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Abstract: Accurate cattle body detection can significantly enhance the efficiency and quality of animal husbandry production.
Traditional  manual  observation  approaches  are  not  only  inefficient  but  also  lack  objectivity,  while  computer  vision-based
methods  demand  prolonged  training  periods  and  present  challenges  in  implementation.  To  address  these  issues,  this  paper
develops  a  novel  precise  cattle  body  detection  solution,  namely  YOLOv5-VF-W3.  By  introducing  the  Varifocal  loss,  the
YOLOv5-VF-W3  model  can  handle  imbalanced  samples  and  focus  more  attention  on  difficult-to-recognize  instances.
Additionally,  the introduction of the WIoUv3 loss function provides the model  with a wise gradient  gain allocation strategy.
This strategy reduces the competitiveness of high-quality anchor boxes while mitigating harmful gradients produced by low-
quality anchor boxes, thereby emphasizing anchor boxes of ordinary quality. Through these enhancements, the YOLOv5-VF-
W3 model can accurately detect cattle bodies, improving the efficiency and quality of animal husbandry production. Numerous
experimental  results  have  demonstrated  that  the  proposed  YOLOv5-VF-W3  model  achieves  superior  cattle  body  detection
results  in  both  quantitative  and qualitative  evaluation criteria.  Specifically,  the  YOLOv5-VF-W3 model  achieves  an mAP of
95.2% in cattle body detection, with individual cattle detection, leg detection, and head detection reaching 95.3%, 94.8%, and
95.4%, respectively. Furthermore, in complex scenarios, especially when dealing with small targets and occlusions, the model
can accurately and efficiently detect individual cattle and key body parts. This brings new opportunities for the development of
precision livestock farming.
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1    Introduction
In modern animal husbandry, monitoring the health of cattle is

crucial. By observing the body posture, overall condition, eyes, hair,
and  other  relevant  factors  of  cattle,  their  health  status  can  be
assessed.  Therefore,  to  ensure  the  effectiveness  of  cattle  health
monitoring,  it  is  crucial  to  implement  more  precise  and  efficient
methods for cattle body detection.

Traditional  approaches  to  cattle  health  monitoring  encompass
direct  observation  or  physical  contact  as  means  to  evaluate  their
health status. This qualitative technique is adept at identifying early
indicators of health problems, thereby enabling timely measures to
be  implemented[1].  Nonetheless,  owing  to  gaps  in  the  frequency  of
monitoring, this method risks overlooking crucial health conditions
or behavioral patterns that cattle may display at particular instances.
Additionally,  it  demands  a  considerable  investment  of  human

resources and labor.
With  the  development  of  Radio  Frequency  Identification

(RFID)  technology  and  wearable  devices,  physical  devices  have
played a significant role in the automated collection and analysis of
individual information and health data of cattle, effectively reducing
the pressure of manual monitoring[2]. RFID technology is applied by
installing  devices  such  as  ear  tags  on  the  cattle’s  ears[3].  Although
this method has been widely adopted, it does not fully comply with
the requirements of animal welfare. In addition, RFID devices also
have some limitations, such as tag detachment, loss, malfunction, or
duplication, all of which can affect the accuracy of identification[4].
Meanwhile,  wearable  devices  have  been  proven  to  significantly
improve  the  precision  of  cattle  positioning  and  behavior
monitoring[5,6]. However, most of these devices lack the capability to
visually capture and validate the movements of cattle through visual
imagery. Therefore, in some cases, behavior classification based on
wearable  devices  may not  accurately  reflect  the  actual  behavior  of
the cattle, leading to false reports.

With  the  rapid  advancement  of  computer  vision  technology,
utilizing  visual  features  for  cattle  inspection  has  gradually  become
the core focus of research in this field.  Computer vision is utilized
to  automatically  identify  individual  cattle  as  well  as  monitor  their
behavior  and  health  status,  which  is  of  great  significance  for
improving  breeding  efficiency,  disease  prevention,  and  health
management[7].  Bercovich  et  al.[8]  and  Zhao  et  al.[9]  respectively
designed different tools based on computer vision, with the former
achieving  automatic  scoring  of  cow  body  condition  and  the  latter
achieving a recognition accuracy of 96.72% for cows. Gao et  al.[10]

utilized  a  method  of  multiple  feature  fusion  to  extract  features  of
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cows  and  employed  a  classifier  trained  with  the  Gentle  Adaboost
algorithm for cattle  body detection,  achieving a detection accuracy
of 97.3%. Liu et al.[11] proposed a two-class classification algorithm
based  on  chromatic  distortion  and  brightness  distortion,  achieving
realtime  extraction  of  cow  targets  under  complex  background  and
environmental  conditions.  Kaur  et  al.[12]  achieved  an  83.35%
improvement in cattle recognition accuracy by combining the use of
a  random  forest  classifier  with  image  feature  extraction  methods
such as SIFT and SURF. The above mentioned traditional computer
vision  and  machine  learning-based  methods  for  cattle  health
monitoring often require redesigning and adjusting parameters when
faced  with  new  datasets  or  tasks.  This  results  in  relatively  weak
model generalization ability.

