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Abstract: Accurate cattle body detection can significantly enhance the efficiency and quality of animal husbandry production.
Traditional manual observation approaches are not only inefficient but also lack objectivity, while computer vision-based
methods demand prolonged training periods and present challenges in implementation. To address these issues, this paper
develops a novel precise cattle body detection solution, namely YOLOv5-VF-W3. By introducing the Varifocal loss, the
YOLOV5-VF-W3 model can handle imbalanced samples and focus more attention on difficult-to-recognize instances.
Additionally, the introduction of the WIoUv3 loss function provides the model with a wise gradient gain allocation strategy.
This strategy reduces the competitiveness of high-quality anchor boxes while mitigating harmful gradients produced by low-
quality anchor boxes, thereby emphasizing anchor boxes of ordinary quality. Through these enhancements, the YOLOvS5-VF-
W3 model can accurately detect cattle bodies, improving the efficiency and quality of animal husbandry production. Numerous
experimental results have demonstrated that the proposed YOLOvS5-VF-W3 model achieves superior cattle body detection
results in both quantitative and qualitative evaluation criteria. Specifically, the YOLOv5-VF-W3 model achieves an mAP of
95.2% in cattle body detection, with individual cattle detection, leg detection, and head detection reaching 95.3%, 94.8%, and
95.4%, respectively. Furthermore, in complex scenarios, especially when dealing with small targets and occlusions, the model
can accurately and efficiently detect individual cattle and key body parts. This brings new opportunities for the development of

precision livestock farming.

Keywords: cattle body detection, varifocal loss, key body parts, WIoUv3 loss

DOI: 10.25165/j.ijabe.20251802.9107

Citation: Hao W L, Ren C, Han M, Li F Z, Liu Z Y. YOLOvV5-VF-W3: A novel cattle body detection approach for precision

livestock farming. Int J Agric & Biol Eng, 2025; 18(2): 269-277.

1 Introduction

In modern animal husbandry, monitoring the health of cattle is
crucial. By observing the body posture, overall condition, eyes, hair,
and other relevant factors of cattle, their health status can be
assessed. Therefore, to ensure the effectiveness of cattle health
monitoring, it is crucial to implement more precise and efficient
methods for cattle body detection.

Traditional approaches to cattle health monitoring encompass
direct observation or physical contact as means to evaluate their
health status. This qualitative technique is adept at identifying early
indicators of health problems, thereby enabling timely measures to
be implemented™. Nonetheless, owing to gaps in the frequency of
monitoring, this method risks overlooking crucial health conditions
or behavioral patterns that cattle may display at particular instances.
Additionally, it demands a considerable investment of human
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resources and labor.

With the development of Radio Frequency Identification
(RFID) technology and wearable devices, physical devices have
played a significant role in the automated collection and analysis of
individual information and health data of cattle, effectively reducing
the pressure of manual monitoring®”. RFID technology is applied by
installing devices such as ear tags on the cattle’s ears®. Although
this method has been widely adopted, it does not fully comply with
the requirements of animal welfare. In addition, RFID devices also
have some limitations, such as tag detachment, loss, malfunction, or
duplication, all of which can affect the accuracy of identification!".
Meanwhile, wearable devices have been proven to significantly
improve the precision of cattle positioning and behavior
monitoring®®. However, most of these devices lack the capability to
visually capture and validate the movements of cattle through visual
imagery. Therefore, in some cases, behavior classification based on
wearable devices may not accurately reflect the actual behavior of
the cattle, leading to false reports.

With the rapid advancement of computer vision technology,
utilizing visual features for cattle inspection has gradually become
the core focus of research in this field. Computer vision is utilized
to automatically identify individual cattle as well as monitor their
behavior and health status, which is of great significance for
improving breeding efficiency, disease prevention, and health
management”. Bercovich et al.® and Zhao et al.”! respectively
designed different tools based on computer vision, with the former
achieving automatic scoring of cow body condition and the latter
achieving a recognition accuracy of 96.72% for cows. Gao et al.!"”
utilized a method of multiple feature fusion to extract features of
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cows and employed a classifier trained with the Gentle Adaboost
algorithm for cattle body detection, achieving a detection accuracy
0f 97.3%. Liu et al.'"" proposed a two-class classification algorithm
based on chromatic distortion and brightness distortion, achieving
realtime extraction of cow targets under complex background and
environmental conditions. Kaur et al.'” achieved an 83.35%
improvement in cattle recognition accuracy by combining the use of
a random forest classifier with image feature extraction methods
such as SIFT and SURF. The above mentioned traditional computer
vision and machine learning-based methods for cattle health
monitoring often require redesigning and adjusting parameters when
faced with new datasets or tasks. This results in relatively weak
model generalization ability.

