample  sizes  were  67  and  33,
respectively.  Descriptive statistics  of  each LWC sample set  can be
found  in  Table  4.  The  statistical  results  on  the  modeling  and
validation datasets obtained by SPXY were comparable to those on
the  entire  LWC  sample  set.  The  numerical  range  of  the  modeling
dataset encompassed that of the validation dataset, thereby ensuring
the representativeness of the sample sets.
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Figure 2    LWC at different irrigation levels during the
experimental period
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Table 4    Descriptive statistics of LWC of coffee trees

Dataset Sample
size

Maximum
value/%

Minimum
value/%

Mean
value/%

Standard
deviation/%

Complete dataset 100 73.93 54.23 64.13 4.19
Modeling dataset 67 73.93 54.23 64.64 4.56
Validation dataset 33 71.12 58.66 63.69 3.12

 

 3.2    Dataset construction based on spectral indices and feature
bands
 3.2.1    Screening of common spectral indices

Eighteen common spectral  indices were chosen and estimated,
and  the  Pearson  correlation  coefficients  between  LWC  of  coffee

　October, 2025 Liu X G, et al.　Coffea arabica L. leaf water content estimation using hyperspectral reflectance Vol. 18 No. 5 　 291　



trees  and  the  spectral  index  were  computed.  The  correlation
coefficient  heatmap  of  the  common  spectral  indices  vs.  LWC  of

coffee  trees  was  shown  in  Figure  5.  The  spectral  index  most
significantly correlated to LWC of coffee trees was selected.
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Figure 5    Correlation coefficient heatmap of the common spectral indices vs. LWC of coffee trees
 

As shown in Figure  5,  except  for  MSI,  NDII,  RI,  NDMI,  and
SIWSI,  the  correlation  coefficients  between  other  spectral  indices
and LWC all passed the significance test of 0.05 or 0.01. Among the
18 spectral indices, four spectral indices with the highest correlation
coefficients  were  selected  as  part  of  the  model  input  variables.
These  spectral  indices  were  NDVI  (0.492),  hNDVI  (0.486),  SR
(0.532), and PRI (–0.504).
 3.2.2    Construction and screening of two-band spectral indices

To  build  two-band  spectral  indices,  this  study  combined
wavelengths  pairwise  and  analyzed  the  correlation  coefficients
between LWC and the spectral indices utilizing reflectance at a pair
of  wavelengths  (DSI,  RSI,  and  NDSI).  Isolines  of  the  correlation

coefficient were plotted (Figure 6). Based on Figure 6, for DSI, RSI,
and NDSI, the top five spectral indices with the highest correlation
coefficient  were  chosen  as  the  optimal  indices,  respectively.  As
shown in Table 5, the three forms of spectral indices were sensitive
to  similar  wavelength  ranges,  that  is,  550-1200,  1300-1700,  and
2050-2300 nm. The maximum correlation coefficient was observed
with DSI (540 nm, 700 nm), the value being 0.58. It was indicated
that the accuracy of retrieving LWC of coffee trees using the dataset
of  two-band  spectral  indices  was  higher  and  the  correlation  with
LWC was stronger. The two-band spectral indices with the top five
correlation coefficients with LWC were selected to participate in the
construction of the dataset (Table 5).
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Figure 6    Correlation coefficient between the three forms of two-band spectral indices and LWC
 
 
 

Table 5    Waveband combinations of spectral indices with the
top 5 correlation coefficients

Spectral index Selected wavelength combinations/nm
DSI (540, 700), (537, 578), (831, 834), (760, 486), (761, 467)
RSI (758, 755), (749, 735), (763, 732), (744, 739), (758, 746)
NDSI (831, 834), (540, 573), (556, 701), (723, 717), (2176, 702)

 