In  order  to  further  improve  the  performance  of  cattle  body
detection  models,  deep  learning-based  methods  are  increasingly
gaining  attention  from  researchers.  These  methods  fully  leverage
the  advantages  of  deep  learning  technology,  such  as  powerful
feature  learning,  classification,  and  generalization  capabilities,
thereby greatly improving the accuracy and efficiency of cattle body
detection.  Tassinari  et  al.[13],  Lodkaew  et  al.[14],  and  Xiao  et  al.[15]

respectively  employed  YOLOv3[16],  YOLOv4[17],  and  an  improved
Mask-RCNN[18] model to label and train data collected from indoor
Holstein  cows  with  fixed  cameras.  In  their  studies,  the  average
precision  of  cattle  body  detection  reached  64.0%,  90.0%,  and
97.39%, respectively. Shao et al.[19], Weber et al.[20], Andrew et al.[21],
and Xu et  al.[22]  respectively utilized YOLOv2[23],  YOLOv4, Faster-
RCNN[24],  and  Mask-RCNN  models  to  label  and  train  datasets  of
cattle  herds  captured  by  drones,  achieving  cattle  body  detection
accuracies of 95.0%, 98.0%, 99.6%, and 96.0%, respectively. These
excellent  detection  results  are  due  to  the  significant  differences  in
the color of the cattle’s body and the pasture, making them easy to
distinguish.  Additionally,  it  is  worth  noting  that  Faster-RCNN and
Mask-RCNN belong to  two-stage object  detectors,  which typically
require longer training and detection times, making them unsuitable
for realtime detection in cattle farms.

Despite  the  certain  development  of  cattle  body  detection
technology,  especially  its  outstanding  performance  in  application
scenarios such as automatic counting[25] and behavior monitoring[26],
relying  solely  on  the  detection  of  the  entire  cattle  body  is  still
insufficient  for  in-depth  analysis  of  cattle  behavior  patterns  and
health  status.  By  accurately  identifying  the  key  parts  of  the  cattle
body, this approach can not only significantly improve the accuracy
of  disease  diagnosis  but  also  further  refine  behavior  analysis.  This
includes,  but  is  not  limited  to,  monitoring  cattle  for  lameness[27],
identifying  rumination  behavior[28],  and  individual  identification
through facial  features of  cattle[29,30].  Therefore,  the detection of the
key parts can facilitate a deeper understanding and management of
the  cattle  herd,  thereby  optimizing  breeding  efficiency  and  animal
welfare.

Although  the  aforementioned  methods  have  demonstrated
significant  efficacy in cattle  body detection tasks,  they still  exhibit
notable  limitations  in  detecting  small  targets  within  images,
particularly  when  confronted  with  complex  scenarios  involving
occlusion.

YOLOv5  (You  Only  Look  Once)[31]  is  recognized  as  having
significant advantages over its previous versions in object detection
tasks.  However,  it  has  been  observed  that  YOLOv5  tends  to  miss
the key small-sized parts of cattle, such as the head and legs, and its
detection  performance  is  not  ideal  in  scenes  where  cattle  are
obstructed.

To  enhance  the  detection  capability  in  such  challenging

scenarios, this study leverages the strengths of Varifocal loss[32] and
WIoUv3[33].  Varifocal  loss  is  a  classification  loss  function  that
introduces an adjustable parameter to adaptively adjust the weights
of  positive  and  negative  samples.  This  mechanism  enables  the
model to focus more on difficult-to-classify samples, such as small
or  partially  occluded targets,  thereby improving its  learning ability
for  challenging  cases  and  enhancing  the  overall  performance  and
robustness of the model.

WIoUv3, on the other hand, is a localization loss function that
proposes  a  dynamic  non-monotonic  focusing  mechanism.  This
mechanism  employs  "outlier"  to  evaluate  the  quality  of  anchor
boxes instead of relying solely on IoU. It  provides a wise gradient
gain allocation strategy, which reduces the competitiveness of high-
quality  anchor  boxes  while  mitigating  the  harmful  gradients
produced  by  low-quality  anchor  boxes.  This  approach  allows  the
model to focus more on anchor boxes of ordinary quality, which are
more  likely  to  represent  partially  occluded  targets,  thereby
improving the generalization ability and performance of  the model
in complex detection scenes.

To address the degraded detection accuracy of small targets in
occluded  cattle  body  scenarios,  this  paper  innovatively  integrates
the Varifocal loss function and the WIoUv3 regression loss function
into the YOLOv5 framework.

Overall,  the  contribution  of  this  paper  is  summarized  as
follows:

1)  This  paper  proposes  a  novel  YOLOv5-VF-W3  model
designed to efficiently detect cattle bodies. The model addresses the
issue  of  sample  imbalance  by  adjusting  the  sample  weights.
Additionally,  it  improves  detection  performance  in  scenarios  with
small targets and occlusions by focusing on ordinary anchor boxes.

