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Apple flower phenotype detection method based on YOLO-FL and
application of intelligent flower thinning robot

Ang Gao'”, Yonghui Du'?, Yugiang Li*?%, Yuepeng Song"", Longlong Ren?
(1. College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai’an 827101, China;
2. Shandong Agricultural Equipment Intelligent Engineering Laboratory, Tai’an 827101, China)

Abstract: In intelligent flower thinning robot applications, accurate and efficient apple flower detection is the key to realizing
automated fruit tree thinning operations. However, complex orchard environments and diverse flower characteristics pose many
challenges to apple blossom detection, such as shading, light variations, flower densities, and so on. To address these
challenges, this study proposes an improved model based on the YOLO target detection framework which is named the YOLO-
FL apple flower detection model. The model enhances the feature extraction capability by optimizing the Backbone part with
EC3DFM structure, while introducing MFEM structure in the Neck part to improve the feature fusion effect. In addition, the
ABRLoss loss function is used to optimize the prediction results of the prediction frame, and it also adds the SimAM attention
mechanism to the middle two detection heads in the Neck part, which further improves the detection performance of the model.
The experimental results respectively show that YOLO-FL achieves 74.63%, 73.82%, and 79.97% accuracy, recall, and mean
average precision on the test set, which shows significant improvement over the benchmark model. Meanwhile, the model size
was only 4693 kB, demonstrating high efficiency and storage advantages. After deploying the YOLO-FL model to the
intelligent flower thinning robot, the frame rate of the test image was 40.7 FPS, the average missed detection rate was 7.26%,
the false detection rate was 6.89%, and the model was able to efficiently complete the apple flower detection in the complex
orchard environment. This study provides an effective solution and technical support for the application of image recognition
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technology in intelligent flower thinning robots.
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1 Introduction

Scientific management of apple trees is important to ensure
high yield and quality fruit"?. In the application of intelligent
flower thinning robots, exact and highly efficient apple flower
detection is the core link to realize automated flower thinning
operations. As a key indicator in the apple growth process, the
number and density of apple flowers directly affect the final yield
and quality of the fruit. By precisely identifying and monitoring
apple flowers, the intelligent flower thinning robot can obtain
information about the distribution of flowers, so as to carry out
precise flower thinning operations, optimize the use of resources,
and improve management efficiency. However, many factors such
as complex orchard environments, morphological diversity of apple
flowers, light variations, and flower densities pose a number of
challenges for automatic detection of apple flowers, such as
problems of shading, uneven light, and flower overlap. These
factors make the existing automatic detection methods deficient in
accuracy and real-time performance in high-density, diverse, and
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complex backgrounds, limiting the effectiveness of intelligent
flower thinning robots. To cope with the above challenges, apple
flower recognition approaches that are based on computer vision
and deep learning have been gradually becoming a research hotspot.

Recent studies have applied computer vision algorithms and
deep learning models to the recognition of apple flowers**. Chen et
al. proposed an apple flower recognition and detection method
based on the YOLOVS deep learning model, which was enhanced
through data augmentation techniques. This method effectively
detects the growth status of apple flowers and quantifies flowering
intensity. The average detection accuracy of the improved model for
apple flower growth state was 2.53% with a detection time of 13 ms
per image'®. Additionally, Rakesh Mohan Datt et al. proposed a
convolutional neural network (CNN) model for the identification of
eight different periods of the apple crop, i.e., fruit ripening and
senescence, shoot budding, flowering, leaf development, dormancy
initiation, fruit development, bud development, and inflorescence
emergence. The dataset was extended to 7000 photographs using
data enhancement techniques, and the chosen recognition model
was the Inception-v3 model. The microscopic F1 score calculated
by the proposed model was 0.98.