In order to further improve the performance of cattle body
detection models, deep learning-based methods are increasingly
gaining attention from researchers. These methods fully leverage
the advantages of deep learning technology, such as powerful
feature learning, classification, and generalization capabilities,
thereby greatly improving the accuracy and efficiency of cattle body
detection. Tassinari et al."”, Lodkaew et al.'¥, and Xiao et al.'
respectively employed YOLOv3", YOLOv4!"", and an improved
Mask-RCNN!" model to label and train data collected from indoor
Holstein cows with fixed cameras. In their studies, the average
precision of cattle body detection reached 64.0%, 90.0%, and
97.39%, respectively. Shao et al.'”), Weber et al.””, Andrew et al.?"],
and Xu et al.” respectively utilized YOLOv2™!, YOLOv4, Faster-
RCNNP, and Mask-RCNN models to label and train datasets of
cattle herds captured by drones, achieving cattle body detection
accuracies of 95.0%, 98.0%, 99.6%, and 96.0%, respectively. These
excellent detection results are due to the significant differences in
the color of the cattle’s body and the pasture, making them easy to
distinguish. Additionally, it is worth noting that Faster-RCNN and
Mask-RCNN belong to two-stage object detectors, which typically
require longer training and detection times, making them unsuitable
for realtime detection in cattle farms.

Despite the certain development of cattle body detection
technology, especially its outstanding performance in application
scenarios such as automatic counting® and behavior monitoring®,
relying solely on the detection of the entire cattle body is still
insufficient for in-depth analysis of cattle behavior patterns and
health status. By accurately identifying the key parts of the cattle
body, this approach can not only significantly improve the accuracy
of disease diagnosis but also further refine behavior analysis. This
includes, but is not limited to, monitoring cattle for lameness®”,
identifying rumination behavior®), and individual identification
through facial features of cattle™ ". Therefore, the detection of the
key parts can facilitate a deeper understanding and management of
the cattle herd, thereby optimizing breeding efficiency and animal
welfare.

Although the aforementioned methods have demonstrated
significant efficacy in cattle body detection tasks, they still exhibit
notable limitations in detecting small targets within images,
particularly when confronted with complex scenarios involving
occlusion.

YOLOV5 (You Only Look Once)t" is recognized as having
significant advantages over its previous versions in object detection
tasks. However, it has been observed that YOLOVS5 tends to miss
the key small-sized parts of cattle, such as the head and legs, and its
detection performance is not ideal in scenes where cattle are
obstructed.

To enhance the detection capability in such challenging

scenarios, this study leverages the strengths of Varifocal loss"™ and
WIoUv3®™. Varifocal loss is a classification loss function that
introduces an adjustable parameter to adaptively adjust the weights
of positive and negative samples. This mechanism enables the
model to focus more on difficult-to-classify samples, such as small
or partially occluded targets, thereby improving its learning ability
for challenging cases and enhancing the overall performance and
robustness of the model.

WIoUv3, on the other hand, is a localization loss function that
proposes a dynamic non-monotonic focusing mechanism. This
mechanism employs "outlier" to evaluate the quality of anchor
boxes instead of relying solely on IoU. It provides a wise gradient
gain allocation strategy, which reduces the competitiveness of high-
quality anchor boxes while mitigating the harmful gradients
produced by low-quality anchor boxes. This approach allows the
model to focus more on anchor boxes of ordinary quality, which are
more likely to represent partially occluded targets, thereby
improving the generalization ability and performance of the model
in complex detection scenes.

To address the degraded detection accuracy of small targets in
occluded cattle body scenarios, this paper innovatively integrates
the Varifocal loss function and the WIoUv3 regression loss function
into the YOLOVS5 framework.

Overall, the contribution of this paper is summarized as
follows:

1) This paper proposes a novel YOLOvV5-VF-W3 model
designed to efficiently detect cattle bodies. The model addresses the
issue of sample imbalance by adjusting the sample weights.
Additionally, it improves detection performance in scenarios with
small targets and occlusions by focusing on ordinary anchor boxes.