2)  Two  loss  functions,  Varifocal  and  WIoUv3,  are  first
leveraged  in  the  cattle  body  detection  framework.  The  Varifocal
loss  function  adjusts  the  weight  of  positive  and  negative  samples,
emphasizing  more  difficult  samples.  The  WIoUv3  loss  improves
anchor  box  quality  by  incorporating  a  non-monotonic  focus
coefficient,  which  reduces  the  impact  of  high-quality  anchors  and
mitigates harmful gradients from low-quality ones.  Together,  these
losses enable the model to better focus on challenging samples and
ordinary quality anchor boxes, thereby enhancing both performance
and robustness.

3)  Through  numerous  ablation  studies,  the  superior
performance  of  the  YOLOv5-VF-W3  model  in  cattle  key  body
detection tasks is  demonstrated in the experiment.  Specifically,  the
model achieves a mean Average Precision (mAP) of 95.2% in cattle
body detection, with individual detection scores for the cattle body,
legs,  and  head  reaching  95.3%,  94.8%,  and  95.4%,  respectively.
These  results  emphasize  its  high  efficiency  and  practical
applicability. 

2    Materials and methods
 

2.1    Datasets
This  paper  aims  to  develop  an  efficient  detection  model  for

Jinnan cattle, based on image data collected from the Jinnan Cattle
Genetic  Resource  Gene  Protection  Center  in  Yuncheng  City.  The
work covered a series of data collection activities on healthy Jinnan
cattle  from  July  to  October  2021.  To  ensure  the  diversity  and
complexity  of  the  dataset,  Canon  EOS  1300D  cameras  and  SEA-
AL10  smartphones  were  employed  to  capture  images  of  the  cattle
from different angles and under various weather conditions between
7:00 AM and 8:00 PM daily. The cattle were divided into three age
groups:  calves  from  birth  to  six  months,  young  cattle  from  six
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months to two years, and adult cattle older than two years, with all
images taken in natural environments, as shown in Figure 1.
 
 

a. Under 6 months

b. 6 months to 2 years old

c. 2 years old and older

Figure 1    The collected data samples for cattle body detection
 

In the process of building the dataset, highly repetitive or blurry
images  were  first  manually  filtered  out  from  the  sequentially
captured images to ensure data quality. Subsequently, the Labelimg
tool  was  employed  to  precisely  annotate  individual  cattle,  heads,
and  legs  in  the  images,  with  the  annotated  results  saved  as  TXT
format files. Through this series of steps, a dataset containing 8024
images,  including  113  images  of  Jinnan  cattle  and  their  annotated
files,  was  ultimately  obtained.  Some  example  images  from  the
dataset are shown in Figure 2.
 
 

a. Multi-sample b. Single-sample

Figure 2    Some examples of annotated cattle images
 

To comprehensively evaluate the performance of the developed
model,  the  dataset  was  randomly  divided  into  training,  validation,
and test sets at a ratio of 7:2:1. Specifically, the training set contains
5617 samples, the validation set contains 1604 samples, and the test
set  contains  803  samples.  Several  instances  of  cattle  data
augmentation are shown in Figure 3.
 
 

a. Translate b. Vertical flip c. Color dithering

d. Mosaic e. Horizontal flip f. Scale

Figure 3    Several instances of cattle data augmentation
  

2.2    Technical roadmap
The  technical  roadmap  of  the  cattle  body  detection  model

proposed in this paper is shown in Figure 4. To minimize the impact
of data noise on model training, video frames of cattle are randomly
sampled  and  preprocessed  to  generate  images.  Furthermore,  to
enhance  the  diversity  of  the  data  and  simulate  different  scenarios,
various  data  augmentation  techniques,  including  translate,  vertical
flip,  color  dithering,  mosaic,  horizontal  flip,  and  scale,  were
employed.  The  application  of  these  methods  aims  to  improve  the
generalization  ability  and  accuracy  of  the  model  under  various

conditions. The data is then accurately annotated to identify the key
body  parts  of  the  cattle,  providing  precise  supervisory  signals  for
model  training.  Next,  the  YOLOv5-VF-W3  model  is  utilized  for
training, enabling the model to learn to recognize and detect the key
body parts of the cattle. Finally, the trained model is evaluated, and
the accuracy and effectiveness of the detection results are analyzed
to ensure the practicality and reliability of the detection model.
 
 

Cattle

dataset collection

Cattle

data preprocessing

Cattle

data enhancement

Cattle body data

labeling

YOLOv5-VF-W3Model training
Cattle

body detection
Results

Figure 4    The technical roadmap of cattle body detection model
  

2.3    YOLOv5-VF-W3 model
The novel YOLOv5-VF-W3 model is proposed by ingeniously

integrating the Varifocal and WIoUv3 loss functions into YOLOv5.
Specifically, the loss contribution of negative samples is reduced by
the  Varifocal  loss  function,  thereby  improving  the  classification
performance of the model. Additionally, a non-monotonic focusing
mechanism is  introduced by the  WIoUv3 loss  function,  enabling a
gradient  gain  allocation  strategy  that  best  fits  the  current  situation
for anchor boxes of different qualities during training, which in turn
enhances the localization performance of the model. As a result, this
ingenious  design  of  loss  significantly  enhances  the  detection
performance  of  the  model.  Moreover,  this  design  strengthens  the
robustness  of  the  model,  allowing  the  network  to  learn  more
comprehensive features. In this paper, our primary innovation lies in
the application of  loss  functions.  Therefore,  for  the network of  the
model, please refer to YOLOv5[31]. 