Zhou et al.® investigated distant imagery of apple trees in
bloom, captured within a natural setting, as their research focus.
They implemented the slice-assisted hyper-inference (SAHI)
algorithm to augment the dataset and incorporated the Swin
Transformer-tiny to modify the YOLOX Backbone network,
thereby establishing the S-YOLO model for apple flower detection.
Their findings demonstrate that S-YOLO surpassed YOLOX-s in

terms of detection precision across all four floral stages.
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Specifically, S-YOLO exhibited improvements of 10.00%, 9.10%,
13.10%, and 7.20% over YOLOX-s in mean average precision
across all categories (mMAPALL), small objects (mAPS), medium
objects (mAPM), and large objects (mAPL), respectively. These
outcomes underscore the efficacy of the transformer-based S-YOLO
approach in monitoring apple flower growth stages, enabling
applications such as flower counting, percentage analysis, precise
timing of blossoming, and quantitative assessment of bloom
intensity.

Despite the successful application of various deep learning
models for apple flower detection, which achieved favorable
comprehensive evaluation metrics through structural optimizations,
the deployment of intelligent thinning robots in real orchards still
demanded higher levels of accuracy and processing speed for target
image recognition®. To address the challenges faced by intelligent
thinning robots in apple flower detection within complex orchard
environments, this study puts forward an improved model which is
based on the YOLO object detection framework: the YOLO-FL
apple blossom detection model.

This model was trained and tested on a custom-built apple
flower dataset captured in natural environments. It optimized the
Backbone of the YOLO framework by incorporating the EC3DFM
structure to enhance feature extraction capabilities. Additionally, the
Neck component was augmented with the MFEM structure, and the
ABRLoss function was employed. To further improve the detection
performance, the SimAM attention mechanism was integrated into
the two intermediate detection heads. The experimental results
showed that the YOLO-FL model was better than the baseline
model in terms of accuracy, recall, and mean average precision
(mAP), while maintaining a compact model size and high
processing speed. Therefore, the YOLO-FL model provided rapid
and accurate apple flower recognition capability for intelligent
thinning robots, offering strong technical support for the
advancement of precision agriculture and smart farming
management. The main contributions of this study are as follows:

1) Development of an apple flower dataset for complex orchard
environments: A diverse set of apple flower images, captured under
various natural environmental conditions, including multiple angles,
different times of day, and varying flower densities, was collected
and annotated. This dataset provides high-quality data support for
the training and testing of the proposed model.
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2) Development of the YOLO-FL apple flower detection
model: An improved model, YOLO-FL, was developed based on
YOLO object detection framework. The model integrated EC3DFM
and MFEM structures to optimize feature extraction and fusion
capabilities. Additionally,ABRLoss function and SimAM attention
mechanism were introduced, dramatically improving the accuracy
and efficiency of the inspection process.

3) Efficient deployment of the YOLO-FL model on intelligent
flower thinning robots: The YOLO-FL model was efficiently
deployed in real orchard environments, achieving a processing
speed of 40.7 FPS. The model demonstrated a detection
performance with false-negative and false-positive rates of 7.26%
and 6.89%, respectively, significantly improving the effectiveness
of automated thinning operations.

2 Materials and methods

To achieve rapid and high-precision apple flower detection for
the flower thinning robot, this study proposed the YOLO-FL apple
flower detection model. It was deployed on a rugged embedded
industrial control computer (Nuvo-8003) and tested in the field on
the flower thinning robot. The overall research framework is shown
in Figure 1.

2.1 Image acquisition and pre-processing

The image data were collected at the apple experimental fields
of Shandong Agricultural University and the Shandong Provincial
Institute of Agricultural Fruit Trees in two phases. The first phase,
conducted in early April 2022, involved the collection of 657
images of Fuji apple flowers using a Huawei Honor 20s
smartphone. The second phase, conducted in early April 2023,
involved the collection of 1288 images of the same apple variety
using a Xiaomi 6X smartphone. These two data collection phases
ensured coverage of diverse lighting conditions, various angles, and
different flower densities, thereby enhancing the dataset’s diversity
and the model’s generalization capability.

During the pre-processing stage, the collected images were first
resized to 608x608 pixels for normalization. Subsequently, several
data augmentation techniques, including random cropping, rotation,
brightness adjustment, and horizontal flipping, were applied to
expand the dataset. Finally, the images were accurately labeled
using the labellmg tool to construct a comprehensive apple flower

dataset in a natural background, as shown in Figure 2.
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2.2 Development of the YOLO-FL: A fast and lightweight
apple flower detection model

Given that the apple flower images were captured in natural
orchard environments, and considering that the flower thinning
robot must also operate in similar real-world conditions, the

12. Backbone

Concat

Figure 2 Partial image of the dataset

complex working environment demanded higher performance for
apple flower detection. To address these challenges, this study
proposes the YOLO-FL apple flower detection model, based on the
YOLO framework. A schematic of the model architecture is shown
in Figure 3.

