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Abstract: Currently, irrigation decisions in coffee cultivation primarily rely on empirical knowledge, resulting in inefficient
practices. Combining real-time leaf water content (LWC) data can help improve the accuracy of the irrigation planning.
Spectral remote sensing is a fast, reliable, and non-invasive method to detect vegetation moisture content. In this study, a model
to estimate the LWC of Coffea arabica L. was built using hyperspectral reflectance of the canopy under various irrigation
levels. For this purpose, common spectral indices, two-band spectral indices [ratio spectral index (RSI); difference spectral
index (DSI); and normalized difference spectral index (NDSI)], and three-band spectral indices were constructed. Feature bands
were extracted using the successive projections algorithm (SPA). Optimal spectral indices were extracted using the correlation
coefficient method, and the feature wavebands and spectral indices were combined into five datasets. These datasets were split
into modeling and validation datasets by sample set partitioning based on the joint x-y distance (SPXY) algorithm. A linear
model [partial least squares regression (PLSR)] and three non-linear models [support vector machine (SVM); extreme learning
machine (ELM); back propagation artificial neural network (BPANN)] were built to estimate LWC of Coffea arabica L. The
results indicated that the non-linear models surpassed the linear model. The accuracy was the highest when the modeling was
performed using the dataset combination 5. Among various modeling methods, the predictive performance of ELM was the
best (modeling dataset: R>=0.745, RMSE=2.241%, RRMSE=3.482%; validation dataset: R*=0.721, RMSE=2.142%, RRMSE=
3.364%). ELM outperformed PLSR, SVM, and BPANN in LWC retrieval. The obtained results indicated that the dataset built
by the combined use of different methods was superior to those from a single data source in accuracy. This study provides a
scientific basis for the quantitative diagnosis of coffee tree water status, with significant implications for optimizing field

irrigation management.
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1 Introduction

Coffee is an important cash crop in Yunnan Province. Coffee,
tea, and cocoa are the most abundant beverages worldwide, and
coffee is the most popular beverage today'. Leaves are the vital
constituent of the plant canopy and also the locale where major
biochemical processes take place. Leaf water content (LWC) is an
important indicator reflecting the overall water status of crops and
can be used to guide crop irrigation®”. The leaf sampling and drying
method is a time- and labor-consuming method to detect LWC.
Besides, this method is destructive and unable to determine the
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LWC of coffee leaves in a fast, non-invasive, and real-time manner.
Leaf sampling and drying method is not suitable for dynamic
monitoring of plant LWC!. There is an urgent need for fast and
accurate LWC estimation in coffee leaves to inform irrigation
regimens and water resource conservation®.

Hyperspectral remote sensing offers the benefits of fastness,
economic efficiency, and non-invasiveness in target detection and
measures the spectral characteristics of plant canopy at wavelengths
ranging from 350 to 2500 nm. Spectra in the near-infrared region
(780-2500 nm) are more sensitive to water and can be used to
estimate the canopy water content. Spectra in the shortwave infrared
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region (1300-2500 nm) are insensitive to noises posed by the
internal structure of leaves, but there are also bands that are
sensitive to moisture. For this reason, this spectral region is suitable
for monitoring water content changes of plants™.

According to previous studies, LWC can be predicted from
spectral indices by leveraging the correlation between LWC and
hyperspectral reflectance. It is generally believed that wavebands
sensitive to crop water contents include 820, 950-970, 1200, 1450,
1600, 1940, and 2500 nm™. The water index (WI, Rggo/Rosg)
constructed from the reflectance at the wavelengths of 900 nm and
950 nm can reflect the water content of plants®. LWC of rice,
peanuts, soybeans, and wheat is capable of being well
prognosticated using the ratio between WI and normalized
difference vegetation index (NDVI)®. However, due to the
influences of crop type, plant age, environmental conditions, and
growth factors, the correlations between different spectral indices
and plant traits seem to vary. As a result, the wavelengths sensitive
to the same parameter to be retrieved also vary for different
plants"*". The spectral indices need to be constructed utilizing
reflectance at two or even three wavelengths to estimate LWC of
coffee leaves more reliably.

Extracting characteristic wavebands can help mitigate data
redundancy, reduce data dimensions, and improve the modeling
efficiency. In previous studies, competitive adaptive reweighted
sampling (CARS) and genetic algorithm (GA), combined or not
combined with successive projections algorithm (SPA), have been
extensively applied to feature band selection*"”.. Nguyen et al.'
employed GA for characteristic band selection and used extreme
gradient boosting (XGBoost) to predict soil water content with high
accuracy. However, predictive studies on LWC of coffee trees
based on hyperspectral imaging have been scarce. Building a
dataset of characteristic bands using the feature extraction method is
of high importance for predicting LWC of coffee trees.

