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Abstract: In intelligent flower thinning robot applications, accurate and efficient apple flower detection is the key to realizing
automated fruit tree thinning operations. However, complex orchard environments and diverse flower characteristics pose many
challenges  to  apple  blossom  detection,  such  as  shading,  light  variations,  flower  densities,  and  so  on.  To  address  these
challenges, this study proposes an improved model based on the YOLO target detection framework which is named the YOLO-
FL apple flower detection model. The model enhances the feature extraction capability by optimizing the Backbone part with
EC3DFM structure, while introducing MFEM structure in the Neck part to improve the feature fusion effect. In addition, the
ABRLoss loss function is used to optimize the prediction results of the prediction frame, and it also adds the SimAM attention
mechanism to the middle two detection heads in the Neck part, which further improves the detection performance of the model.
The experimental results respectively show that YOLO-FL achieves 74.63%, 73.82%, and 79.97% accuracy, recall, and mean
average precision on the test set, which shows significant improvement over the benchmark model. Meanwhile, the model size
was  only  4693  kB,  demonstrating  high  efficiency  and  storage  advantages.  After  deploying  the  YOLO-FL  model  to  the
intelligent flower thinning robot, the frame rate of the test image was 40.7 FPS, the average missed detection rate was 7.26%,
the false detection rate was 6.89%, and the model was able to efficiently complete the apple flower detection in the complex
orchard environment. This study provides an effective solution and technical support for the application of image recognition
technology in intelligent flower thinning robots.
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1    Introduction
Scientific  management  of  apple  trees  is  important  to  ensure

high  yield  and  quality  fruit[1-3].  In  the  application  of  intelligent
flower  thinning  robots,  exact  and  highly  efficient  apple  flower
detection  is  the  core  link  to  realize  automated  flower  thinning
operations.  As  a  key  indicator  in  the  apple  growth  process,  the
number  and  density  of  apple  flowers  directly  affect  the  final  yield
and  quality  of  the  fruit.  By  precisely  identifying  and  monitoring
apple  flowers,  the  intelligent  flower  thinning  robot  can  obtain
information  about  the  distribution  of  flowers,  so  as  to  carry  out
precise  flower  thinning  operations,  optimize  the  use  of  resources,
and  improve  management  efficiency.  However,  many  factors  such
as complex orchard environments, morphological diversity of apple
flowers,  light  variations,  and  flower  densities  pose  a  number  of
challenges  for  automatic  detection  of  apple  flowers,  such  as
problems  of  shading,  uneven  light,  and  flower  overlap.  These
factors  make  the  existing  automatic  detection  methods  deficient  in
accuracy  and  real-time  performance  in  high-density,  diverse,  and

complex  backgrounds,  limiting  the  effectiveness  of  intelligent
flower  thinning  robots.  To  cope  with  the  above  challenges,  apple
flower  recognition  approaches  that  are  based  on  computer  vision
and deep learning have been gradually becoming a research hotspot.

Recent  studies  have  applied  computer  vision  algorithms  and
deep learning models to the recognition of apple flowers[4,5]. Chen et
al.  proposed  an  apple  flower  recognition  and  detection  method
based  on  the  YOLOv5  deep  learning  model,  which  was  enhanced
through  data  augmentation  techniques.  This  method  effectively
detects the growth status of apple flowers and quantifies flowering
intensity. The average detection accuracy of the improved model for
apple flower growth state was 2.53% with a detection time of 13 ms
per  image[6].  Additionally,  Rakesh  Mohan  Datt  et  al.  proposed  a
convolutional neural network (CNN) model for the identification of
eight  different  periods  of  the  apple  crop,  i.e.,  fruit  ripening  and
senescence, shoot budding, flowering, leaf development, dormancy
initiation,  fruit  development,  bud  development,  and  inflorescence
emergence.  The  dataset  was  extended  to  7000  photographs  using
data  enhancement  techniques,  and  the  chosen  recognition  model
was  the  Inception-v3  model.  The  microscopic  F1  score  calculated
by the proposed model was 0.98[7].

Zhou  et  al.[8]  investigated  distant  imagery  of  apple  trees  in
bloom,  captured  within  a  natural  setting,  as  their  research  focus.
They  implemented  the  slice-assisted  hyper-inference  (SAHI)
algorithm  to  augment  the  dataset  and  incorporated  the  Swin
Transformer-tiny  to  modify  the  YOLOX  Backbone  network,
thereby establishing the S-YOLO model for apple flower detection.
Their  findings  demonstrate  that  S-YOLO  surpassed  YOLOX-s  in
terms  of  detection  precision  across  all  four  floral  stages.
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Specifically,  S-YOLO exhibited  improvements  of  10.00%,  9.10%,
13.10%,  and  7.20%  over  YOLOX-s  in  mean  average  precision
across  all  categories  (mAPALL),  small  objects  (mAPS),  medium
objects  (mAPM),  and  large  objects  (mAPL),  respectively.  These
outcomes underscore the efficacy of the transformer-based S-YOLO
approach  in  monitoring  apple  flower  growth  stages,  enabling
applications  such  as  flower  counting,  percentage  analysis,  precise
timing  of  blossoming,  and  quantitative  assessment  of  bloom
intensity.

Despite  the  successful  application  of  various  deep  learning
models  for  apple  flower  detection,  which  achieved  favorable
comprehensive evaluation metrics through structural optimizations,
the  deployment  of  intelligent  thinning  robots  in  real  orchards  still
demanded higher levels of accuracy and processing speed for target
image recognition[9].  To address  the  challenges  faced by intelligent
thinning  robots  in  apple  flower  detection  within  complex  orchard
environments, this study puts forward an improved model which is
based  on  the  YOLO  object  detection  framework:  the  YOLO-FL
apple blossom detection model.