 3.2.3    Construction and screening of three-band spectral indices
R1  and  R2  were  reflectance  at  540  nm  and  700  nm,  the  two

wavelengths corresponding to the optimal DSI identified in Section
2.2.2,  respectively.  Reflectance  was  stepping  successively  in  three

waveband ranges, namely, 350-1349 nm, 1401-1799 nm, and 1951-
2449  nm,  as  the  value  of  R3  in  the  three-band  spectral  index.
Different forms of three-band spectral indices were calculated using
Equations (2) to (8). Correlation coefficient curves (absolute value)
between  the  spectral  indices  and  LWC  are  listed  in  Figure  7.
(R1+R3)/R2,  (R540, R700, R2176)  and  (R1–R3)/(R2–R3)  (R540, R700, R466)
had the highest performance among all three-band spectral indices.
Their  correlation  coefficients  with  LWC  were  0.586  and  0.602,
respectively,  and  both  were  higher  compared  with  those  for  two-
band spectral indices. Therefore, these two indices were included in
the dataset for retrieving LWC of coffee trees.

　292 　 October, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 5　

https://www.ijabe.org


 

a. (R1–R2)/(R1+R2–R3) b. (R1–R2–R3)/(R1+R2+R3) c. (R1–R2+2R3)/(R1+R2–2R3) 

d. R1/(R2+R3) e. (R1+R3)/R2

g. (R1–R3)/(R2–R3) 

f. (R1–R3)/R2
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Figure 7    Correlation coefficient curves between the three-band spectral indices and LWC of coffee trees
 

 3.2.4    Screening  for  wavelengths  sensitive  to  LWC  based  on
feature extraction method

Feature bands were identified by using SPA, and their positions
are  shown  in  Figure  8.  The  eight  feature  bands  were  721  nm,
981  nm,  1252  nm,  1283  nm,  1733  nm,  2257  nm,  2320  nm,  and
2414 nm. As shown in Figure 9, RMSECV first decreased and then
increased as the number of variables increased. When the number of
variables exceeded eight (indicated by the red block), the RMSECV
did not reduce as the number of variables increased. SPA maximally
compressed  the  spectral  data,  and  the  feature  bands  accounted  for
0.43% of the full spectrum.
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Figure 9    RMSECV under different numbers of variables

 3.2.5    Results of dataset combinations
Different  datasets  were  generated  using  different  methods:

common  spectral  indices,  two-band  spectral  indices,  three-band
spectral  indices,  and  feature  bands  identified  by  SPA.  These
datasets  were  combined  in  different  ways  to  obtain  different
combinations, as listed in Table 6.
 
 

Table 6    Dataset combinations based on different methods
Index
number Different methods dataset combination Number

of variables

1 Common spectral indices, two-band spectral indices,
three-band spectral indices 21

2 Common spectral indices, three-band spectral indices,
feature bands 14

3 Two-band spectral indices, three-band spectral indices 17

4 Two-band spectral indices, three-band spectral indices,
feature bands 25

5 Common spectral indices, two-band spectral indices,
three-band spectral indices, feature bands 29

 

 3.3    Construction and evaluation of models for LWC retrieval
The datasets in Table 6 were used as independent variables for

modeling, and a linear model (PLSR) and non-linear models (SVM,
ELM,  and  BPANN)  were  constructed  for  regression  analysis.  The
model’s  accuracy  and  reliability  were  assessed.  The  calculation
results using different dataset combinations are listed in Table 7. It
is  easy  to  see  that  the  linear  model  was  inadequate  for  estimating
the  LWC of  coffee  trees,  with  an R2  ranging  from 0.469  to  0.618.
There  was  a  certain  gap  in  accuracy  compared  with  non-linear
models.  Among  the  four  non-linear  models,  ELM  displayed  a
higher  accuracy  on  both  the  modeling  and  validation  datasets.  As
for  the  modeling  results  using  different  datasets,  the  accuracy  was
the  highest  when  the  prediction  was  conducted  using  the  ELM
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model  on  dataset  combination  5  (a  dataset  combination  consisting
of  the  common  spectral  indices,  two-band  spectral  indices,  three-
band  spectral  indices,  and  feature  bands).  The  R2,  RMSE,  and
RRMSE  of  validation  dataset  using  the  ELM  model  on  dataset
combination  5  were  0.721,  2.142%,  and  3.364%,  respectively.
There was a dramatic improvement of accuracy compared with the
linear model PLSR and other non-linear models. The scatter plots of