2.3.1    The loss function

Lconf Lloc

Lcls

In the task of cattle body detection, the choice of loss function
has  a  significant  impact  on  the  training  and  performance  of  the
model.  Different  loss  functions  can  guide  the  model  to  learn
different  features  and  representations,  affecting  the  accuracy  and
stability of the model in the object detection task. The loss function
of  the  proposed  YOLOv5-VF-W3  model  consists  of  three  terms,
including the confidence loss ( ), the localization loss ( ), and
the classification loss ( ), respectively.

Loss = Lconf +Lloc +Lcls (1)

In the following, the detailed definition of these loss terms will
be given. 

2.3.2    The confidence loss
LconfThe confidence loss   quantifies the accuracy of the model

in  predicting  the  presence  or  absence  of  a  target.  Thus,  it  ensures
that  the  model  can  accurately  assess  whether  cattle  are  present  in
the image.

The  confidence  loss  employed  in  this  paper  shares  the  same
definition  of  that  in  YOLOv5[31],  and  detailed  information  can  be
found in the corresponding paper. 

2.3.3    The localization loss: WIoUv3 loss
LWIoUv3The localization loss   is formulated as follows:

Lloc = LWIoUv3 = r ·RWIoU ·LIoU, r =
β

δ ·αβ−δ (2)

α δ β

r
LIoU

where    and    are  configured  as  hyperparameters;    defines  the
outlier  degree,  as  defined  in  Equation  3;    represents  a  non-
monotonic focus coefficient;    indicates the degree of mismatch
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RWIoU

LWIoUv3

or dissimilarity between the ground truth box and the predicted box,
presented  in  Equation  4;   denotes  a  loss  function  constructed
based  on  a  distance  metric,  as  shown  in  Equation  6;  and 
defines a loss function featuring a dynamic non-monotonic focusing
mechanism and incorporating geometric constraints such as distance
and overlap.

β =
L∗IoU
LIoU

∈ [0,+∞) (3)

L∗IoU LIoU LIoU

LIoU

where,   represents the   of the current predicted box, and 
is the mean   over a set of predicted boxes.

LIoU = 1− IoU (4)

IoUwhere,   represents the ratio of the area of overlap between the
predicted box and the ground truth box to the area of their union, as
defined in Equation 5.

IoU = wi ·hi

w ·h+wgt ·hgt −wi ·hi

(5)

wgt hgt

wi hi

where, w and h represent the width and height of the predicted box,
 and   denote the width and height of the ground truth box, and
  and    represent  the  width  and  height  of  the  intersecting

rectangle  between  the  predicted  box  and  the  ground  truth  box,  as
shown in Figure 5.
  

Wi

Hg

hgt

hi

Wg

wgt

w

Ground truth box

Predicted box

(xgt , ygt)

(x , y)

Figure 5    Schematic diagram of localization loss function
 

RWIoU = exp
Å
(x− xgt)2

+ (y− ygt)2

(W2
g +H2

g)

ã
(6)

(xgt,ygt) (x,y)
Wg Hg

where,   and    represent  the  center  points  of  the  ground
truth box and the predicted box, and  and   define the width and
height of the smallest enclosing box, as shown in Figure 5. 

2.3.4    The classification loss: Varifocal loss
LVarifocalThe classification loss   is formulated as follows:

Lcls = LVarifocal =

®
−q · (q · log p+ (1−q) · log(1− p)), q > 0

η · pλ · log(1− p), q = 0
(7)

p q
η

λ

where,   represents the predicted IoU-Aware classification score, 
defines the target score,   represents the sample balance coefficient,
and   denotes decay factor.

λBy  adjusting  the  decay  factor  ,  the  overall  contribution  of
negative samples to the loss is reduced. 

2.4    Evaluation metric
In  this  paper,  various  evaluation  metrics  were  employed  to

assess  the  detection  performance  of  the  model,  including  P
(Precision),  R  (Recall),  F1_score,  AP  (Average  Precision),  and
mAP (mean Average Precision).

P =
TP

TP + FP (8)

where,  TP  (True  Positive)  represents  the  number  of  samples

correctly  predicted  as  positive,  FP  (False  Positive)  represents  the
number  of  samples  incorrectly  predicted  as  positive,  and  P
represents  the  proportion  of  true  positive  predictions  among  all
predicted positives.

R =
TP

TP + FN (9)

where,  FN  (False  Negative)  represents  the  number  of  samples
incorrectly predicted as negative but that are actually positive, and R
defines the proportion of true positive predictions among all actual
positives.

F1_score =
2 ·P ·R
P+R

(10)

where, F1_Score represents the harmonic mean of P and R.