This  model  was  trained  and  tested  on  a  custom-built  apple
flower  dataset  captured  in  natural  environments.  It  optimized  the
Backbone of the YOLO framework by incorporating the EC3DFM
structure to enhance feature extraction capabilities. Additionally, the
Neck component was augmented with the MFEM structure, and the
ABRLoss function was employed. To further improve the detection
performance,  the  SimAM attention  mechanism was  integrated  into
the  two  intermediate  detection  heads.  The  experimental  results
showed  that  the  YOLO-FL  model  was  better  than  the  baseline
model  in  terms  of  accuracy,  recall,  and  mean  average  precision
(mAP),  while  maintaining  a  compact  model  size  and  high
processing  speed.  Therefore,  the  YOLO-FL  model  provided  rapid
and  accurate  apple  flower  recognition  capability  for  intelligent
thinning  robots,  offering  strong  technical  support  for  the
advancement  of  precision  agriculture  and  smart  farming
management. The main contributions of this study are as follows:

1) Development of an apple flower dataset for complex orchard
environments: A diverse set of apple flower images, captured under
various natural environmental conditions, including multiple angles,
different  times  of  day,  and  varying  flower  densities,  was  collected
and  annotated.  This  dataset  provides  high-quality  data  support  for
the training and testing of the proposed model.

2)  Development  of  the  YOLO-FL  apple  flower  detection
model:  An  improved  model,  YOLO-FL,  was  developed  based  on
YOLO object detection framework. The model integrated EC3DFM
and  MFEM  structures  to  optimize  feature  extraction  and  fusion
capabilities.  Additionally,ABRLoss  function  and  SimAM attention
mechanism  were  introduced,  dramatically  improving  the  accuracy
and efficiency of the inspection process.

3) Efficient deployment of the YOLO-FL model on intelligent
flower  thinning  robots:  The  YOLO-FL  model  was  efficiently
deployed  in  real  orchard  environments,  achieving  a  processing
speed  of  40.7  FPS.  The  model  demonstrated  a  detection
performance  with  false-negative  and  false-positive  rates  of  7.26%
and  6.89%,  respectively,  significantly  improving  the  effectiveness
of automated thinning operations. 

2    Materials and methods
To achieve rapid and high-precision apple flower detection for

the flower thinning robot, this study proposed the YOLO-FL apple
flower  detection  model.  It  was  deployed  on  a  rugged  embedded
industrial  control  computer  (Nuvo-8003)  and tested  in  the  field  on
the flower thinning robot. The overall research framework is shown
in Figure 1. 

2.1    Image acquisition and pre-processing
The image data were collected at the apple experimental fields

of  Shandong  Agricultural  University  and  the  Shandong  Provincial
Institute of Agricultural Fruit  Trees in two phases.  The first  phase,
conducted  in  early  April  2022,  involved  the  collection  of  657
images  of  Fuji  apple  flowers  using  a  Huawei  Honor  20s
smartphone.  The  second  phase,  conducted  in  early  April  2023,
involved  the  collection  of  1288  images  of  the  same  apple  variety
using  a  Xiaomi  6X  smartphone.  These  two  data  collection  phases
ensured coverage of diverse lighting conditions, various angles, and
different flower densities, thereby enhancing the dataset’s diversity
and the model’s generalization capability.

During the pre-processing stage, the collected images were first
resized to 608×608 pixels  for  normalization.  Subsequently,  several
data augmentation techniques, including random cropping, rotation,
brightness  adjustment,  and  horizontal  flipping,  were  applied  to
expand  the  dataset.  Finally,  the  images  were  accurately  labeled
using the  labelImg tool  to  construct  a  comprehensive  apple  flower
dataset in a natural background, as shown in Figure 2.
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Figure 1    Overall research route of this study
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Figure 2    Partial image of the dataset
 
 

2.2    Development  of  the  YOLO-FL:  A  fast  and  lightweight
apple flower detection model

Given  that  the  apple  flower  images  were  captured  in  natural
orchard  environments,  and  considering  that  the  flower  thinning
robot  must  also  operate  in  similar  real-world  conditions,  the

complex  working  environment  demanded  higher  performance  for
apple  flower  detection.  To  address  these  challenges,  this  study
proposes the YOLO-FL apple flower detection model, based on the
YOLO framework. A schematic of the model architecture is shown
in Figure 3.
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Figure 3    Structure of YOLO-FL apple flower detection model
 

In  the  YOLO-FL  model,  both  the  Backbone  and  Neck
components  of  the  original  YOLO  framework  were  restructured.
Additionally,  the  loss  function  was  redesigned,  and  an  attention
mechanism  was  incorporated  to  enhance  detection  performance.
These  modifications  were  aimed  at  improving  the  model’s
robustness and efficiency in detecting apple flowers in dynamic and
cluttered natural environments.

1) EC3DFM (Enhanced C3 Deep Feature Module)
In YOLOv5, the C3 module implemented the CSP (Cross Stage

Partial)  Bottleneck  structure  through  a  specific  combination  of
convolutional layers, which includes two 1×1 convolutional layers,

multiple  Bottleneck  modules,  channel  concatenation,  and  a  final
1×1  convolutional  layer  (as  shown  in  Figure  4a).  This  structure
facilitated  accurate  object  detection  and  localization  by  combining
different  levels  of  C3  modules.  However,  the  C3  module  still  had
limitations  in  extracting  deep  features,  especially  when  handling
complex  scenes,  where  its  feature  representation  capacity  may  be
insufficient[10-12].