By leveraging the correlation between LWC and spectral
reflectance, researchers may choose from a variety of modeling
methods to reveal the linear and non-linear features of such
correlation. Statistical and machine learning techniques commonly
used for the above purpose include partial least squares regression
(PLSR), support vector machine (SVM), and artificial neural
network (ANN)!"'¥ Independent variable construction is a critical
step in the modeling process. Feature bands and vegetation indices
are usually chosen as independent variables, as they carry
information on reflectance of vegetation in different wavebands,
which in turn is related to water content. To verify the reliability
and universality of the models, researchers usually need to perform
water content retrieval on different datasets. It is considered highly
necessary in predicting LWC of coffee trees to enact the combined
use of statistical and machine learning techniques and on different
datasets.

The present study was conducted to solve the above problems
and mainly consisted of the following contents: 1) Datasets from
multiple data sources were built, consisting of common spectral
indices, spectral indices utilizing reflectance at two and three
wavelengths constructed in this study, and feature bands; 2) The
datasets were combined in different ways, and the combination with
a higher accuracy was chosen for modeling; 3) Models were
constructed using different techniques, including PLSR, SVM,
ELM, and back-propagation artificial neural network (BPANN) and
run on different datasets. The model performance was evaluated.
This study may guide the dataset combination and the optimal
model determination for LWC retrieval of coffee trees.

2 Materials and method

2.1 Experimental design

Experiments were conducted in the greenhouse of the College
of Modern Agricultural Engineering, Kunming University of
Science and Technology in Yunnan, China, from April 2022 to June
2023. The test base (102°51'49.5"E, 24°84'40.6"N) has an average
altitude of 1778.9 m and belongs to the subtropical plateau monsoon
climate. The annual average temperature is 21°C in the greenhouse
where the experiments were conducted, with a relative humidity of
45% to 70%. The typical red soil in the test base has a pH value of
6.5-7.5. The organic matter content is 15.05 g/kg; the total nitrogen,
phosphorus, and potassium contents are 0.87 g/kg, 0.68 g/kg, and
13.9 g/kg, respectively; the initial contents of nitrate nitrogen,
rapidly available phosphorus, and rapidly available potassium were
57.48 mg/kg, 12.61 mg/kg, and 85.53 mg/kg, respectively. The
planting area of coffee trees was 120 m* (12 mx10 m), and four-
year-old Arabica coffee trees with consistent growth status were
chosen as research subjects (canopy diameter about 0.8 m and plant
height about 1.0 m). The trees were spaced apart by 0.8 m and the
rows by 1.2 m. Each tree occupied an area of 0.96 m>. Four
irrigation levels were set up by reference to previous studies'”. That
was, 1.0 L/tree, 1.5 L/tree, 2.0 L/tree, and 2.5 L/tree, respectively,
and the irrigation cycle was approximately once every seven days.
A water-soluble fertilizer (N-P,05-K,0, 20%-20%-20%) was
applied at 20 g/tree through a fertigation system. Fertilization was
conducted five times during the experimental period (1 July 2022,
28 September 2022, 31 January 2023, 5 April 2023, 20 May 2023).
As shown in Figure 1, the soil water content monitored during the
experiment indicated that the treatment had significant differences.
Five replicates were set up for each irrigation level, and a total of 20
trees were included for the experiments. The choice of fertilization
regimen at each growth stage of coffee trees was based on existing
literature™.

—o— 1.5 L-tree’!
—8—2.5 L-tree!

—o— 1.0 L-tree™!
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Soil water content/%
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Figure 1 The average soil water content in 0-40 cm soil layer

during the experimental period

2.2 Measurement indicators and methods
2.2.1 Spectral data acquisition from the canopy layer of coffee
trees

The canopy spectra were acquired using the SR-2500 portable
ground-object spectroradiometer (Spectral Evolution, Inc. 1 Canal
St. Unit B-1 Lawrence, MA 01840 USA). The spectroradiometer
spans a wavelength range from 350 to 2500 nm and has 2151
channels. The spectral resolution in the wavelength range from 350
to 1000 nm is 3.5 nm, with a sampling interval of 1.4 nm; the
spectral resolution is 22 nm in the wavelength scope from 1000 to
2500 nm, with a sampling interval of 6 nm. The spectroradiometer’s
data output interval is 1 nm. A 1.5 m long-length optical fiber was
used for spectral acquisition, the field of view being 8°. Canopy
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spectra were measured at 10:00-14:00 local time on sunny and
cloudless days to ensure data integrity and an appropriate solar
elevation angle for the acquisition. Twenty trees were measured
each time. The spectroradiometer was preheated for 40 min before
the measurement to ensure stability. For spectral data acquisition,
the fiber optic probe was directed straight down at the target from a
height of 1 m above the canopy. The range covered by the field of
view did not exceed the canopy. Ten spectral curves were acquired
for each tree and averaged to obtain the spectral reflectance of the
canopy. Before each measurement, the spectroradiometer was
calibrated using the standard whiteboard. The time for spectral
measurement and sampling number are listed in Table 1.