AP =
w 1

0
P(R)dR (11)

where, AP defines the average of P at different R levels.

mAP =

n∑
1

(AP)

n
(12)

where, mAP represents the average of AP across n classes.
In addition, Grad-CAM[34] (Gradient-weighted Class Activation

Mapping)  heatmaps  can  be  leveraged  for  visualizing  deep
convolutional  neural  network  models.  Here,  it  was  utilized  for
facilitating the understanding of the decision-making process for the
model in cattle body detection. 

2.5    Experimental setup
In this paper,  the experimental  environment configurations are

presented in the following:
The  operating  system  was  Linux  Ubuntu  18.04,  and  the

software  framework  was  PyTorch.  The  hardware  configuration
consisted  of  an  Intel  Core  i7  7800X  processor,  NVIDIA  GeForce
GTX TITAN XP Graphic Processing Unit, and 128GB of memory.
Furthermore, the training epochs of all experiments were set as 100,
the  batch  size  was  16,  the  learning  rate  was  set  as  0.01,  the
momentum  was  0.937,  and  input  image  resolutions  for  all
experiments were 640×640 pixels. 

3    Experimental results and analysis
To  thoroughly  and  precisely  evaluate  the  effectiveness  of  the

proposed  model  YOLOv5-VF-W3,  a  comprehensive  series  of
experiments  have  been  designed  and  executed.  The  subsequent
sections  detail  the  specific  experimental  results  and  their
corresponding analyses. 

3.1    Validating the effectiveness of the YOLOv5-VF-W3 model
To comprehensively evaluate the performance of the YOLOv5-

VF-W3  model,  comparative  experiments  were  performed  with
multiple  state-of-the-art  detection  architectures,  including  both
single-stage  detectors  (YOLOv2[23],  YOLOv3[16],  YOLOv4[17],
YOLOv5[31],  and  SSD[35])  and  the  two-stage  detector  Faster-
RCNN[24]. The comparative results are summarized in Table 1.

The  comparison  results  presented  in  Table  1  demonstrate  the
superior performance of the YOLOv5-VF-W3 model across various
evaluation  metrics.  Specifically,  YOLOv5-VF-W3  achieved  a
precision  of  95.0%,  surpassing  SSD  (2.93%),  Faster-RCNN
(26.33%),  YOLOv2  (20.25%),  YOLOv3  (6.74%),  YOLOv4
(7.95%),  and  baseline  YOLOv5  (1.39%).  The  model  obtained  a
recall  of  90.7%,  exceeding  SSD  (7.72%),  YOLOv2  (17.79%),
YOLOv3  (6.71%),  YOLOv4  (4.25%),  and  YOLOv5  (1.91%).
YOLOv5-VF-W3  achieved  an  F1  score  of  92.8%,  showing
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improvements  over  SSD  (5.45%),  Faster-RCNN  (11.94%),
YOLOv2  (18.97%),  YOLOv3  (6.67%),  YOLOv4  (6.67%),  and
YOLOv5  (1.64%).  With  an  mAP  of  95.2%,  the  YOLOv5-VF-W3
model  outperformed  the  SSD,  Faster-RCNN,  YOLOv2,  YOLOv3,
YOLOv4,  and  YOLOv5  models  by  margins  of  3.25%,  6.61%,
14.56%,  4.27%,  3.14%,  and  1.17%,  respectively.  These  consistent
performance advantages across precision, recall, F1-score, and mAP
metrics  collectively  validate  the  enhanced  detection  capabilities  of
this YOLOv5-VF-W3 architecture compared to conventional single-
stage and two-stage detectors.
 
 

Table 1    Comparative analysis of object detection
model performance

Model Precision/% Recall/% F1 Score/% mAP/%
SSD 92.3 84.2 88.0 92.2

Faster-RCNN 75.2 92.3 82.9 89.3
YOLOv2 79.0 77.0 78.0 83.1
YOLOv3 89.0 85.0 87.0 91.3
YOLOv4 88.0 87.0 87.0 92.3
YOLOv5 93.7 89.0 91.3 94.1

YOLOv5-VF-W3 95.0 90.7 92.8 95.2
 

It  is  worth  noting  that  Faster-RCNN,  being  a  two-stage
detector,  produces  high-quality  candidate  regions  via  its  Region
Proposal  Network  (RPN),  which  is  finely  tuned  to  boost  recall.
Consequently,  in  this  experiment,  YOLOv5-VF-W3’s  recall  is
slightly  lower  than  that  of  Faster-RCNN.  Nevertheless,  YOLOv5-
VF-W3  outperforms  the  Faster-RCNN  model  in  terms  of  mAP,
precision,  and  F1  score.  Overall,  the  YOLOv5-VF-W3  model
demonstrates superior detection performance when compared to the
other models.

These  results  validate  the  effectiveness  of  the  proposed
improvements  in  enhancing  the  performance  of  cattle  body
detection. 

3.2    Comparison of different models on key body parts of cattle
To  thoroughly  verify  the  efficacy  of  the  YOLOv5-VF-W3

model in detecting key parts of the cattle body, this study performed
an in-depth analysis of its performance on individual cattle as well
as  specific  body parts,  namely the  legs  and head.  By conducting a
comparative analysis, this study identified the specific differences in
performance among different models and summarized these results
in Table 2.
 