To address this bottleneck, we propose the Enhanced C3 Deep
Feature  Module  (EC3DFM),  which is  an  optimized deep fusion of
the  C3  module  and  the  UniRepLKNetBlock  module  (as  shown  in
Figure  4d).  UniRepLKNet  is  a  novel  large  convolution  kernel
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neural network (ConvNet) architecture, illustrated in Figures 4b and
4c.  This  module  introduces  four  key  design  principles  for
convolutional networks, including the use of efficient SE (Squeeze-
and-Excitation) modules to enhance model depth, the application of
extended  reparameterization  techniques  to  optimize  large
convolution  kernels,  and  the  replacement  of  additional  large

convolutional  layers  with  3×3  convolutions  during  deep
expansion[13].  Additionally,  the  Lark  Block  in  UniRepLKNet
significantly  expanded  the  receptive  field  and  enhanced  feature
extraction  depth  by  combining  dilated  reparameterization  blocks,
SE  modules,  Feedforward  Networks  (FFN),  and  Batch
Normalization (BN) layers[14].
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In  the  Backbone  network  of  this  study,  the  EC3DFM  was
employed  for  feature  extraction.  The  innovative  aspects  of
EC3DFM are primarily reflected in the following areas:

(1) Multi-Scale Feature Enhancement: The C3 module utilized
a  branching  structure  and  channel  concatenation  to  achieve  cross-
layer  feature  fusion,  thereby  improving  the  model’s  ability  to
capture targets at multiple scales.

(2)  Deep  Feature  Abstraction  Optimization:  The
UniRepLKNetBlock,  incorporating  dilated  convolutions  and  SE
modules,  effectively  expanded  the  receptive  field  of  the  model,
thereby enhancing the expressive power of deep features.

(3) Lightweight Structure and Performance Balance: EC3DFM
not  only  enhanced  deep  feature  extraction  capabilities  but  also
maintained manageable computational complexity, thereby enabling
its  application  in  environments  with  limited  computational
resources.

2) Multi-Scale Feature Enhancement Module (MFEM)
The DWRSeg module  optimized  the  network’s  receptive  field

requirements  at  different  stages.  As  depicted  in  Figure  5a,  this
module  adopted  a  three-branch  architecture,  where  each  branch
employs depthwise separable filters with diverse dilation factors to
gather  features  across  different  scales.  This  configuration  allowed
for  the  concurrent  acquisition  of  both  intricate  local  textures  and
expansive  global  contexts,  ultimately  fostering  a  richer  and  more
comprehensive  feature  representation[15].  Unlike  traditional  residual
modules,  where  branches  share  an  initial  convolution,  DWRSeg
assigns  independent  convolution  operations  to  each  branch.  This
"regional  residual"  design  enhanced  the  module’s  flexibility  and
adaptability,  allowing  each  branch  to  focus  on  receptive  fields  of
different  scales  based  on  the  specific  task  requirements.  By

adopting  this  approach,  the  network  is  capable  of  adaptively
tailoring its feature extraction strategy in accordance with the input
data’s  attributes  and  the  task’s  requirements,  resulting  in  notable
enhancements  in  model  performance  across  various  contexts.  In
contrast to other residual blocks, DWRSeg efficiently mitigates the
module’s non-linearity, thereby lowering computational complexity
and substantially boosting operational efficiency[16].

The  dilated  reparameterization  block  in  UniRepLKNet  further
expands  the  receptive  field,  enhancing  its  ability  to  capture  global
information. This module incorporates multiple convolutional layers
with varying dilation rates (as shown in Figure 6a, with K=9 as an
example).  By  integrating  convolution  kernels  of  varying  sizes  and
dilation rates, the network’s capability for global feature extraction
is  substantially  enhanced,  leading  to  a  deeper  and  more  nuanced
feature  representation.  Furthermore,  the  seamless  integration  of
batch normalization within the convolutional layers minimizes both
the  parameter  footprint  and  computational  overhead  of  the  model.
This  design  both  increased  deployment  efficiency  and  provided  a
novel  approach  for  performance  optimization  in  resource-
constrained environments.

To further enhance feature extraction capabilities, a Multi-Scale
Feature Enhancement Module (MFEM) was proposed, as shown in
Figure  5b.  This  module  integrated  the  characteristics  of  DWRSeg
and  the  dilated  reparameterization  block,  employing  a  four-branch
structure. The first branch utilized a convolution with a kernel size
of  3,  while  the  second  and  third  branches  used  dilated
reparameterization block (DRB) convolutions with a kernel size of
5.  The  fourth  branch  employed  a  DRB  convolution  with  a  kernel
size of 7. By using convolution kernels of varying sizes and dilation
rates,  MFEM  extracted  features  with  different  receptive  fields,
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enabling  more  comprehensive  feature  representation.  During
deployment,  the  integration  of  batch  normalization  with
convolutional  layers  facilitated  the  optimization  of  both  model

footprint  and  computational  demands,  rendering  MFEM
exceptionally  well-suited  for  real-time  implementations  in
environments with limited resources.
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In  the  Neck  network  of  this  study,  the  Block  within  the  C2f
module  was  substituted  with  MFEM for  the  purpose  of  extracting
features,  as  illustrated  in  Figure  6b.  The  innovations  of  this
approach are primarily reflected in the following aspects:

(1)  Independent  convolutional  branch  design:  A  residual
structure  was  introduced  for  each  branch,  assigning  independent
convolution operations that enhanced the flexibility and adaptability
of the network.

(2)  Combination  of  multi-scale  convolutions  and  dilated
reparameterization:  The  use  of  multiple  convolutional  layers  with
varying  dilation  rates  significantly  expanded  the  receptive  field,
thereby  strengthening  the  network’s  ability  to  capture  global
information.