predicted  and  measured  values  using  the  ELM  model  on  dataset
combination 5 are shown in Figure 10. The slopes of the fitted lines
were  0.745  and  0.721,  respectively.  Besides,  the  data  points  were
distributed  mainly  below  and  above  the  1:1  line  in  a  uniform  and
compact manner for both the modeling and the validation datasets.
Thus,  the  model  had  a  high  goodness-of-fit  and  hence  a  high
predictive accuracy for LWC of coffee tree.

 
 

Table 7    Prediction results using different methods on different datasets for LWC retrieval

Dataset Modeling methods
Modeling dataset Validation dataset

Parameters
R2 RMSE/% RRMSE/% R2 RMSE/% RRMSE/%

Combination 1

PLSR 0.544 3.094 4.805 0.555 2.276 3.578 LVs=14
SVM 0.486 3.350 5.203 0.575 2.055 3.231 c=119.42 g=0.001
ELM 0.659 2.679 4.160 0.624 2.365 3.718 NHLs=28

BPANN 0.664 3.429 5.326 0.663 3.258 5.121 NHLs=24

Combination 2

PLSR 0.458 3.280 5.111 0.567 2.319 3.621 LVs=13
SVM 0.448 3.338 5.202 0.728 1.862 2.907 c=0.6156 g=0.0825
ELM 0.615 2.765 4.321 0.610 2.283 3.989 NHLs=22

BPANN 0.650 2.651 4.131 0.637 2.659 4.152 NHLs=8

Combination 3

PLSR 0.470 3.199 4.972 0.469 2.661 4.179 LVs=8
SVM 0.495 3.145 4.887 0.512 2.546 3.998 c=3.7321 g=0.0103
ELM 0.674 2.509 3.898 0.602 2.889 4.537 NHLs=23

BPANN 0.666 2.560 3.978 0.565 2.602 4.086 NHLs=6

Combination 4

PLSR 0.514 3.224 5.018 0.511 2.431 3.805 LVs=10
SVM 0.578 3.054 4.753 0.630 2.161 3.382 c=3.0314 g=0.0385
ELM 0.613 2.876 4.477 0.612 2.446 3.827 NHLs=11

BPANN 0.685 2.894 4.505 0.623 2.954 4.622 NHLs=19

Combination 5

PLSR 0.630 2.697 4.190 0.618 2.764 4.342 LVs=20
SVM 0.552 3.028 4.704 0.414 3.152 4.951 c=0.8706 g=0.0412
ELM 0.745 2.241 3.482 0.721 2.142 3.364 NHLs=26
BPANN 0.715 2.440 3.790 0.669 2.167 3.403 NHLs=5

Note: LVs represents the number of latent variables; c and g are the penalty factor and the kernel parameter of SVM, respectively; NHLs represents the number of hidden
layer neurons.
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Figure 10    Relationship between the measured and predicted
values of LWC

 

 4    Discussion
Water  is  an  essential  component  of  the  coffee  tree  canopy,

involved  in  coffee  photosynthesis  and  respiration,  and  has  a
momentous impact on the formation of eventual products. LWC of
coffee  trees  was  estimated  from  hyperspectral  reflectance  in  this
study.  Reflectance  of  canopy  in  the  visible  region  (VIS,  400-
780 nm) and the near-infrared region (NIR, 780-1300 nm) was more
greatly affected by the leaf structure and water content of canopy. In
the VIS region, the reflectance of canopy decreased as the irrigation