 

Table 2    Comparison of different models based on mAP across
cattle body detection

Model Cattle/% Leg/% Head/%
SSD 88.2 92.7 95.4

Faster-RCNN 89.3 88.1 90.5
YOLOv2 88.1 72.0 89.3
YOLOv3 92.5 89.2 92.2
YOLOv4 93.4 90.7 92.7
YOLOv5 94.8 93.4 94.0

YOLOv5-VF-W3 95.3 94.8 95.4
 

Samples 1-3 in the single-sample and double-sample detection
examples are free from occlusion and overlap, while samples 4-7 in
the  multi-sample  detection  example  exhibit  varying  degrees  of
occlusion and overlap.

Table  2  illustrates  that  the  YOLOv5-VF-W3  model  exhibits
better performance in detecting individual cattle and key body parts
across  most  evaluation  metrics.  Specifically,  the  YOLOv5-VF-W3

model  achieved  an  impressive  mAP  of  95.3%  in  individual  cattle
detection,  outperforming  the  SSD,  Faster-RCNN,  YOLOv2,
YOLOv3,  YOLOv4,  and  YOLOv5  models  by  8.05%,  6.72%,
8.17%, 3.03%, 2.03%, and 0.53%, respectively. Furthermore, in leg
object  detection,  the  YOLOv5-VF-W3  model  attained  an  mAP  of
94.8%,  surpassing  the  aforementioned  models  by  2.27%,  7.60%,
31.67%,  6.28%,  4.52%,  and  1.50%,  respectively.  Additionally,  the
YOLOv5-VF-W3 model  excelled  in  head  object  detection  with  an
mAP  of  95.4%,  outperforming  the  Faster-RCNN,  YOLOv2,
YOLOv3,  YOLOv4,  and  YOLOv5  models  by  5.41%,  6.83%,
3.47%,  3.58%,  2.91%,  and  1.49%,  respectively.  Table  2  indicates
that  the  YOLOv5-VF-W3  model  outperforms  all  other  models  on
the mAP metric across various body parts.

To  assess  the  detection  performance  of  the  model  across
different complex scenarios,  comparative experiments were carried
out using single-sample and double-sample data without occlusion,
as  well  as  multi-sample  data  with  occlusion.  The  qualitative
detection results are presented in Figure 6.
 
 

a. Single-sample

detection

b. Double-sample

detection

c. Multi-sample

detection

SSD

Faster-RCNN

YOLOv2

YOLOv3

YOLOv4

YOLOv5

YOLOv5-VF-W3

Sample 1 Sample 2 Sample 3 Sample 4

Sample 5

Sample 6

Sample 7

Figure 6    Qualitative comparison of detection performance across
different models

 

Furthermore,  to  enhance  the  clarity  of  missed  cattle  body
detection  counts  originally  presented  in  Figure  6,  this  study
provides  explicit  quantitative  results  through  comparative
visualization in Figure 7.

As  illustrated  in Figure  6  and Figure  7,  the  YOLOv5-VF-W3
model  achieves  better  detection  performance.  Additionally,  it
obtains  the  lowest  missed  detection  number  for  cattle  bodies,
highlighting  its  outstanding  detection  performance.  This  further
confirms the effectiveness of the YOLOv5-VF-W3 model.

The superior performance of YOLOv5-VF-W3 arises from the
synergistic  incorporation  of  two critical  components:  the  Varifocal
loss  function  and  the  WIoUv3  loss  function.  The  Varifocal  loss
function  dynamically  adjusts  the  weights  of  positive  and  negative
samples, enabling the model to focus more on challenging samples,
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such  as  small  or  partially  occluded  cattle  targets,  during  training.
Meanwhile,  WIoUv3  focuses  on  anchor  boxes  with  ordinary
quality,  enhancing  the  localization  accuracy  of  the  model  in
complex  scenarios  involving  occlusion.  Together,  these
improvements  enable  YOLOv5-VF-W3 to  achieve  better  detection
performance in the challenging task of cattle body detection.
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Figure 7    Comparison of missed detection number for cattle body
across different models

  
3.3    Comparison  of  models  with  different  localization  loss
functions

To  assess  the  performance  of  the  localization  loss  function
WIoUv3,  this  study  compared  models  incorporating  different
alternative  formulations  (including  CIoU,  WIoUv1,  and  WIoUv2),

with results reported in Table 3.
Table 3 showcases that the model employing the WIoUv3 loss

function demonstrates superior performance in detecting individual
cattle  and their  key body parts.  Specifically,  the model  attained an
mAP of  95.0% for  all  object  detections,  marking improvements  of
0.96%,  0.11%,  and 0.11% over  models  using  CIoU,  WIoUv1,  and
WIoUv2 loss functions,  respectively.  In the detection of individual
cattle,  the  mAP  reached  95.1%,  representing  enhancements  of
0.32%,  0.32%,  and  0.21%  compared  to  models  utilizing  CIoU,
WIoUv1,  and  WIoUv2  loss  functions,  respectively.  For  the
detection  of  cattle  legs,  the  mAP  was  94.7%,  showing  improve-
ments of 1.39%, 0.21%, and 0.32% over models employing CIoU,
WIoUv1, and WIoUv2 loss functions, respectively. In the detection
of cattle heads, the mAP reached 95.4%, indicating an improvement
of 1.49% compared to the model using the CIoU loss function.
  