(3) Integration of batch normalization: This integration reduced
both  model  size  and  computational  cost,  enhancing  efficiency  and
adaptability in resource-constrained environments.

3) Adaptive Boundary Refinement Loss (ABRLoss)
In  object  detection,  bounding  box  regression  served  an

important  role  in  enhancing  model  performance  by  optimizing  the

alignment of predicted and ground truth bounding boxes. However,
conventional Intersection over Union (IoU) loss functions exhibited
limitations  in  providing  adequate  gradient  information  under
conditions  of  minimal  overlap  between predicted  and  ground truth
boxes,  leading  to  sluggish  model  convergence,  particularly  for
instances characterized by low IoU scores.

To  tackle  this  challenge,  the  Adaptive  Boundary  Refinement
Loss  (ABRLoss)  was  introduced.  This  loss  function  harnesses  the
strengths  of  both  the  Inner-IoU and MPDIoU methods,  facilitating
swift  convergence  for  high  IoU  samples  while  augmenting  the
regression performance for those with low IoU values. Specifically,
Inner-IoU focuses on refining the internal area of the bounding box,
offering a refined measure of overlap, as elaborated in Equations (1)-
(8). Compared to traditional IoU, Inner-IoU is capable of providing
effective  regression  gradients  even  when  the  overlap  between  the
bounding  box  and  the  ground  truth  box  is  small,  thereby
accelerating the convergence of high IoU samples[17,18]. On the other
hand,  MPDIoU  (Minimum  Point  Distance  IoU)[19]  addresses  the
issue  of  optimization  difficulties  in  the  loss  function  when  the
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predicted  and  ground  truth  boxes  share  the  same  aspect  ratio  by
introducing the concept of minimum point distance. It calculates the
minimum Euclidean distance between the four corner points of the
predicted  and  ground  truth  boxes.  MPDIoU,  as  detailed  in
Equations  (10)-(13),  not  only  considers  the  overlapping  area  but
also  incorporates  the  distance  between  the  center  points  and  the
width-height  deviation,  thereby  achieving  better  generalization  for
bounding boxes of varying shapes and sizes[20,21].

The  ABRLoss  function  [Equation  (9)]  further  improved  the
accuracy  of  bounding  box  predictions  and  the  overall  model
performance  by  combining  the  internal  overlap  optimization  of
Inner-IoU  and  the  minimum  point  distance  measure  of  MPDIoU.
This  loss  function  adaptively  balances  the  gradient  distribution  of
different  IoU  samples  by  adjusting  the  size  ratio  parameter  of  the
auxiliary  bounding  box.  When  the  ratio  is  less  than  1,  the  loss
function  focuses  on  optimizing  high  IoU  samples,  thereby
accelerating convergence. Conversely, when the ratio exceeds 1, the
loss function expands the effective optimization range for low IoU
samples, enhancing the model’s ability to locate bounding boxes in
the early stages.
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4) Simple Attention Module (SimAM) attention mechanism
The attention mechanism plays a critical role in enhancing the

performance and robustness of computer vision models, particularly
in  object  detection  tasks.  Common  attention  modules,  such  as
CBAM[22],  SE[23],  CA[24],  and  ECA[25],  each  have  unique
characteristics  in  emphasizing  spatial  and  channel  attention.
However,  these  modules  are  often  associated  with  additional
computational  and  memory  overhead,  making  them  difficult  to
deploy efficiently in resource-constrained embedded environments.

In  this  study,  tailored  to  the  apple  flowers  dataset  and  the
computational  constraints  of  the  embedded  device,  an  attention

module  was  designed  to  operate  efficiently  within  a  lightweight
model  framework  while  enhancing  the  precision  of  apple  flower
detection.  Consequently,  the  SimAM  attention  mechanism[26]  was
introduced,  which  operates  without  introducing  additional
parameters  to  the  base  network,  instead  augmenting  the  model’s
focus  on  target  features  through  a  streamlined  adaptive  weighting
procedure.

SimAM  employs  a  minimum  energy  function  to  assess  the
significance  of  individual  neurons.  This  function  determines  the
weights assigned to each neuron, serving as a metric for evaluating
the degree of linear discriminability between the target neuron and
its counterparts. Specifically, the minimum energy function for the k-
th neuron is formulated as:

e∗k =
4(σ̂2 +λ)

(tk − û)2
+2σ̂2 +2λ

(14)

tk

û
σ̂2

where, λ is regular term;   is k-th neuron of the input feature mAP
on  a  single  channel;    is  mean  value  of  all  neurons  on  a  single
channel;   is variance of all neurons on a single channel.

e∗k

e∗k

Smaller  values  of    indicate  lower  energy,  and  neuron K  is
more differentiated from peripheral neurons and more important for
visual  processing.  Therefore,  the  importance  of  each  neuron  is  the
inverse of  . The output feature mAP was calculated as:

X̃ = sigmoid
( 1

E

)
X (15)

To enhance the detection capabilities of the model presented in
this  paper,  the  SimAM  module  was  incorporated  into  the  middle
two layers of the Neck stage. This integration effectively bolstered
the  model’s  responsiveness  and  discriminatory  power  for  apple
flower  features,  without  incurring  any  additional  computational
overhead. 

2.3    YOLO-FL model deployment
1) Flower thinning robot system construction
To  evaluate  the  practical  application  of  the  YOLO-FL,  it  was

successfully  deployed  on  a  robot  specifically  designed  for  flower
thinning  in  orchards.  The  hardware  configuration  of  this  robot
system is shown in Figure 7, which included a tracked chassis, a six-
axis  collaborative  robotic  arm,  LiDAR,  depth  cameras,  and  other
high-precision  sensors.  Additionally,  a  laser-based  flower  thinning
device was mounted on the end of the robotic arm, enabling precise
removal of apple flowers through laser targeting.
 