level of a single tree increased. The reason may be that the lack of
irrigation  induced  drought  stress  in  coffee  trees,  which  further
reduced  the  free  water  content  of  leaves  but  increased  the  bound
water  content  of  leaves.  As  a  result,  the  leaf  area  and  chlorophyll
content  decreased,  accompanied  by  variations  in  the  spectral
reflectance  of  canopy[43].  In  the  NIR  region,  the  reflectance  of
canopy  increased  as  the  irrigation  level  of  a  single  tree  increased.
This  is  because  as  the  irrigation  level  increased,  the  plant  height,
chlorophyll  content,  and  net  photosynthetic  rate  increased,  leading
to a significant increase in canopy reflectance. Under each irrigation
level,  the  reflectance  varied  in  the  green  region  (G,  490-560  nm)
and the red region (R, 620-680 nm). The fluctuation was even more
significant  in  the  crest  of  green light  (at  about  555 nm) and in  the
trough of red light (at about 672 nm), which can be attributed to the
absorption characteristics of chlorophyll[44].

Existing studies have shown that a single spectral reflectance is
inadequate  for  accurately  estimating  plant  water  status  due  to  the
strong  reflection  of  radiant  energy  from  fresh  leaf  surface  and
lamellar  hair  and  the  unique  structures  of  leaf  surface  and  leaf
cuticles[45].  Constructing spectral indices is a better way to measure
the spectral reflectance of plants, as spectral indices can reduce the
scattering  effect  at  a  single  wavelength  and  hence  increase  the
prediction  accuracy[46].  This  study  built  new  spectral  indices  by
combining  reflectance  at  two  wavelengths.  For  RSI,  NDSI,  and
DSI,  the  top  five  spectral  indices  with  the  highest  correlation
coefficient with LWC were selected to form the dataset of two-band
spectral  indices,  respectively.  However,  spectral  saturation  may
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occur  in  these  spectral  indices.  By  contrast,  three-band  spectral
indices  contained  fewer  noises[47]  and  had  a  stronger  resistance  to
spectral  saturation[48].  The  optimal  DSI  (at  540  and  700  nm)  was
determined  and  served  as  the  basis  for  establishing  three-band
spectral  indices,  which were (R1+R3)/R2  (R540, R700, R2176)  and (R1–
R3)/(R2–R3)  (R540, R700, R466)  according  to  this  analysis.  The  latter
had  higher  correlation  coefficients  with  LWC  than  the  former,
therefore  carrying  fewer  noises  and  displaying  more  robust
predictive  performance  for  LWC  of  coffee  trees.  To  ensure  the
completeness  of  information  contained  in  independent  variables,
this  study combined the datasets  of  common spectral  indices,  two-
band spectral indices, three-band spectral indices, and feature bands
identified by SPA. While most studies only used a single source of
data  to  predict  LWC  of  plants[49,50],  this  study  built  a  dataset  from
multiple  sources,  which  involved  the  combined  use  of  several
methods.  Compared  with  datasets  built  by  using  a  single  method,
the  method  in  this  paper  dramatically  improved  the  model’s
predictive accuracy.