2) Two loss functions, Varifocal and WIoUv3, are first
leveraged in the cattle body detection framework. The Varifocal
loss function adjusts the weight of positive and negative samples,
emphasizing more difficult samples. The WIoUv3 loss improves
anchor box quality by incorporating a non-monotonic focus
coefficient, which reduces the impact of high-quality anchors and
mitigates harmful gradients from low-quality ones. Together, these
losses enable the model to better focus on challenging samples and
ordinary quality anchor boxes, thereby enhancing both performance
and robustness.

3) Through numerous ablation studies, the superior
performance of the YOLOvS5-VF-W3 model in cattle key body
detection tasks is demonstrated in the experiment. Specifically, the
model achieves a mean Average Precision (mAP) of 95.2% in cattle
body detection, with individual detection scores for the cattle body,
legs, and head reaching 95.3%, 94.8%, and 95.4%, respectively.
These results emphasize its high efficiency and practical
applicability.

2 Materials and methods

2.1 Datasets

This paper aims to develop an efficient detection model for
Jinnan cattle, based on image data collected from the Jinnan Cattle
Genetic Resource Gene Protection Center in Yuncheng City. The
work covered a series of data collection activities on healthy Jinnan
cattle from July to October 2021. To ensure the diversity and
complexity of the dataset, Canon EOS 1300D cameras and SEA-
AL10 smartphones were employed to capture images of the cattle
from different angles and under various weather conditions between
7:00 AM and 8:00 PM daily. The cattle were divided into three age
groups: calves from birth to six months, young cattle from six
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months to two years, and adult cattle older than two years, with all
images taken in natural environments, as shown in Figure 1.

e e .:: ol =

b. 6 months to 2 years old

¢

c. 2 years old and older

Figure 1 The collected data samples for cattle body detection

In the process of building the dataset, highly repetitive or blurry
images were first manually filtered out from the sequentially
captured images to ensure data quality. Subsequently, the Labelimg
tool was employed to precisely annotate individual cattle, heads,
and legs in the images, with the annotated results saved as TXT
format files. Through this series of steps, a dataset containing 8024
images, including 113 images of Jinnan cattle and their annotated
files, was ultimately obtained. Some example images from the
dataset are shown in Figure 2.

= Teggeg

a. Multi-sample b. Single-sample

Figure 2 Some examples of annotated cattle images

To comprehensively evaluate the performance of the developed
model, the dataset was randomly divided into training, validation,
and test sets at a ratio of 7:2:1. Specifically, the training set contains
5617 samples, the validation set contains 1604 samples, and the test
set contains 803 samples. Several instances of cattle data
augmentation are shown in Figure 3.

a. Translate b. Vertical flip c. Color dithering

d. Mosaic

e. Horizontal flip f. Scale

Figure 3  Several instances of cattle data augmentation

2.2 Technical roadmap

The technical roadmap of the cattle body detection model
proposed in this paper is shown in Figure 4. To minimize the impact
of data noise on model training, video frames of cattle are randomly
sampled and preprocessed to generate images. Furthermore, to
enhance the diversity of the data and simulate different scenarios,
various data augmentation techniques, including translate, vertical
flip, color dithering, mosaic, horizontal flip, and scale, were
employed. The application of these methods aims to improve the
generalization ability and accuracy of the model under various

conditions. The data is then accurately annotated to identify the key
body parts of the cattle, providing precise supervisory signals for
model training. Next, the YOLOV5-VF-W3 model is utilized for
training, enabling the model to learn to recognize and detect the key
body parts of the cattle. Finally, the trained model is evaluated, and
the accuracy and effectiveness of the detection results are analyzed
to ensure the practicality and reliability of the detection model.

Cattle Cattle Cattle Cattle body data
dataset collection data preprocessing data enhancement labeling

Cattle .
‘ Results }C:( body detection ](::L Model training J(::[YOLOVS»VF-W3

Figure 4 The technical roadmap of cattle body detection model

2.3 YOLOVS-VF-W3 model

The novel YOLOvV5-VF-W3 model is proposed by ingeniously
integrating the Varifocal and WIoUv3 loss functions into YOLOVS.
Specifically, the loss contribution of negative samples is reduced by
the Varifocal loss function, thereby improving the classification
performance of the model. Additionally, a non-monotonic focusing
mechanism is introduced by the WIoUv3 loss function, enabling a
gradient gain allocation strategy that best fits the current situation
for anchor boxes of different qualities during training, which in turn
enhances the localization performance of the model. As a result, this
ingenious design of loss significantly enhances the detection
performance of the model. Moreover, this design strengthens the
robustness of the model, allowing the network to learn more
comprehensive features. In this paper, our primary innovation lies in
the application of loss functions. Therefore, for the network of the
model, please refer to YOLOvSF'.
2.3.1 The loss function