 

Nuvo-8003

Depth
camera

End
effector

A

A
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B

Note:  This  figure  illustrates  the  key  components  of  the  flower  thinning  robot,
including  the  tracked  chassis,  six-axis  robotic  arm,  LiDAR,  end  effector,  and
depth  camera,  all  working  in  conjunction  with  the  YOLO-FL  model  for  apple
flower detection and thinning operations.

Figure 7    Schematic of flower thinning robot system
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The robot’s control system is based on the Neousys Nuvo-8003
rugged  embedded  industrial  PC  from  Neousys  Technology.  This
industrial  PC  runs  on  the  Ubuntu  20.04.6  operating  system  and  a
GeForce RTX 2060 GPU, providing sufficient computational power
to support real-time image processing and object detection using the
YOLO-FL  model,  ensuring  the  efficient  operation  of  the  vision
system in dynamic working environments.

2) Model transfer
In  order  to  enhance  the  generalization  and  adaptability  of  the

YOLO-FL model for apple flower detection across diverse orchard
environments, this study implemented a transfer learning approach.
As  shown  in  Figure  8,  the  YOLO-FL  model  pre-trained  on  the
dataset served as the initial weights, which were then transferred to
the  specific  task  of  apple  flower  detection  within  the  context  of
flower thinning robots.  Subsequently,  the model  underwent  further
refinement  through  fine-tuning  to  match  the  unique  characteristics
of the new dataset.
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Figure 8    Flowchart of model migration
 

During  the  transfer  process,  the  convolutional  layer  weights
learned  from  the  source  task  were  retained  and  transferred  to  the
target task. To prevent overfitting to the features of the original task
while  enhancing the learning of  apple flower features,  the model’s
Backbone  layer  was  frozen,  and  the  remaining  layers  were  fine-
tuned.  Fine-tuning  was  performed  using  a  dataset  of  200  apple
flower images from the orchard environment of the flower thinning
robot. 

3    Results and discussion
 

3.1    Experiment environment
The device used in this experiment for training and testing the

model  is  Lenovo  R9000p  2021,  RTX  3060  graphics  card,  and
Windows  11  Home  Chinese  version  2021.  Python  version  was
3.10.10, Pytorch version was 1.13.1, and Cuda version was 11.7[27]. 

3.2    Evaluative metrics
This  paper  adopted  precision,  recall,  and  mAP  as  the  core

evaluation  metrics[28]  in  order  to  comprehensively  evaluate  the
performance of the trained model in the apple flower detection task.
The specific calculation methods and meanings of these metrics are
detailed as follows:

Precision =
TP

TP +FP

×100% (16)

Recall =
TP

TP +FN

×100% (17)

mAP =
1
K

K∑
i=1

AP(i) (18)

where, Precision  is  precision,  %; Recall  is  recall  rate,  %;  mAP  is
mean  average  precision,  %;  mAP  is  a  comprehensive  evaluation
metric that combines precision and recall by calculating the average

of the areas under the precision-recall (P-R) curves. mAP can more
comprehensively reflect the model’s performance at different recall
levels. AP is the area under the P-R curves; TP is the number of true
positives, the number of apple flowers correctly predicted; TN is true
negative, the number of predicted non-apple flower samples that are
indeed non-apple  flowers; FP  is  false  positive,  the  number  of  non-
apple  flowers  incorrectly  predicted  as  apple  flowers;  FN  is  false
negative, the number of apple flowers incorrectly predicted as non-
apple flowers. 

3.3    Model component comparison and optimization validation
experiments 

3.3.1    Architecture improvement validation experiments
In  order  to  verify  the  effectiveness  of  the  improvement  of  the

detection  model  in  this  paper,  different  modules  are  used  for  the
comparison  test  of  Bottleneck  part  and  Neck  part,  as  listed  in
Table 1. In which, the serial numbers are defined as 1: Exclusively
employed  the  C3  module  in  both  the  backbone  and  neck  parts.
Serial number 2: Integrated EC3DFM in the backbone and C3 in the
neck. Serial number 3: Deployed C3 in the backbone and MFEM in
the neck.  Serial  number 4:  Applied EC3DFM in the backbone and
MFEM  in  the  neck.  Serial  number  5:  Utilized  MFEM  in  the
backbone and EC3DFM in the neck.

Among  these  configurations,  the  combination  of  EC3DFM in
the Backbone and MFEM in the Neck achieved the peak p-value of
74.4% and an mAP value of 77.54% in apple flower detection tasks.
Compared  to  the  baseline  model,  which  solely  used  C3  in  both
parts,  this  combination  led  to  improvements  in P, R,  and  mAP by
2.48%,  1.31%,  and  1.61%,  respectively.  Notably,  serial  number  3
attained  the  highest R-value  of  71.52%,  which  was  slightly  higher
(by 0.14%) than serial number 4. After comprehensive evaluation of
all  metrics,  this  paper  adopts  the  combination  of  EC3DFM in  the
Backbone  and  MFEM  in  the  Neck  to  construct  the  apple  flower
detection model.
  

Table 1    Verification results of different combinations of
EC3DFM, MFEM modules

Serial number Model formulation C3 EC3DFM MFEM P/% R/% mAP/%

1
Backbone √ × ×

71.92 70.07 75.93
Neck √ × ×

2
Backbone × √ ×

71.44 73.91 76.92
Neck √ × ×

3
Backbone √ × ×

72.83 71.52 76.55
Neck × × √

4
Backbone × √ ×

74.40 71.38 77.54
Neck × × √

5
Backbone × × √

72.54 69.57 75.96
Neck × √ ×

  

3.3.2    ABRLoss and SimAM mechanism validation experiments
In this paper, ABRLoss was incorporated into the loss function,

while  the  SimAM  mechanism  was  employed  in  the  attention
mechanism.  To  assess  their  individual  and  combined  effects,
experiments  were  conducted  utilizing  CIoU,  MPDIoU,  and  Inner-
CIoU,  and  performance  with  and  without  the  SimAM mechanism
was  evaluated.  The  results  of  these  experiments  are  presented  in
Table 2.