Table 1 Time points for spectral data acquisition

Spectral measurement and sampling time Number of samples

August 3, 2022 20
November 1, 2022 20
March 1, 2023 20
May 19, 2023 20
June 20, 2023 20
Subtotal 100

2.2.2  LWC determination

With spectral reflectance of the coffee tree canopy acquired,
LWC was determined simultaneously using the drying method,
which has proved accurate in LWC measurement. From each tree,
20 mature leaves with consistent size and shape and free from pests,
diseases, and mechanical damage were collected from the above
and below parts and in the periphery of the canopy. The leaves were
weighed using an electronic balance scale with a precision of 0.01,
and the fresh leaf mass F, was obtained. Then the leaves were
placed into an oven at 105°C for 30 min. Finally, the leaves were
dried at 80°C until reaching constant mass, and the dry leaf mass D,,
was determined. LWC is calculated by Equation (1):

D

LWC(%) = FF; x 100 (1)

w

where, LWC is the leaf water content, %; F,, is the leaf fresh
weight, g; and D,, is the leaf dry weight, g.
2.2.3 Leaf area index determination
The leaf area index (LAI) was measured using a plant canopy
analyzer (Win Scanopy, Regent Instruments Inc., Canada)
immediately after the acquisition of hyperspectral data. This device
is composed of a high-definition digital camera, a hemispherical
fisheye lens, and a self-balancing frame. During the measurement,
the fisheye lens was placed 10 cm away from the tree trunk. After
horizontal correction, two photos were taken on the east and west
sides of the tree, respectively, making a total of four images.
Subsequently, the images were processed through a dedicated
analysis software to calculate the LAI of the corresponding images.
The average value of the four images was taken as the LAI data
measurement of the coffee tree.
2.3 Dataset construction
2.3.1
Considering the influences of atmospheric moisture and noises
on spectral reflectance, spectral reflectance data in the wavelength
ranges from 350 to 1349 nm, 1541 to 1799 nm, and 1951 to
2449 nm (totaling 1848 wavelengths) were chosen for further study.

Spectral data preprocessing and dataset splitting

Disturbances to spectral measurement are usually caused by stray
lights and baseline drift, which further interferes with spectral data
analysis. In this study, the spectral data were first preprocessed by
multiplicative scatter correction to eliminate spectral variabilities
caused by different scattering levels, thereby enhancing the
correlations between the spectrum and the data?!l,

For the sake of representativeness and independence of dataset
splitting, sample set partitioning based on the joint x-y distance
(SPXY) algorithm™ was employed to split the dataset into the
modeling dataset and the validation dataset at a ratio of 2:1.

2.3.2  Common spectral indices

Spectral indices are commonly used parameters for predicting
plant water status through spectral reflectance. Based on published
studies, 18 spectral indices related to plant water status were chosen
for the research, as listed in Table 2.

Table 2 Conventional spectral indices to estimate LWC

Index number Moisture spectral index Expression References
1 Normalized Difference Moisture Index (NDWI) (Rg20 — R1240)/ (Rg20 + R1240) [23]
2 Water Stress Index (MSI) Ri600/Rs20 [24]
3 Moisture Index (WT) Rono/R970 [25]
4 Moisture Band Index (WBI) Ro950/Ro00 [26]
5 Normalized Difference Vegetation Index (NDVI) (Rypir — Rred)/(Ruir + Ried) [27]
6 Simple Ratio Water Index (SRWT) Rs20/R1200 [28]
7 Normalized Difference Infrared Index (NDII) (Rgs0 — R1650)/ (Rgs0 + R1650) [29]
8 Enhanced Vegetation Index (EVI) [2.5(Rnir = Rred)]/ (1 + Ruir + 6Rred — 7.5R460)] [30]
9 Ratio Index (RI) Ri650/R2220 [31]
10 Hyperspectral Normalized Difference Vegetation Index (\NDVI)  (Rggo — Res0)/(Rooo + Reso) [32]
11 Vegetation Dryness Index (VDI) (Rg70 = R900)/(R970 + R900) [25]
12 Normalized Difference Moisture Index (NDMI) (R1649 — R1722)/ (R1649 + R1722) [33]
13 Normalized Heading Index (NHI) [(R1100 = R1200)/(R1100 + R1200)1/[(R850 — R670)/ (Rs50 + Re70)] [34]
14 Ratio Vegetation Index (SR) Ro00/Res0 [35]
15 Photochemical Reflectance Index (PRI) (Rs70 — R531)/(Rs70 + Rs531) [36]
16 Shortwave Infrared Water Stress Index (SIWSI) (Rgss — R1640)/ (Rgsg + R1640) [37]
17 Normalized Difference Water Index (NDWI-h) (R1070 — R1200)/(R1070 + R1200) [38]
18 Moisture Index/ Normalized Index (WI/NDVT) [Ro00(Rs00 — Res0)]/[Ro70(Rg00 — Res0)] [39]

Note: The average reflectance in the wavelength range of 670+10 nm was represented by R,.4 and that in the wavelength range of 850+10 nm by R ;..