In the task of cattle body detection, the choice of loss function
has a significant impact on the training and performance of the
model. Different loss functions can guide the model to learn
different features and representations, affecting the accuracy and
stability of the model in the object detection task. The loss function
of the proposed YOLOVS-VF-W3 model consists of three terms,
including the confidence loss (L), the localization loss (L, ), and
the classification loss (L), respectively.

LOSS = Lconf + l‘loc + Lcls (1)

In the following, the detailed definition of these loss terms will
be given.

2.3.2 The confidence loss

The confidence loss L. quantifies the accuracy of the model
in predicting the presence or absence of a target. Thus, it ensures
that the model can accurately assess whether cattle are present in
the image.

The confidence loss employed in this paper shares the same
definition of that in YOLOvS5PY, and detailed information can be
found in the corresponding paper.

2.3.3 The localization loss: WIoUv3 loss
The localization loss Ly 1s formulated as follows:

B

T 5-ab

2

where @ and ¢ are configured as hyperparameters; S defines the
outlier degree, as defined in Equation 3; r represents a non-
monotonic focus coefficient; L indicates the degree of mismatch

Lioc = Lwiouys = 7 Rwiou " Liou> 7
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or dissimilarity between the ground truth box and the predicted box,
presented in Equation 4; Ry, denotes a loss function constructed
based on a distance metric, as shown in Equation 6; and Ly
defines a loss function featuring a dynamic non-monotonic focusing
mechanism and incorporating geometric constraints such as distance
and overlap.

I
B==2 [0, +c0) 3)
ToU
where, L;; represents the L,,; of the current predicted box, and Lo
is the mean L,y over a set of predicted boxes.

Ly =1-ToU @)

where, IoU represents the ratio of the area of overlap between the
predicted box and the ground truth box to the area of their union, as
defined in Equation 5.

B w; - h;

B Weh+Wy-hy—w;i-h;
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)

where, w and 7 represent the width and height of the predicted box,
wy and A, denote the width and height of the ground truth box, and
w; and h; represent the width and height of the intersecting
rectangle between the predicted box and the ground truth box, as
shown in Figure 5.
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Figure 5 Schematic diagram of localization loss function
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where, (xu,yq) and (x,y) represent the center points of the ground
truth box and the predicted box, andW, and H, define the width and
height of the smallest enclosing box, as shown in Figure 5.

2.3.4 The classification loss: Varifocal loss
The classification 10SS Ly 1S formulated as follows:

—q-(q-logp+(1-¢)-log(l-p)), >0
Lc]s = LVanfocal = { (7)

n-p*-log(1-p), g=0

where, p represents the predicted IoU-Aware classification score, g
defines the target score, 1 represents the sample balance coefficient,
and A denotes decay factor.

By adjusting the decay factor A, the overall contribution of
negative samples to the loss is reduced.
2.4 Evaluation metric

In this paper, various evaluation metrics were employed to
assess the detection performance of the model, including P
(Precision), R (Recall), F1 score, AP (Average Precision), and
mAP (mean Average Precision).

TP
~ TP + FP ®)

where, TP (True Positive) represents the number of samples

P

correctly predicted as positive, FP (False Positive) represents the
number of samples incorrectly predicted as positive, and P
represents the proportion of true positive predictions among all
predicted positives.

TP
R=pr N ®)

where, FN (False Negative) represents the number of samples
incorrectly predicted as negative but that are actually positive, and R
defines the proportion of true positive predictions among all actual
positives.

F1_score = 2 PR (10)
- P+R
where, F1_Score represents the harmonic mean of P and R.
1
AP = | P(RIR (11)
where, AP defines the average of P at different R levels.
D_(AP)
mAP= 1 —— (12)

n

where, mAP represents the average of AP across n classes.

In addition, Grad-CAMP* (Gradient-weighted Class Activation
Mapping) heatmaps can be leveraged for visualizing deep
convolutional neural network models. Here, it was utilized for
facilitating the understanding of the decision-making process for the
model in cattle body detection.