Examining  Table  2,when  using  MPDIoU  alone  as  the  loss
function,  the  model  showed  some  improvement  in  precision  and
recall  compared  to  CIoU,  but  a  slight  decrease  in  mAP/%.  When
using  Inner-CIoU  at  the  same  time  there  was  an  improvement  in
recall  and  mAP/%,  but  a  slight  decrease  in  precision.  When  using
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ABRLoss  loss  function  there  was  a  slight  decrease  of  0.05
percentage points in precision compared to CIoU and an increase of
1.96% in recall and 0.62% in mAP, indicating that the performance
of different loss function realizations varies in this dataset.
  

Table 2    ABRLoss letter validation results

Model CIoU MPDIoU Inner-
CIoU ABRLoss SimAM P/% R/% mAP/%

YOLO-FL √ × × × × 74.40 71.38 77.54
YOLO-FL × √ × × × 74.81 71.77 77.39
YOLO-FL × × √ × × 72.68 73.35 78.23
YOLO-FL × × × √ × 74.35 73.34 78.16
YOLO-FL × × × √ √ 74.63 73.82 79.97
 

Upon  incorporating  the  SimAM  attention  mechanism  in
conjunction with ABRLoss, the model’s precision, recall, and mAP
were  augmented  by  0.28%,  0.48%,  and  1.81%,  respectively.  This
demonstrated  that  the  SimAM  attention  mechanism  enhanced  the
model’s  overall  performance  by  amplifying  its  focus  on  critical
features  within  the  image.  The synergistic  impact  of  the  ABRLoss
function  and  SimAM  attention  mechanism  within  the  YOLO-FL
framework  confirms  their  effectiveness  as  potent  strategies  for
elevating the performance of the target detection model and refining
its detection accuracy and stability. 

3.4    ABRLoss optimization ratio analysis experiments
In the model presented in this paper, the ABRLoss was utilized,

and  the  optimization  ratio  within  this  loss  function  exerted  a
significant influence on the model’s performance. In order to deeply
investigate  the  effect  of  different  optimization  ratios  on  the  model
performance,  this  section  was  tested  by  adjusting  only  the  ratio
parameter  in  the  ABRLoss  function  with  other  settings  of  the
YOLO-FL unchanged, and the results are shown in Figure 9.
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Figure 9    Verification results of different ratios of ABRLoss
functions

 

Figure 9 shows the test results for different ratios: 0.6, 0.8, 1.0,
1.2, and 1.4. The model achieved the highest performance when the
ratio parameter was set to 1.2, with P at 74.35%, R at 73.34%, and
mAP  at  78.16%,  outperforming  all  other  subgroups.  The  model’s
performance  decreased  as  the  ratio  parameter  deviated  from  1.2.
The lowest performance was observed when the ratio was 0.6, with
P  at  72.45%  and R  at  70.14%.  Similarly,  the  mAP  value  was  the
lowest  among  all  models  when  the  ratio  was  0.8,  at  74.53%.  The
experimental  results  indicate  that  selecting  the  appropriate  ratio
parameter is crucial for optimizing the ABRLoss function, as it has
a  direct  bearing  on  the  model’s  detection  capabilities  and  overall
efficacy. For the lower IoU samples of this paper’s dataset, a larger
auxiliary  bounding  box  was  found  to  be  appropriate,  while  the

detection performance of the YOLO-FL was optimal when the ratio
parameter  was  1.2.  This  further  validated  the  reliability  of  the
ABRLoss function proposed in this paper.
 

3.5    Discussion  of  results  for  different  attention  mechanism
functions

This  section  examined  the  performance  of  four  distinct
attention  mechanisms—CBAM,  SE,  EMA[29],  and  SimAM—within
the  YOLOv5  model  for  apple  flower  detection,  specifically  under
identical  experimental  conditions.  The  four  attention  mechanisms
were  added  to  the  same  middle  two  layers  of  outputs  of  the  Head
and  tested  under  the  same  experimental  environment.  The  results
are  listed  in Table  3. Table  3  shows  that  the  benchmark  YOLOv5
model  achieved  an  accuracy  of  71.92%,  a  recall  of  70.07%,  and  a
mean  average  precision  of  75.93%.  The  introduction  of  CBAM
improved  the  accuracy,  but  the  recall  and  mean  averages  of
precision  decreased  slightly.  The  introduction  of  SE  improved  the
recall,  but  the  accuracy  decreased.  The  introduction  of  EMA
resulted in a substantial decrease in both the recall and accuracy by
1.4%. This study demonstrated that the introduction of the SimAM
attention mechanism had a positive impact on the model’s accuracy,
recall,  and  mean  average  precision.  Specifically,  the  model’s
accuracy increased to 73.09%, recall increased to 70.9%, and mean
average precision increased to 76.12%. It  is  crucial to observe that
the  impact  of  various  attention  mechanisms  on  the  model  varied
significantly. Notably, one particular attention mechanism exhibited
a  more  balanced  performance  across  the  evaluative  indicators
compared to the other three.  Furthermore, the incorporation of this
mechanism  did  not  entail  an  increase  in  the  model’s  size,  thereby
highlighting its practical viability.
 