Table 3    Comparative performance of localization loss
functions for cattle key body parts

Loss All/% Cattle/% Leg/% Head/%

CIoU 94.1 94.8 93.4 94.0

WIoUv1 94.9 94.8 94.5 95.4

WIoUv2 94.9 94.9 94.4 95.4

WIoUv3 95.0 95.1 94.7 95.4
 

To showcase the performance enhancements from the WIoUv3
localization  loss  function,  Figure  8  provides  a  detailed  visual
comparison  of  detection  results  across  various  loss  formulations.
Notably,  challenging  scenarios  involving  distant  and  occluded
instances  are  emphasized  through  zoomed-in  insets,  positioned
above  the  corresponding  subfigures  for  easier  cross-method
evaluation.

As  evidenced  in  Figure  8,  the  model  employing  the  WIoUv3
localization  loss  achieves  optimal  detection  performance.
Specifically,  in  challenging  scenarios  involving  distant  and
occluded  instances,  the  magnified  subfigures  reveal  distinct
advantages  of  the  WIoUv3-enhanced  model.  It  demonstrates
superior  detection  quantity,  improved  localization  accuracy,  and
higher confidence scores compared to alternative loss functions.

 
 

a. CIoU b. WIoUv1 c. WIoUv2 d. WIoUv3

Zoomed-in Zoomed-in Zoomed-in Zoomed-in

Note: a. CIoU-based model, b. WIoU1-enhanced model, c. WIoU2-optimized model, and d. WIoU3-enhanced model.

Figure 8    Qualitative performance comparison of models with diverse localization loss functions
 

The  WIoUv3-optimized  model  achieves  superior  detection
performance  in  challenging  scenarios,  particularly  for  distant  and
occluded  instances,  due  to  three  key  enhancements  over  CIoU,
WIoUv1,  and  WIoUv2.  Firstly,  its  dynamic  gradient  modulation
mechanism  enhances  learning  for  partially  visible  and  distant
targets.  Secondly,  the  curvature-sensitive  formulation  improves
boundary  localization  for  occluded  objects.  Thirdly,  the  spatial
attention mechanism maintains stable gradient propagation for small

targets. These advancements enable precise detection across varying
scales, from cattle bodies to leg features.
 

3.4    Comparison  of  models  with  different  classification  loss
functions

To  verify  the  effectiveness  of  the  Varifocal  loss  function,
models  utilizing  various  alternative  formulations  were  compared,
namely  Cross-Entropy  loss  (abbreviated  as  CEL)  and  Focal  loss
(abbreviated as FL). The results of this comparison are presented in
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Table 4. For brevity, the Varifocal loss is referred to as VFL.
Table 4 reports that the model employing the VFL loss function

demonstrates optimal performance in detecting individual cattle and
their  key  body  parts.  Concretely,  the  model  with  VFL  attained  an
mAP of  94.8% for  all  object  detections,  marking improvements  of
0.21%  and  0.74%  over  models  using  FL  and  CEL  loss  functions,
respectively. In the detection of individual cattle, the mAP reached
95.0%,  representing  enhancements  of  0.21% and  0.21% compared
to models utilizing FL and CEL loss functions, respectively. For the
detection  of  cattle  legs,  the  mAP  was  94.6%,  showing
improvements of 0.11% and 1.28% over models employing FL and
CEL  loss  functions,  respectively.  In  the  detection  of  cattle  heads,
the  mAP  reached  94.8%,  indicating  improvements  of  0.21%  and
0.85% compared to the models using FL and CEL loss functions.

To  illustrate  the  performance  improvements  obtained  by  the

VFL classification  loss  function, Figure  9 offers  a  thorough visual
comparison  of  detection  results  achieved  using  various
classification  loss  formulations.  Specifically,  challenging  scenarios
featuring  distant  and  occluded  instances  are  emphasized  by
including  zoomed-in  insets,  which  are  displayed  above  the
corresponding  subfigures  to  enable  direct  comparisons  across
different models.
 
 

Table 4    Comparative performance of different loss functions
for cattle key body parts

Loss All/% Cattle/% Leg/% Head/%

CEL 94.1 94.8 93.4 94.0

FL 94.6 94.8 94.5 94.6

VFL 94.8 95.0 94.6 94.8

 
 

a. CEL b. FL c. VFL

Zoomed-in Zoomed-in Zoomed-in

Figure 9    Comparative performance of different loss functions for cattle key body parts
 

The  Varifocal  loss-optimized  model  demonstrates  superior
classification  performance  in  challenging  scenarios  due  to  several
reasons.  Firstly,  its  asymmetric  weighting  mechanism  emphasizes
positive  samples  while  suppressing  excessive  negative  gradients,
effectively  handling  partial  visibility  and  low-confidence  distant
targets.  Secondly,  the  continuous  IoU-aware  score  prediction
maintains  better  calibration  between  classification  and  localization
tasks. 