2.5 Experimental setup

In this paper, the experimental environment configurations are
presented in the following:

The operating system was Linux Ubuntu 18.04, and the
software framework was PyTorch. The hardware configuration
consisted of an Intel Core i7 7800X processor, NVIDIA GeForce
GTX TITAN XP Graphic Processing Unit, and 128GB of memory.
Furthermore, the training epochs of all experiments were set as 100,
the batch size was 16, the learning rate was set as 0.01, the
momentum was 0.937, and input image resolutions for all
experiments were 640x640 pixels.

3 Experimental results and analysis

To thoroughly and precisely evaluate the effectiveness of the
proposed model YOLOvVS5-VF-W3, a comprehensive series of
experiments have been designed and executed. The subsequent
sections detail the specific experimental results and their
corresponding analyses.

3.1 Validating the effectiveness of the YOLOvS5-VF-W3 model

To comprehensively evaluate the performance of the YOLOvS5-
VF-W3 model, comparative experiments were performed with
multiple state-of-the-art detection architectures, including both
single-stage detectors (YOLOv2®, YOLOv3", YOLOv4!",
YOLOvSPY, and SSDP)) and the two-stage detector Faster-
RCNNE®Y, The comparative results are summarized in Table 1.

The comparison results presented in Table 1 demonstrate the
superior performance of the YOLOv5-VF-W3 model across various
evaluation metrics. Specifically, YOLOv5-VF-W3 achieved a
precision of 95.0%, surpassing SSD (2.93%), Faster-RCNN
(26.33%), YOLOV2 (20.25%), YOLOvV3 (6.74%), YOLOv4
(7.95%), and baseline YOLOVS (1.39%). The model obtained a
recall of 90.7%, exceeding SSD (7.72%), YOLOvV2 (17.79%),
YOLOV3 (6.71%), YOLOv4 (4.25%), and YOLOvVS (1.91%).
YOLOvV5-VF-W3 achieved an F1 score of 92.8%, showing
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improvements over SSD (5.45%), Faster-RCNN (11.94%),
YOLOvV2 (18.97%), YOLOvV3 (6.67%), YOLOv4 (6.67%), and
YOLOVS (1.64%). With an mAP of 95.2%, the YOLOvVS5-VF-W3
model outperformed the SSD, Faster-RCNN, YOLOv2, YOLOvV3,
YOLOv4, and YOLOVS models by margins of 3.25%, 6.61%,
14.56%, 4.27%, 3.14%, and 1.17%, respectively. These consistent
performance advantages across precision, recall, F1-score, and mAP
metrics collectively validate the enhanced detection capabilities of
this YOLOvV5-VF-W3 architecture compared to conventional single-
stage and two-stage detectors.

Table1 Comparative analysis of object detection
model performance

Model Precision/%  Recall/%  F1 Score/%  mAP/%
SSD 92.3 84.2 88.0 92.2
Faster-RCNN 75.2 92.3 82.9 89.3
YOLOvV2 79.0 77.0 78.0 83.1
YOLOV3 89.0 85.0 87.0 91.3
YOLOv4 88.0 87.0 87.0 92.3
YOLOV5 93.7 89.0 91.3 94.1
YOLOV5-VF-W3 95.0 90.7 92.8 95.2

It is worth noting that Faster-RCNN, being a two-stage
detector, produces high-quality candidate regions via its Region
Proposal Network (RPN), which is finely tuned to boost recall.
Consequently, in this experiment, YOLOvS-VF-W3’s recall is
slightly lower than that of Faster-RCNN. Nevertheless, YOLOvVS5-
VF-W3 outperforms the Faster-RCNN model in terms of mAP,
precision, and F1 score. Overall, the YOLOv5-VF-W3 model
demonstrates superior detection performance when compared to the
other models.

These results validate the effectiveness of the proposed
improvements in enhancing the performance of cattle body
detection.

3.2 Comparison of different models on key body parts of cattle

To thoroughly verify the efficacy of the YOLOvS5-VF-W3
model in detecting key parts of the cattle body, this study performed
an in-depth analysis of its performance on individual cattle as well
as specific body parts, namely the legs and head. By conducting a
comparative analysis, this study identified the specific differences in
performance among different models and summarized these results
in Table 2.