 

Table 3    Validation results of different attention mechanisms
Model CBAM SE EMA SimAM P/% R/% mAP/% Model size/KB

YOLOv5 × × × × 71.92 70.07 75.93 5163
YOLOv5 √ × × × 72.4 69.28 74.68 5206
YOLOv5 × √ × × 69.68 71.05 74.75 5166
YOLOv5 × × √ × 73.32 70.05 76.10 5174
YOLOv5 × × × √ 73.09 70.9 76.12 5164
 
 

3.6    Field test experiment of a flower thinning robot
After deploying the YOLO-FL apple flower detection model to

the  multifunctional  orchard  robot,  in  order  to  test  its  detection
performance,  it  was  tested  in  the  dwarf  and  densely  planted  apple
test garden of Shandong Agricultural University. Initially, Figure 10
displays the video detection segment of the imagery, demonstrating
the model’s capacity to efficiently identify apple flowers within the
video  stream.  Additionally,  to  assess  the  model’s  practical
performance more rigorously, 60 randomly selected groups of apple
images were subjected to detection,  achieving a frame rate of  40.7
FPS. The images were divided into two major categories according
to the far target and the near target, and divided into non-congested,
moderately congested, and very congested according to the number
of  apple  flowers.  The  number  of  apple  blossoms,  the  number  of
missed detections, and the number of false detections in the images
were  counted,  and  the  results  are  shown  in  Table  4.  Some  of  the
detected  images  and  the  corresponding  heat  mAPs  generated  by
GradCAM are shown in Figure 11.
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Figure 10    On-site video detection
 

The tabled data in Table 4 indicate that the model demonstrated
superior  overall  detection  performance,  boasting  an  average  un-
detection  rate  of  7.26%  and  an  average  false  detection  rate  of
6.89%.  The  detection  performance  under  different  distances  and
target  densities  was  different.  The  overall  detection  effect  of  near
targets was better than that of far targets,  and the un-detection rate
and  false  detection  rate  were  relatively  low  in  the  non-clustered
case, with the lowest un-detection rate at 3.57% and the lowest false
detection  rate  at  1.85%.  The  un-detection  rate  and  false  detection
rate were relatively high in the highly congested case. The leakage
detection rate was 16.25% and the false detection rate was 14.69%
in the case of a highly congested distant target. This shows that the
model is more prone to un-detection and false detection under high

target density in the distant situation.
Upon  examination  of  the  detection  images  and  corresponding

heat  mAPs  presented  in  Figure  11,  it  is  clear  that  the  model
possessed  the  capability  to  detect  apple  flowers  with  a  speed  that
aligns with the operational demands of this robotic vision system in
practical  field  conditions.  However,  it  is  still  evident  that  under
intense illumination and a varying number of flowers, the precision
of  detection  diminished,  while  the  miss  rate  escalated.  A thorough
assessment  of  diverse  detection  performance  metrics  further
substantiates  that  the  proposed  model  in  this  paper  fulfilled  the
target  recognition  needs  of  multifunctional  robots  in  orchard
environments.
  

Table 4    Experimental results of the YOLO-FL model
deployed into a multifunctional robotic vision system

Classification Total
number

Detected/
numbers

Undetected/
numbers

False
detection/
numbers

Un-
detection
rate/%

False
detection
rate/%

Far
target

Non-
congested 84 76 3 5 3.57 5.95

Moderately
congested 177 157 11 9 6.21 5.08

Very
congested 320 221 52 47 16.25 14.69

Near
target

Non-
congested 54 51 2 1 3.70 1.85

Moderately
congested 153 140 8 5 5.23 3.27

Very
congested 267 216 23 28 8.61 10.49

 
 

a. Apple flower image

b. Detection image

c. GradCAM image

Figure 11    Field image detection
 
 

4    Discussion
 

4.1    Comprehensive  performance  comparison  analysis  of
YOLO-FL apple flower detection models

This  subsection  undertakes  a  comparative  analysis  of  the
efficacy  of  several  cutting-edge  target  detection  models  for  the

apple  flower  recognition  task,  encompassing  YOLOv5[30],
YOLOv6[31],  YOLOv7[32],  YOLOv8[33],  and  the  refined  model
introduced in this study. The outcomes presented in Table 5 reveal
that, in the realm of precision, the refined model introduced herein
demonstrates  a  notable  superiority  compared  to  its  contemporary
counterparts.  The  accuracy  rate  of  this  paper’s  model  reached
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74.63%, which was improved by 2.71% compared with the 71.92%
of  the  benchmark  model,  YOLOv5.  Additionally,  compared  with
YOLOv6, YOLOv7, and YOLOv8, this paper’s model had different
degrees of improvement. Secondly, in terms of recall rate, this paper’
s model also showed excellent performance. The recall rate reached
73.82%,  which  was  improved  by  3.7%  compared  to  70.07%  in
YOLOv5.  In  terms  of  mAP,  this  paper’s  model  also  achieved  the
optimal  result  of  79.97%.  In  contrast  to  other  models,  the  model
introduced in this study demonstrated a superior balance in overall
performance, consistently delivering high detection accuracy across
various scenarios. Additionally, in terms of model size, this study’s
model  exhibited  a  compact  design  of  4693  KB,  marking  a
substantial  decrease  of  approximately  60.8%  and  44.8%  in
comparison  to  YOLOv7’s  11977  KB  and  YOLOv6’s  8502  KB,
respectively. Consequently, through a rigorous evaluation of diverse
state-of-the-art  models  on  the  apple  flower  recognition  task,  the
strengths  of  the  proposed  model  in  accuracy,  recall,  mAP,  and
model compactness were further highlighted.
  