2.3.3 Construction of two-band spectral indices
Three forms of two-band spectral index were selected (Table 3).

The reflectance was measured at 1 nm wavelength intervals in each
of the three wavelength ranges, namely, 350-1349 nm, 1401-
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1799 nm, and 1951-2449 nm. Two reflectance values were
combined using the formula shown in Table 3. Then, a correlation
analysis was executed among the spectral indices generated using
this method and LWC.

Table 3 Spectral indices utilizing reflectance at two
wavelengths

Spectral index Abbreviation Expression Reference
Ratio spectral index RSI R /Ry [33]
Normalized difference
spectral index NDSI (Ry = Ry)/(Ry +Ry) (331
Difference spectral index DSI R -R, [33]

Note: R, and R, were reflectance values at any two wavelengths within the ranges
of 350-1349 nm, 1401-1799 nm, and 1951-2449 nm.

2.3.4 Construction of three-band spectral indices

Three-band spectral indices were established based on those
two-band spectral indices plus a third wavelength (R;). The purpose
was to improve the modeling accuracy and resistance to disturbance
while reducing or eliminating spectral saturation that usually occurs
in two-band
corresponding to the optimal spectral index (R, and R,) were chosen
as the basis for constructing the three-band spectral indices. The

spectral  indices***). The two wavelengths

latter was constructed using formulae 2 to 8, respectively.
Variations of the correlation coefficient between the three-band
spectral indices and LWC with the changing of R; were analyzed.
The optimal R; was determined, along with the optimal form of
three-band spectral index. Seven classic forms of three-band
spectral indices™*” were calculated as follows:

(R, —R,)/(R, +R, — R;) ()
(R, =R, —R)/(R, +R, +R,) 3)
(R, =R, +2Ry)/(R, +R, - 2R,) (4)
R,/(R,+Ry) (5)

(R, +Ry)/R, (6)

(R, —R:)/R, (7)

(R —R3)/(R, —R3) (3)

where, R; is the reflectance in any of the three wavelength ranges,
namely, 350-1349 nm, 1401-1799 nm, and 1951-2449 nm.
2.3.5 Screening for feature bands

SPA  was
preprocessed hyperspectral data of the canopy to identify

employed for feature extraction from the
representative wavelengths for modeling. This method was
expected to promote the efficiency and precision of the LWC
retrieval model.

SPA involves a vector projection analysis, which compares the
magnitude of projection vectors between different wavelengths!'*.
The wavelength with the largest projection vector was chosen as the
candidate wavelength, and the characteristic wavelengths were
finally identified based on the correction model.

Let the initial vector for iteration be xq), the variable to be
extracted be N, and the spectral matrix have J columns. The
algorithm consists of the following steps:

Use the hyperspectral reflectance dataset as the modeling set.
Choose one column (j-th column) of the spectral matrix randomly
from the modeling set. Assign the j-th column of the modeling set to

variable x;. Denote the value as x ).
Denote the set comprising of the positions of non-selected
column vector as S:

S ={j1<j<J,j¢{k(0),k(1),....k(n— D} ()]

Calculate the projection of x; with respect to each of the
remaining column vectors:

ij =X — (XT 'xk(nfl)) * Xkn-1) * (x:m—n 'xk(n—l))ilv(j €5) (10)

Extract the wavelength k(n) with the largest projection vector:

k(n) = arg(max(||p,lD), je€s an

Let x/=p,;, j € 5, and calculate the cumulative sum of n. If n<N,
perform a cyclic calculation using Equation (9).

Finally, establish a multiple linear regression model for 4(0)
and N in each cycle. Implement leave-one-out cross-validation
(LOOCV) to screen for characteristic wavelengths. Calculate the
root mean squared error of cross-validation (RMSECV) for the
modeling set, and identify the candidate subsets. £(0) and N
corresponding to the minimum RMSECV would be the optimal
values.

2.4 Model construction

Linear and non-linear models were constructed based on the
dataset combination consisting of common spectral indices, two-
band spectral indices, three-band spectral indices, and feature bands.
Linear model was built using partial least squares regression
(PLSR). Non-linear models were built using support vector machine
(SVM), extreme learning machine (ELM), and back propagation
artificial neural network (BPANN), respectively.

2.4.1 Construction of a linear model

PLSR is an integration of principal component analysis,
multiple linear regression analysis, and least squares regression
method"”. Input variables for PLSR are compressed into several
latent variables (LVs). Determining the number of LVs is an
essential step in PLSR. Here, an appropriate number of LVs was
chosen by cross-validation combined with the minimum RMSECV
principle.

2.4.2 Construction of non-linear models

SVM is a learning system that utilizes a linear function
hypothesis in a high-dimensional feature space™'. This study
combined cross-validation with grid search to find the optimal
values of the penalty factor ¢ and kernel parameter g in the SVM
model. An SVM model was built for each ¢ and g, and the
RMSECV was calculated. The optimal ¢ and g values were
determined to construct a retrieval model based on SVM.