Table 2 Comparison of different models based on mAP across

cattle body detection

Model Cattle/% Leg/% Head/%
SSD 88.2 92.7 95.4
Faster-RCNN 89.3 88.1 90.5
YOLOvV2 88.1 72.0 89.3
YOLOV3 92.5 89.2 922
YOLOv4 93.4 90.7 92.7
YOLOvV5 94.8 93.4 94.0
YOLOV5-VF-W3 95.3 94.8 95.4

Samples 1-3 in the single-sample and double-sample detection
examples are free from occlusion and overlap, while samples 4-7 in
the multi-sample detection example exhibit varying degrees of
occlusion and overlap.

Table 2 illustrates that the YOLOvVS5-VF-W3 model exhibits
better performance in detecting individual cattle and key body parts
across most evaluation metrics. Specifically, the YOLOvVS-VF-W3

model achieved an impressive mAP of 95.3% in individual cattle
detection, outperforming the SSD, Faster-RCNN, YOLOV2,
YOLOv3, YOLOv4, and YOLOvV5 models by 8.05%, 6.72%,
8.17%, 3.03%, 2.03%, and 0.53%, respectively. Furthermore, in leg
object detection, the YOLOvV5-VF-W3 model attained an mAP of
94.8%, surpassing the aforementioned models by 2.27%, 7.60%,
31.67%, 6.28%, 4.52%, and 1.50%, respectively. Additionally, the
YOLOvV5-VF-W3 model excelled in head object detection with an
mAP of 95.4%, outperforming the Faster-RCNN, YOLOv2,
YOLOv3, YOLOv4, and YOLOVS models by 5.41%, 6.83%,
3.47%, 3.58%, 2.91%, and 1.49%, respectively. Table 2 indicates
that the YOLOv5-VF-W3 model outperforms all other models on
the mAP metric across various body parts.

To assess the detection performance of the model across
different complex scenarios, comparative experiments were carried
out using single-sample and double-sample data without occlusion,
as well as multi-sample data with occlusion. The qualitative
detection results are presented in Figure 6.

Sample 5 Sample 7
Sample 3 Sample 4 Sample 6

Sample 1 Sample 2

SSD &

Faster-RCNN &=

YOLOV2 =

YOLOV3 &

YOLOvV4 &=

YOLOV5

YOLOV5-VF-W3 &=

¢. Multi-sample
detection

b. Double-sample )
detection

a. Singl—sample
detection
Figure 6 Qualitative comparison of detection performance across

different models

Furthermore, to enhance the clarity of missed cattle body
detection counts originally presented in Figure 6, this study
provides explicit quantitative results through
visualization in Figure 7.

As illustrated in Figure 6 and Figure 7, the YOLOvS-VF-W3
model achieves better detection performance. Additionally, it
obtains the lowest missed detection number for cattle bodies,

comparative

highlighting its outstanding detection performance. This further
confirms the effectiveness of the YOLOvV5-VF-W3 model.

The superior performance of YOLOvV5-VF-W3 arises from the
synergistic incorporation of two critical components: the Varifocal
loss function and the WIoUv3 loss function. The Varifocal loss
function dynamically adjusts the weights of positive and negative
samples, enabling the model to focus more on challenging samples,



274 April, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 2

such as small or partially occluded cattle targets, during training.
Meanwhile, WIoUv3 focuses on anchor boxes with ordinary
quality, enhancing the localization accuracy of the model in
complex scenarios involving occlusion. Together, these
improvements enable YOLOVS5-VF-W3 to achieve better detection
performance in the challenging task of cattle body detection.

SSD == YOLOv4
== Faster-RCNN == YOLOVS5

YOLOv2 == YOLOvV5-VF-W3
== YOLOV3
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Figure 7 Comparison of missed detection number for cattle body
across different models

3.3 Comparison of models with different localization loss
functions

To assess the performance of the localization loss function
WIoUv3, this study compared models incorporating different
alternative formulations (including CloU, WIoUv1, and WloUv2),

with results reported in Table 3.

Table 3 showcases that the model employing the WIoUv3 loss
function demonstrates superior performance in detecting individual
cattle and their key body parts. Specifically, the model attained an
mAP of 95.0% for all object detections, marking improvements of
0.96%, 0.11%, and 0.11% over models using CloU, WIoUvl1, and
WIoUv2 loss functions, respectively. In the detection of individual
cattle, the mAP reached 95.1%, representing enhancements of
0.32%, 0.32%, and 0.21% compared to models utilizing CloU,
WIoUvl, and WIoUv2 loss functions, respectively. For the
detection of cattle legs, the mAP was 94.7%, showing improve-
ments of 1.39%, 0.21%, and 0.32% over models employing CloU,
WiloUvl1, and WIoUv2 loss functions, respectively. In the detection
of cattle heads, the mAP reached 95.4%, indicating an improvement
of 1.49% compared to the model using the CloU loss function.