To estimate LWC based on spectral reflectance, this study built
PLSR,  SVM,  ELM,  and  BPANN  models,  which  were  run  on  the
five  datasets,  respectively.  The  modeling  performance  was  highly
differential  on  different  datasets  (Table  7),  given  the  varying  sizes
of  the  datasets  built  by  different  methods.  A  larger  dataset  helped
reduce  overfitting  and  improved  the  model’s  generalization
capacity.  Both  linear  and  non-linear  models  had  a  better
performance  when  the  datasets  of  common  spectral  indices,  two-
band spectral indices, three-band spectral indices, and feature bands
were  combined  together.  The  predictive  accuracy  was  compared
across  different  datasets.  Underfitting  occurred  when  SVM  was
used  for  prediction  on  dataset  combination  2.  SVM  performed
poorly  compared  to  other  models  on  dataset  combination  5,
probably  due  to  unreasonable  optimal  parameters  found  by  grid
search  in  SVM.  Of  all  four  models,  the  ELM model  had  the  best
predictive  performance  for  LWC.  During  the  modeling  and
validation  processes, R2  of  the  ELM  model  was  0.745  and  0.721,
RMSE  was  2.241%  and  2.142%,  and  RRMSE  was  3.482%  and
3.364%,  respectively.  All  of  the  performance  evaluation  indicators
of  the  ELM  model  were  better  than  those  of  PLSR,  SVM,  and
BPANN.  This  is  because  the  ELM  model  has  the  advantages  of
fewer  training  parameters,  higher  learning  speed,  and  more  robust
generalization capacity than other models. Studies have shown that
ELM  is  a  reliable  modeling  method[51-53],  and  it  is  also  found  that
ELM outperformed other  models  in  LWC retrieval  of  coffee trees.
The  non-linear  correlation  between  the  spectral  reflectance  and
LWC might  cause  the  inferiority  of  the  linear  model  PLSR.  Non-
linear  models,  such  as  SVM  and  BPANN,  place  higher
requirements  on  sample  size  and  feature  dimensions,  and  hence
there  is  a  greater  need  for  more  adjustments  during  parameter
selection.  This  may be  one reason for  the  lower  accuracy of  SVM
and BPANN compared with ELM[54,55].

This  study  focuses  on  LWC  as  the  research  target,  without
considering  the  influence  of  other  canopy  parameters  on  spectral
information. Sensitivity analysis using the canopy radiative transfer
model  PROSAIL  demonstrates  that  parameters  including  canopy
leaf  area  index,  leaf  pigments  (chlorophyll,  carotenoids),  and  leaf
dry  matter  content  significantly  affect  the  canopy  reflectance[56].
Therefore,  to  weaken  the  impact  of  other  canopy  parameters,  this
research employed conventional spectral indices, two-band spectral
indices,  three-band spectral  indices,  and characteristic  wavelengths
to  construct  the  dataset.  The  best-of-breed  LWC prediction  model
was  established  based  on  dataset  and  machine  learning.  However,

some  limitations  are  still  left  unresolved.  The  present  study  was
only  conducted  in  Kunming,  China  and  in  only  a  single  coffee
variety. Whether the LWC retrieval model constructed in this study
is equally applicable to LWC estimation of other coffee varieties in
other regions remains to be further verified. Future research should
continue  to  analyze  and  attempt  to  eliminate  interference  factors
present  in  the  spectral  remote  sensing  process.  Subsequently,  the
proposed method should be optimized for different coffee varieties
across various regions, so as to obtain an LWC retrieval model for
coffee trees with higher universality. Such models provide essential
information  for  coffee  growth,  drought  monitoring,  and  technical
support for improving coffee yield.

 5    Conclusions
1)  The  NIR  region  (780-1300  nm)  was  sensitive  to  LWC  of

coffee  trees,  and  the  reflectance  in  this  region  varied  significantly
under  different  irrigation  levels.  As  the  irrigation  level  per  coffee
tree  increased,  the  spectral  curve  showed  a  redshift,  indicating  a
better growth status.

2)  Datasets  generated  using  different  methods  were  combined
in different manners. It was found that the combination of optimized
common  spectral  indices,  two-band  spectral  indices,  three-band
spectral  indices,  and  feature  bands  resulted  in  higher  accuracy  of
LWC  retrieval  compared  with  datasets  from  a  single  data  source,
and the model’s predictive performance was also better.

3)  Linear  and  non-linear  models  were  run  on  different  dataset
combinations, and the predictive accuracy was compared. The most
satisfactory  performance  was  observed  with  ELM,  among  all
models  (modeling  dataset:  R2=0.745,  RMSE=2.241%,
RRMSE=3.482%;  validation  set:  R2=0.721,  RMSE=2.142%,
RRMSE=3.364%).
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