ELM is based on a single-hidden layer feedforward neural
network and has the benefits of high learning speed and strong
generalization performance!"'. ELM randomly generates connection
weights and thresholds between the input and hidden layers. The
activation function residing within neurons in the hidden layer is
Sigmoid function by default. The initial number of neurons in the
hidden layer was 5 for ELM training and increased stepwise to 50 at
an increment of 1. Each model was run for 10 000 iterations. The
optimal number of neurons was determined, and the optimal ELM
parameters were obtained.

BPANN has the foundational algorithm of gradient descent,
and gradient search is implemented with the purpose of minimizing
average value squared error between the actual and forecasted
outputs of the network". In this study, BPANN had three layers,
namely, input layer, hidden layer, and output layer, and the model
parameters were optimized. The transfer, training, and learning


https://www.ijabe.org

October, 2025 Liu X G, et al.

Coffea arabica L. leaf water content estimation using hyperspectral reflectance

Vol. 18 No. 5 291

functions of BPANN were customization options. The Sigmoid
function, a continuously differentiable non-linear function, was used
as the activation function, with a maximum step size of 10 000, a
learning rate of 0.01, a learning goal of 0.01 and learning rate and
momentum coefficient of 0.01. The steps to determine the number
of neurons in the hidden layer of BPANN were consistent with
those in ELM.

2.5 Model evaluation indicators

The model’s accuracy was assessed based on determination
coefficient (R?), root mean square error (RMSE), and relative root
mean square error (RRMSE), as given below:

Z (yi - 5’1‘)2

R=l-t (12)

> G-

> G-

= (13)

n

RMSE =

RRMSE:%_SEX

100% (14)
where, y, is the measured value; 9 is the predicted value; y is the
mean of the predicted value; » is the number of samples, i=1, 2, ...,
n. The higher the correlation coefficient and the lower the RMSE,
the higher the predictive accuracy. The predictive accuracy was
considered very high when RRMSE was below 10%; the accuracy
was fairly high when RRMSE was above 10% and below 30%; the
accuracy was poor when RRMSE was above 30%.
2.6 Analytical software

Spectral preprocessing was conducted using the Unscrambler X
10.4. Statistical analysis and plotting were carried out using
Microsoft Excel, SPSS, and Origin 2022. Spectral matrix
construction, correlation coefficient calculation, plotting of isolines
of correlation coefficient, and retrieval model construction were
realized in Matlab 2020b.

3 Results and analysis

3.1 Descriptive statistics of LWC and sample splitting

Multiple comparisons were done for data acquired at each time
point (p<0.05). Generally speaking, the LWC increased
significantly as the irrigation level increased. LWC of coffee trees
varied significantly across the irrigation levels (Figure 2), indicating
that the design of irrigation regimens was reasonable.

Figure 3 shows the spectral curves under each irrigation level.
It can be seen that the hyperspectral reflectance was lower in the
range from 400 to 720 nm, and the reflectance was not significantly
correlated with the irrigation level, either positively or negatively.
At around 720 nm, as the irrigation level increased, the spectral
curve showed a redshift, indicating a better growth status; the
determination of leaf area index could also confirm this
phenomenon (Figure 4). In the near-infrared region (780-1350 nm),
the reflectance of the hyperspectral curve varies in direct proportion
to the amount of irrigation per plant. The differences in the
hyperspectral curves under different irrigation levels in the near-
infrared region (1450-2450 nm) might be attributed to the
influences of atmospheric moisture and soil background.

A total of 100 groups of leaf samples were collected in the
course of the experiments. The data were split into modeling and

validation datasets, whose sample sizes were 67 and 33,
respectively. Descriptive statistics of each LWC sample set can be
found in Table 4. The statistical results on the modeling and
validation datasets obtained by SPXY were comparable to those on
the entire LWC sample set. The numerical range of the modeling
dataset encompassed that of the validation dataset, thereby ensuring

the representativeness of the sample sets.
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Figure 4 LAI at different irrigation levels during the
experimental period

Table 4 Descriptive statistics of LWC of coffee trees

Dataset Sarpple Maximum Minimum  Mean Stgng]ard
size value/% value/%  value/% deviation/%
Complete dataset 100 73.93 54.23 64.13 4.19
Modeling dataset 67 73.93 54.23 64.64 4.56
Validation dataset 33 71.12 58.66 63.69 3.12

3.2 Dataset construction based on spectral indices and feature
bands
3.2.1
Eighteen common spectral indices were chosen and estimated,
and the Pearson correlation coefficients between LWC of coffee

Screening of common spectral indices
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trees and the spectral index were computed. The correlation
coefficient heatmap of the common spectral indices vs. LWC of

coffee trees was shown in Figure 5. The spectral index most
significantly correlated to LWC of coffee trees was selected.
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Figure 5 Correlation coefficient heatmap of the common spectral indices vs. LWC of coffee trees

As shown in Figure 5, except for MSI, NDII, RI, NDMI, and
SIWSI, the correlation coefficients between other spectral indices
and LWC all passed the significance test of 0.05 or 0.01. Among the
18 spectral indices, four spectral indices with the highest correlation
coefficients were selected as part of the model input variables.
These spectral indices were NDVI (0.492), hNDVI (0.486), SR
(0.532), and PRI (-0.504).