Table 5    Test results of different models
Model P/% R/% mAP/% Model size/KB

YOLOv5 71.92 70.07 75.93 5163
YOLOv6 68.47 70.05 76.27 8502
YOLOv7 72.14 70.46 76.07 11 977
YOLOv8 71.32 70.84 76.11 6115
YOLO-FL 74.63 73.82 79.97 4693

  

4.2    Practical  applicability  analysis  of  the  YOLO-FL  apple
flower detection model

To  assess  the  efficacy  of  the  YOLO-FL  model  in  practical
orchard  applications,  it  was  integrated  into  a  laser-based  flower
thinning robot and subjected to field trials. The YOLO-FL model’s
exceptional  detection  performance  in  complex  orchard
environments  was  evident  from  the  results  presented  in  Table  4,
which were corroborated by the visual representation in Figure 11.
In terms of detection speed, YOLO-FL achieved a high rate of 40.7
FPS,  meeting  real-time  requirements.  Moreover,  in  scenarios
involving  nearby  targets  and  non-clustered  conditions,  the  model
showed  lower  un-detection  and  false  detection  rates,  further
confirming its reliability in practical applications.

However,  it  was  also  observed  that  under  conditions  of  long
distances and high flower density, the detection accuracy of YOLO-
FL  declined,  with  both  un-detection  rate  and  false  detection  rate
increasing.  This  was  attributed  to  the  smaller  size  of  flowers  in
images  captured  at  greater  distances  compared  to  those  in  the
training  dataset,  as  well  as  the  greater  disparity  between  the  two.
Additionally,  high  flower  density  led  to  increased  occlusion  and
overlap, further complicating detection.

Overall,  the  YOLO-FL  model  proposed  in  this  study  was
successfully  deployed  on  the  laser-based  flower  thinning  robot,
enabling  effective  apple  flower  detection.  This  validated  the
model’s  detection  performance  and  deployment  capabilities  on
embedded  devices,  providing  reliable  visual  detection  support  for
the flower thinning robot.

This  finding  implies  that  future  research  endeavors  should
prioritize  refining  the  model  to  achieve  enhanced  adaptability  to
increasingly  complex  environmental  conditions.  Potential  avenues
include  the  incorporation  of  sophisticated  image  preprocessing
techniques  to  bolster  image  contrast  and  clarity,  as  well  as  the
utilization of innovative data augmentation methodologies to bolster
the  model’s  resilience  and  enhance  its  ability  to  generalize
effectively. 

4.3    Limitations  analysis  of  the  YOLO-FL  apple  flower
detection model

The  YOLO-FL  developed  in  this  study  was  shown  to
effectively  detect  apple  flowers,  achieving high detection accuracy
while  improving  detection  speed.  However,  in  complex  orchard
environments,  the  model  encountered challenges  with  un-detection
and  false  detection  rates  under  certain  conditions,  such  as  long
distances,  high flower  density,  and varying lighting conditions.  As
shown in Table 4, under scenarios with long distances and extreme
flower  clustering,  the  un-detection  rate  reached  16.25%,  and  the
false  detection  rate  reached  14.69%.  These  limitations  were
primarily  caused  by  the  adverse  effects  of  complex  environmental
factors, which reduced detection performance.

In  summary,  although  the  overall  performance  of  the  model
was  significantly  improved,  enhancing  its  robustness  and
generalization  ability  for  apple  flower  detection  under  complex
conditions remains a priority for future optimization efforts. 

5    Conclusions
This  study  introduced  an  enhanced  apple  flower  detection

model,  YOLO-FL,  which  built  upon  the  YOLO  object  detection
framework. The model exhibited notable advancements in detection
accuracy without compromising on speed, thereby offering a robust
and  dependable  approach  for  apple  flower  recognition  tasks,
characterized by both efficiency and reliability.

In  the  model  development  process,  a  comprehensive  data
collection and preprocessing procedure was conducted on the apple
flower  dataset,  establishing  a  solid  foundation  for  subsequent
training  and  validation.  The  Backbone  was  optimized  by
incorporating  the  EC3DFM  architecture,  which  enhanced  the
model’s  feature  extraction  capabilities.  The  MFEM  structure  was
introduced  in  the  Neck  section,  effectively  improving  feature
fusion. Furthermore, the ABRLoss function was employed to refine
the  predictions  of  bounding  boxes,  thereby  increasing  localization
accuracy.  To  further  boost  detection  performance,  the  SimAM
attention  mechanism  was  integrated  into  the  two  middle  detection
heads in the Neck section.

On the test set, the model achieved a precision (P) of 74.63%,
recall (R) of 73.82%, and mean average precision (mAP) of 79.97%,
with  a  compact  model  size  of  4693  KB.  These  results  represent
improvements of 2.71%, 3.75%, and 4.04%, respectively, compared
to  the  YOLOv5  model,  while  the  model  size  was  reduced  by  470
KB, demonstrating notable advantages in efficiency and storage.

The  YOLO-FL  was  subsequently  deployed  on  a
multifunctional orchard robot. The system delivered an image with
40.7  FPS,  with  an  average  missed  detection  rate  of  7.26%  and  a
false detection rate of 6.89%, meeting the operational requirements
of  the robot’s  visual  detection system. These findings indicate  that
the  model  demonstrates  high  performance  and  efficiency  in  apple
flower recognition tasks.

This  work  not  only  augments  the  precision  and  efficacy  of
apple  flower  recognition  but  also  contributes  invaluable  technical
insights  to  applications  within  orchard  management,  agricultural
production,  and  plant  research.  Prospective  endeavors  will
concentrate  on  refining  the  model’s  performance  and  seamlessly
integrating  it  with  a  laser-based  flower  thinning  robot  to  facilitate
intelligent thinning operations. 
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