3.5    Comparison  of  models  with  different  loss  function
combinations

To  validate  the  effectiveness  of  the  proposed  localization
(WIoUv3)  and  classification  (VFL)  losses  in  cattle  key  body
detection tasks, this study conducted comparative experiments with
models  configured  with  different  loss  combinations.  Specifically,
this study evaluated four model variants: 1) baseline without either
proposed  loss,  2)  model  with  only  the  new  localization  loss,
3)  model  with  only  the  new  classification  loss,  and  4)  model
incorporating  both  proposed  losses.  The  comparative  results  are
systematically presented in Tables 5 and 6.
 
 

Table 5    Comparison of models with different loss
function combinations

Index WIoUv3 Varifocal Precision/% Recall/% F1 Score/% mAP/%
1 × × 93.7 89.0 91.3 94.1
2 √ × 94.8 90.7 92.8 95.0
3 × √ 94.9 90.3 92.5 94.8
4 √ √ 95.0 90.7 92.8 95.2

 

Tables 5 and 6 demonstrate that models incorporating the new
loss  functions  (WIoUv3,  VFL)  consistently  outperform  their
counterparts.  Specifically,  models  with  either  the  new  localization
or classification loss achieve superior performance compared to the

baseline  without  these  components,  while  models  combining  both
proposed  losses  exhibit  further  performance  enhancements.  These
experimental  results  validate  the  superiority  of  the  proposed  loss
functions  in  cattle  detection  tasks.  To  further  validate  the
effectiveness  of  the  proposed  loss  functions,  a  comparative
visualization  of  Grad-CAM heatmaps  across  models  with  different
loss  combinations  was  conducted,  as  presented  in  Figure  10.  The
results  demonstrate  that  the  model  incorporating  both  the  new
localization  and  classification  losses  exhibits  the  most  human-
perception-aligned  attention  distribution  among  all  evaluated
configurations.
 
 

Table 6    Performance metrics (mAP) for cattle body across
different loss function combination models

Index WIoUv3 Varifocal All/% Cattle/% Leg/% Head/%
1 × × 94.1 94.8 93.4 94.0
2 √ × 95.0 95.1 94.7 95.4
3 × √ 94.8 95.0 94.6 94.8
4 √ √ 95.2 95.3 94.8 95.4

 

Specifically, from Figure 10, the following visualization results
can  be  observed.  For  individual  cattle  detection,  while  all  models
demonstrate competent attention distribution, the VFL and WIoUv3-
enhanced  model  achieves  more  centralized  and  focused  attention,
facilitating superior detection accuracy.

In  cattle  leg  detection,  baseline  models  without  VFL  and
WIoUv3  losses  primarily  focus  on  knee  regions,  while  models
incorporating  either  VFL  or  WIoUv3  demonstrate  extended
attention  coverage  across  entire  leg  areas.  Notably,  WIoUv3-
enhanced  models  maintain  precise  attention  localization  even  for
small-scale leg targets in distant image regions, as evidenced in the
top-right corner of the figure.
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Note:  The  areas  with  deeper  colors  indicate  that  the  model  pays  more  attention
during decision making.
Figure 10    The Grad-CAM heatmaps of the models using different

combinations of loss functions
 

For  cattle  head  detection,  WIoUv3-enhanced  models
demonstrate  significantly  improved  attention  localization  on  the
leftmost head region. 

4    Conclusions
This  paper  develops  a  novel  precise  cattle  key  body  detection

solution,  YOLOv5-VF-W3,  which  significantly  enhances  the
efficiency  and  quality  of  animal  husbandry  production.  By
incorporating the Varifocal loss, the model effectively addresses the
issue  of  imbalanced  samples  and  focuses  more  on  difficult-to-
recognize  instances.  Furthermore,  the  introduction  of  the  WIoUv3
loss  function  provides  a  wise  gradient  gain  allocation  strategy,
reducing  the  competitiveness  of  high-quality  anchor  boxes  while
effectively  mitigating  the  adverse  gradients  stemming  from  low-
quality anchor boxes, thereby emphasizing anchor boxes of ordinary
quality. Experimental results demonstrate that the YOLOv5-VF-W3
model achieves superior cattle body detection results, with an mAP
of  95.2%.  Specifically,  the  model  excels  in  individual  cattle
detection, leg detection, and head detection, reaching accuracies of
95.3%,  94.8%,  and  95.4%,  respectively.  Moreover,  the  model
performs accurately and efficiently in complex detection scenarios,
especially when dealing with small targets and occlusions.

In  future  research,  various  data  augmentation  techniques  will
be  explored  to  further  enhance  the  robustness  of  the  model.
Additionally, comparative experiments with different loss functions
are  planned to  more  precisely  control  the  contributions  of  samples
and anchor boxes with varying qualities, with the aim of achieving
better  performance.  Through  these  efforts,  the  advancement  of
precision livestock farming is expected to be driven, providing more
effective  and  intelligent  technological  support  for  agricultural
production. 
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