3.2.2 Construction and screening of two-band spectral indices

To build two-band spectral indices, this study combined
wavelengths pairwise and analyzed the correlation coefficients
between LWC and the spectral indices utilizing reflectance at a pair
of wavelengths (DSI, RSI, and NDSI). Isolines of the correlation

coefficient were plotted (Figure 6). Based on Figure 6, for DSI, RSI,
and NDSI, the top five spectral indices with the highest correlation
coefficient were chosen as the optimal indices, respectively. As
shown in Table 5, the three forms of spectral indices were sensitive
to similar wavelength ranges, that is, 550-1200, 1300-1700, and
2050-2300 nm. The maximum correlation coefficient was observed
with DSI (540 nm, 700 nm), the value being 0.58. It was indicated
that the accuracy of retrieving LWC of coffee trees using the dataset
of two-band spectral indices was higher and the correlation with
LWC was stronger. The two-band spectral indices with the top five
correlation coefficients with LWC were selected to participate in the
construction of the dataset (Table 5).
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Figure 6 Correlation coefficient between the three forms of two-band spectral indices and LWC

Table S Waveband combinations of spectral indices with the
top 5 correlation coefficients

Spectral index Selected wavelength combinations/nm

DSI (540, 700), (537, 578), (831, 834), (760, 486), (761, 467)
RSI (758, 755), (749, 735), (763, 732), (744, 739), (758, 746)
NDSI (831, 834), (540, 573), (556, 701), (723, 717), (2176, 702)

3.2.3 Construction and screening of three-band spectral indices

R, and R, were reflectance at 540 nm and 700 nm, the two
wavelengths corresponding to the optimal DSI identified in Section
2.2.2, respectively. Reflectance was stepping successively in three

waveband ranges, namely, 350-1349 nm, 1401-1799 nm, and 1951-
2449 nm, as the value of R; in the three-band spectral index.
Different forms of three-band spectral indices were calculated using
Equations (2) to (8). Correlation coefficient curves (absolute value)
between the spectral indices and LWC are listed in Figure 7.
(Ri+R3)/Ry, (Rsao, Raoo, Rarzs) and (Ri—R3)/(Ry—R3) (Rsao, Ryoos Rass)
had the highest performance among all three-band spectral indices.
Their correlation coefficients with LWC were 0.586 and 0.602,
respectively, and both were higher compared with those for two-
band spectral indices. Therefore, these two indices were included in
the dataset for retrieving LWC of coffee trees.
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Figure 7 Correlation coefficient curves between the three-band spectral indices and LWC of coffee trees

3.2.4 Screening for wavelengths sensitive to LWC based on
feature extraction method

Feature bands were identified by using SPA, and their positions
are shown in Figure 8. The eight feature bands were 721 nm,
981 nm, 1252 nm, 1283 nm, 1733 nm, 2257 nm, 2320 nm, and
2414 nm. As shown in Figure 9, RMSECYV first decreased and then
increased as the number of variables increased. When the number of
variables exceeded eight (indicated by the red block), the RMSECV
did not reduce as the number of variables increased. SPA maximally
compressed the spectral data, and the feature bands accounted for
0.43% of the full spectrum.
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Figure 9 RMSECYV under different numbers of variables

3.2.5 Results of dataset combinations

Different datasets were generated using different methods:
common spectral indices, two-band spectral indices, three-band
spectral indices, and feature bands identified by SPA. These
datasets were combined in different ways to obtain different
combinations, as listed in Table 6.

Table 6 Dataset combinations based on different methods

Index Different methods dataset combination Number
number of variables

Common spectral indices, two-band spectral indices,

1 e 21
three-band spectral indices
Common spectral indices, three-band spectral indices,

2 14
feature bands

3 Two-band spectral indices, three-band spectral indices 17
Two-band spectral indices, three-band spectral indices,

4 25
feature bands

5 Common spectral indices, two-band spectral indices, 29

three-band spectral indices, feature bands

3.3 Construction and evaluation of models for LWC retrieval
The datasets in Table 6 were used as independent variables for
modeling, and a linear model (PLSR) and non-linear models (SVM,
ELM, and BPANN) were constructed for regression analysis. The
model’s accuracy and reliability were assessed. The calculation
results using different dataset combinations are listed in Table 7. It
is easy to see that the linear model was inadequate for estimating
the LWC of coffee trees, with an R® ranging from 0.469 to 0.618.
There was a certain gap in accuracy compared with non-linear
models. Among the four non-linear models, ELM displayed a
higher accuracy on both the modeling and validation datasets. As
for the modeling results using different datasets, the accuracy was
the highest when the prediction was conducted using the ELM
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model on dataset combination 5 (a dataset combination consisting
of the common spectral indices, two-band spectral indices, three-
band spectral indices, and feature bands). The R?>, RMSE, and
RRMSE of validation dataset using the ELM model on dataset
combination 5 were 0.721, 2.142%, and 3.364%, respectively.
There was a dramatic improvement of accuracy compared with the
linear model PLSR and other non-linear models. The scatter plots of