Table 3 Comparative performance of localization loss
functions for cattle key body parts

Loss All/% Cattle/% Leg/% Head/%

CloU 94.1 94.8 93.4 94.0
WloUvl 94.9 94.8 94.5 95.4
WloUv2 94.9 94.9 94.4 95.4
WIoUv3 95.0 95.1 94.7 95.4

To showcase the performance enhancements from the WloUv3
localization loss function, Figure 8 provides a detailed visual
comparison of detection results across various loss formulations.
Notably, challenging scenarios involving distant and occluded
instances are emphasized through zoomed-in insets, positioned
above the corresponding subfigures for easier cross-method
evaluation.

As evidenced in Figure 8, the model employing the WloUv3
localization loss achieves optimal detection performance.
Specifically, in challenging scenarios involving distant and
occluded instances, the magnified subfigures reveal distinct
advantages of the WIoUv3-enhanced model. It demonstrates
superior detection quantity, improved localization accuracy, and

higher confidence scores compared to alternative loss functions.

a. CloU

b. WloUv1

c. WIloUv2 d. WloUv3

Note: a. CloU-based model, b. WIoU1-enhanced model, c. WloU2-optimized model, and d. WIoU3-enhanced model.

Figure 8 Qualitative performance comparison of models with diverse localization loss functions

The WIoUv3-optimized model achieves superior detection
performance in challenging scenarios, particularly for distant and
occluded instances, due to three key enhancements over CloU,
WIoUv1, and WIoUv2. Firstly, its dynamic gradient modulation
mechanism enhances learning for partially visible and distant
targets. Secondly, the curvature-sensitive formulation improves
boundary localization for occluded objects. Thirdly, the spatial
attention mechanism maintains stable gradient propagation for small

targets. These advancements enable precise detection across varying
scales, from cattle bodies to leg features.
3.4 Comparison of models with different classification loss
functions

To verify the effectiveness of the Varifocal loss function,
models utilizing various alternative formulations were compared,
namely Cross-Entropy loss (abbreviated as CEL) and Focal loss
(abbreviated as FL). The results of this comparison are presented in
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Table 4. For brevity, the Varifocal loss is referred to as VFL.

Table 4 reports that the model employing the VFL loss function
demonstrates optimal performance in detecting individual cattle and
their key body parts. Concretely, the model with VFL attained an
mAP of 94.8% for all object detections, marking improvements of
0.21% and 0.74% over models using FL and CEL loss functions,
respectively. In the detection of individual cattle, the mAP reached
95.0%, representing enhancements of 0.21% and 0.21% compared
to models utilizing FL and CEL loss functions, respectively. For the
detection of cattle legs, the mAP was 94.6%, showing
improvements of 0.11% and 1.28% over models employing FL and
CEL loss functions, respectively. In the detection of cattle heads,
the mAP reached 94.8%, indicating improvements of 0.21% and
0.85% compared to the models using FL and CEL loss functions.

To illustrate the performance improvements obtained by the

a. CEL

Zoome

b. FL

dein §

VFL classification loss function, Figure 9 offers a thorough visual

comparison of detection results achieved using various
classification loss formulations. Specifically, challenging scenarios
featuring distant and occluded instances are emphasized by
including zoomed-in insets, which are displayed above the
corresponding subfigures to enable direct comparisons across

different models.

Table 4 Comparative performance of different loss functions
for cattle key body parts

Loss All/% Cattle/% Leg/% Head/%

CEL 94.1 94.8 93.4 94.0
FL 94.6 94.8 94.5 94.6

VFL 94.8 95.0 94.6 94.8

c. VFL

Figure 9 Comparative performance of different loss functions for cattle key body parts

The Varifocal loss-optimized model demonstrates superior
classification performance in challenging scenarios due to several
reasons. Firstly, its asymmetric weighting mechanism emphasizes
positive samples while suppressing excessive negative gradients,
effectively handling partial visibility and low-confidence distant
targets. Secondly, the continuous IoU-aware score prediction
maintains better calibration between classification and localization
tasks.