predicted and measured values using the ELM model on dataset
combination 5 are shown in Figure 10. The slopes of the fitted lines
were 0.745 and 0.721, respectively. Besides, the data points were
distributed mainly below and above the 1:1 line in a uniform and
compact manner for both the modeling and the validation datasets.
Thus, the model had a high goodness-of-fit and hence a high
predictive accuracy for LWC of coffee tree.

Table 7 Prediction results using different methods on different datasets for LWC retrieval

Modeling dataset

Validation dataset

Dataset Modeling methods Parameters
R RMSE/% RRMSE/% R RMSE/% RRMSE/%
PLSR 0.544 3.094 4.805 0.555 2.276 3.578 LVs=14
o SVM 0.486 3.350 5.203 0.575 2.055 3.231 c=119.42 g=0.001
Combination 1
ELM 0.659 2.679 4.160 0.624 2.365 3.718 NHLs=28
BPANN 0.664 3.429 5.326 0.663 3.258 5.121 NHLs=24
PLSR 0.458 3.280 5.111 0.567 2319 3.621 LVs=13
o SVM 0.448 3.338 5.202 0.728 1.862 2.907 ¢=0.6156 g=0.0825
Combination 2
ELM 0.615 2.765 4321 0.610 2.283 3.989 NHLs=22
BPANN 0.650 2.651 4.131 0.637 2.659 4.152 NHLs=8
PLSR 0.470 3.199 4.972 0.469 2.661 4.179 LVs=8
o SVM 0.495 3.145 4.887 0.512 2.546 3.998 ¢=3.7321 g=0.0103
Combination 3
ELM 0.674 2.509 3.898 0.602 2.889 4.537 NHLs=23
BPANN 0.666 2.560 3.978 0.565 2.602 4.086 NHLs=6
PLSR 0.514 3.224 5.018 0.511 2431 3.805 LVs=10
o SVM 0.578 3.054 4.753 0.630 2.161 3.382 ¢=3.0314 g=0.0385
Combination 4
ELM 0.613 2.876 4.477 0.612 2.446 3.827 NHLs=11
BPANN 0.685 2.894 4.505 0.623 2.954 4.622 NHLs=19
PLSR 0.630 2.697 4.190 0.618 2.764 4342 LVs=20
L SVM 0.552 3.028 4.704 0.414 3.152 4951 ¢=0.8706 g=0.0412
Combination 5
ELM 0.745 2.241 3.482 0.721 2.142 3.364 NHLs=26
BPANN 0.715 2.440 3.790 0.669 2.167 3.403 NHLs=5

Note: LVs represents the number of latent variables; ¢ and g are the penalty factor and the kernel parameter of SVM, respectively; NHLs represents the number of hidden

layer neurons.
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Figure 10 Relationship between the measured and predicted
values of LWC

4 Discussion

Water is an essential component of the coffee tree canopy,
involved in coffee photosynthesis and respiration, and has a
momentous impact on the formation of eventual products. LWC of
coffee trees was estimated from hyperspectral reflectance in this
study. Reflectance of canopy in the visible region (VIS, 400-
780 nm) and the near-infrared region (NIR, 780-1300 nm) was more
greatly affected by the leaf structure and water content of canopy. In
the VIS region, the reflectance of canopy decreased as the irrigation

level of a single tree increased. The reason may be that the lack of
irrigation induced drought stress in coffee trees, which further
reduced the free water content of leaves but increased the bound
water content of leaves. As a result, the leaf area and chlorophyll
content decreased, accompanied by variations in the spectral
reflectance of canopy™. In the NIR region, the reflectance of
canopy increased as the irrigation level of a single tree increased.
This is because as the irrigation level increased, the plant height,
chlorophyll content, and net photosynthetic rate increased, leading
to a significant increase in canopy reflectance. Under each irrigation
level, the reflectance varied in the green region (G, 490-560 nm)
and the red region (R, 620-680 nm). The fluctuation was even more
significant in the crest of green light (at about 555 nm) and in the
trough of red light (at about 672 nm), which can be attributed to the
absorption characteristics of chlorophyll®.

Existing studies have shown that a single spectral reflectance is
inadequate for accurately estimating plant water status due to the
strong reflection of radiant energy from fresh leaf surface and
lamellar hair and the unique structures of leaf surface and leaf
cuticles®!. Constructing spectral indices is a better way to measure
the spectral reflectance of plants, as spectral indices can reduce the
scattering effect at a single wavelength and hence increase the
prediction accuracy™. This study built new spectral indices by
combining reflectance at two wavelengths. For RSI, NDSI, and
DSI, the top five spectral indices with the highest correlation
coefficient with LWC were selected to form the dataset of two-band
spectral indices, respectively. However, spectral saturation may
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occur in these spectral indices. By contrast, three-band spectral
indices contained fewer noises"” and had a stronger resistance to
spectral saturation*®. The optimal DSI (at 540 and 700 nm) was
determined and served as the basis for establishing three-band
spectral indices, which were (R;+R3)/R, (Rss9, R700» R2176) and (R—
R3)/(Ry—R3) (Rsap, Ryg0, Rues) according to this analysis. The latter
had higher correlation coefficients with LWC than the former,
therefore carrying fewer noises and displaying more robust
predictive performance for LWC of coffee trees. To ensure the
completeness of information contained in independent variables,
this study combined the datasets of common spectral indices, two-
band spectral indices, three-band spectral indices, and feature bands
identified by SPA. While most studies only used a single source of
data to predict LWC of plants®*~", this study built a dataset from
multiple sources, which involved the combined use of several
methods. Compared with datasets built by using a single method,
the method in this paper dramatically improved the model’s
predictive accuracy.

To estimate LWC based on spectral reflectance, this study built
PLSR, SVM, ELM, and BPANN models, which were run on the
five datasets, respectively. The modeling performance was highly
differential on different datasets (Table 7), given the varying sizes
of the datasets built by different methods. A larger dataset helped
reduce overfitting and improved the model’s generalization
capacity. Both linear and non-linear models had a better
performance when the datasets of common spectral indices, two-
band spectral indices, three-band spectral indices, and feature bands
were combined together. The predictive accuracy was compared
across different datasets. Underfitting occurred when SVM was
used for prediction on dataset combination 2. SVM performed
poorly compared to other models on dataset combination 5,
probably due to unreasonable optimal parameters found by grid
search in SVM. Of all four models, the ELM model had the best
predictive performance for LWC. During the modeling and
validation processes, R* of the ELM model was 0.745 and 0.721,
RMSE was 2.241% and 2.142%, and RRMSE was 3.482% and
3.364%, respectively. All of the performance evaluation indicators
of the ELM model were better than those of PLSR, SVM, and
BPANN. This is because the ELM model has the advantages of
fewer training parameters, higher learning speed, and more robust
generalization capacity than other models. Studies have shown that
ELM is a reliable modeling method”'**, and it is also found that
ELM outperformed other models in LWC retrieval of coffee trees.
The non-linear correlation between the spectral reflectance and
LWC might cause the inferiority of the linear model PLSR. Non-
linear models, such as SVM and BPANN, place higher
requirements on sample size and feature dimensions, and hence
there is a greater need for more adjustments during parameter
selection. This may be one reason for the lower accuracy of SVM
and BPANN compared with ELMP**),

This study focuses on LWC as the research target, without
considering the influence of other canopy parameters on spectral
information. Sensitivity analysis using the canopy radiative transfer
model PROSAIL demonstrates that parameters including canopy
leaf area index, leaf pigments (chlorophyll, carotenoids), and leaf
dry matter content significantly affect the canopy reflectance®.
Therefore, to weaken the impact of other canopy parameters, this
research employed conventional spectral indices, two-band spectral
indices, three-band spectral indices, and characteristic wavelengths
to construct the dataset. The best-of-breed LWC prediction model
was established based on dataset and machine learning. However,

some limitations are still left unresolved. The present study was
only conducted in Kunming, China and in only a single coffee
variety. Whether the LWC retrieval model constructed in this study
is equally applicable to LWC estimation of other coffee varieties in
other regions remains to be further verified. Future research should
continue to analyze and attempt to eliminate interference factors
present in the spectral remote sensing process. Subsequently, the
proposed method should be optimized for different coffee varieties
across various regions, so as to obtain an LWC retrieval model for
coffee trees with higher universality. Such models provide essential
information for coffee growth, drought monitoring, and technical
support for improving coffee yield.

5 Conclusions

1) The NIR region (780-1300 nm) was sensitive to LWC of
coffee trees, and the reflectance in this region varied significantly
under different irrigation levels. As the irrigation level per coffee
tree increased, the spectral curve showed a redshift, indicating a
better growth status.

2) Datasets generated using different methods were combined
in different manners. It was found that the combination of optimized
common spectral indices, two-band spectral indices, three-band
spectral indices, and feature bands resulted in higher accuracy of
LWC retrieval compared with datasets from a single data source,
and the model’s predictive performance was also better.

3) Linear and non-linear models were run on different dataset
combinations, and the predictive accuracy was compared. The most
satisfactory performance was observed with ELM, among all
R=0.745, RMSE=2.241%,

R=0.721, RMSE=2.142%,

models  (modeling  dataset:
RRMSE=3.482%;

RRMSE=3.364%).

validation set:
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