3.5 Comparison of models with different loss function
combinations

To validate the effectiveness of the proposed localization
(WIoUv3) and classification (VFL) losses in cattle key body
detection tasks, this study conducted comparative experiments with
models configured with different loss combinations. Specifically,
this study evaluated four model variants: 1) baseline without either
proposed loss, 2) model with only the new localization loss,
3) model with only the new classification loss, and 4) model
incorporating both proposed losses. The comparative results are
systematically presented in Tables 5 and 6.

Table 5 Comparison of models with different loss
function combinations

Index WIoUv3 Varifocal Precision/% Recall/% F1 Score/% mAP/%
1 X X 93.7 89.0 91.3 94.1
2 v X 94.8 90.7 92.8 95.0
3 X v 94.9 90.3 92.5 94.8
4 V J 95.0 90.7 92.8 95.2

Tables 5 and 6 demonstrate that models incorporating the new
loss functions (WIoUv3, VFL) consistently outperform their
counterparts. Specifically, models with either the new localization
or classification loss achieve superior performance compared to the

baseline without these components, while models combining both
proposed losses exhibit further performance enhancements. These
experimental results validate the superiority of the proposed loss
functions To further validate the
effectiveness of the proposed loss functions, a comparative
visualization of Grad-CAM heatmaps across models with different
loss combinations was conducted, as presented in Figure 10. The

in cattle detection tasks.

results demonstrate that the model incorporating both the new
localization and classification losses exhibits the most human-
perception-aligned attention distribution among all evaluated
configurations.

Table 6 Performance metrics (mAP) for cattle body across
different loss function combination models

Index  WIoUv3  Varifocal  All/%  Cattle/%  Leg/%  Head/%
1 x x 94.1 94.8 93.4 94.0
2 \ x 95.0 95.1 94.7 95.4
3 x \ 94.8 95.0 94.6 94.8
4 \ \ 95.2 95.3 94.8 95.4

Specifically, from Figure 10, the following visualization results
can be observed. For individual cattle detection, while all models
demonstrate competent attention distribution, the VFL and WIloUv3-
enhanced model achieves more centralized and focused attention,
facilitating superior detection accuracy.

In cattle leg detection, baseline models without VFL and
WIoUv3 losses primarily focus on knee regions, while models
incorporating either VFL or WIoUv3 demonstrate extended
attention coverage across entire leg areas. Notably, WIoUv3-
enhanced models maintain precise attention localization even for
small-scale leg targets in distant image regions, as evidenced in the
top-right corner of the figure.
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c. Grad-Cam
heatmap of cattle heatmap of leg heatmap of head

b. Grad-Cam d. Grad-Cam

Note: The areas with deeper colors indicate that the model pays more attention

during decision making.

Figure 10 The Grad-CAM heatmaps of the models using different
combinations of loss functions

WIloUv3-enhanced models
demonstrate significantly improved attention localization on the
leftmost head region.

For cattle head detection,

4 Conclusions

This paper develops a novel precise cattle key body detection
solution, YOLOV5-VF-W3, which significantly enhances the
efficiency and quality of animal husbandry production. By
incorporating the Varifocal loss, the model effectively addresses the
issue of imbalanced samples and focuses more on difficult-to-
recognize instances. Furthermore, the introduction of the WIoUv3
loss function provides a wise gradient gain allocation strategy,
reducing the competitiveness of high-quality anchor boxes while
effectively mitigating the adverse gradients stemming from low-
quality anchor boxes, thereby emphasizing anchor boxes of ordinary
quality. Experimental results demonstrate that the YOLOvVS5-VF-W3
model achieves superior cattle body detection results, with an mAP
of 95.2%. Specifically, the model excels in individual cattle
detection, leg detection, and head detection, reaching accuracies of
95.3%, 94.8%, and 95.4%, respectively. Moreover, the model
performs accurately and efficiently in complex detection scenarios,
especially when dealing with small targets and occlusions.

In future research, various data augmentation techniques will
be explored to further enhance the robustness of the model.
Additionally, comparative experiments with different loss functions
are planned to more precisely control the contributions of samples
and anchor boxes with varying qualities, with the aim of achieving
better performance. Through these efforts, the advancement of
precision livestock farming is expected to be driven, providing more
effective and intelligent technological support for agricultural
production.
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