76x76%255

38x38%255

19x19%255

Figure 3  Structure of YOLO-FL apple flower detection model

In the YOLO-FL model, both the Backbone and Neck
components of the original YOLO framework were restructured.
Additionally, the loss function was redesigned, and an attention
mechanism was incorporated to enhance detection performance.
These modifications were aimed at improving the model’s
robustness and efficiency in detecting apple flowers in dynamic and
cluttered natural environments.

1) EC3DFM (Enhanced C3 Deep Feature Module)

In YOLOVS, the C3 module implemented the CSP (Cross Stage
Partial) Bottleneck structure through a specific combination of
convolutional layers, which includes two 1x1 convolutional layers,

multiple Bottleneck modules, channel concatenation, and a final
1x1 convolutional layer (as shown in Figure 4a). This structure
facilitated accurate object detection and localization by combining
different levels of C3 modules. However, the C3 module still had
limitations in extracting deep features, especially when handling
complex scenes, where its feature representation capacity may be
insufficient!*'?,

To address this bottleneck, we propose the Enhanced C3 Deep
Feature Module (EC3DFM), which is an optimized deep fusion of
the C3 module and the UniRepLKNetBlock module (as shown in
Figure 4d). UniRepLKNet is a novel large convolution kernel
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neural network (ConvNet) architecture, illustrated in Figures 4b and
4c. This module introduces four key design principles for
convolutional networks, including the use of efficient SE (Squeeze-
and-Excitation) modules to enhance model depth, the application of
extended reparameterization techniques to optimize large
convolution kernels, and the replacement of additional large

Bottleneckxn*

\ a. C3 module

UniRepLK
Netxn*

e —————

convolutional layers with 3x3 convolutions during deep
expansion'”. Additionally, the Lark Block in UniRepLKNet
significantly expanded the receptive field and enhanced feature

extraction depth by combining dilated reparameterization blocks,
(FFN),

SE  modules, Feedforward Networks and Batch

Normalization (BN) layers!".

e —

-

4

Figure 4 Structure of the EC3DFM

In the Backbone network of this study, the EC3DFM was
employed for feature extraction. The innovative aspects of
EC3DFM are primarily reflected in the following areas:

(1) Multi-Scale Feature Enhancement: The C3 module utilized
a branching structure and channel concatenation to achieve cross-
layer feature fusion, thereby improving the model’s ability to
capture targets at multiple scales.

(2) Deep Feature  Abstraction Optimization: The
UniRepLKNetBlock, incorporating dilated convolutions and SE
modules, effectively expanded the receptive field of the model,
thereby enhancing the expressive power of deep features.

(3) Lightweight Structure and Performance Balance: EC3DFM
not only enhanced deep feature extraction capabilities but also
maintained manageable computational complexity, thereby enabling
its application in environments with limited computational
resources.

2) Multi-Scale Feature Enhancement Module (MFEM)

The DWRSeg module optimized the network’s receptive field
requirements at different stages. As depicted in Figure Sa, this
module adopted a three-branch architecture, where each branch
employs depthwise separable filters with diverse dilation factors to
gather features across different scales. This configuration allowed
for the concurrent acquisition of both intricate local textures and
expansive global contexts, ultimately fostering a richer and more
comprehensive feature representation™. Unlike traditional residual
modules, where branches share an initial convolution, DWRSeg
assigns independent convolution operations to each branch. This
"regional residual" design enhanced the module’s flexibility and
adaptability, allowing each branch to focus on receptive fields of
different scales based on the specific task requirements. By

adopting this approach, the network is capable of adaptively
tailoring its feature extraction strategy in accordance with the input
data’s attributes and the task’s requirements, resulting in notable
enhancements in model performance across various contexts. In
contrast to other residual blocks, DWRSeg efficiently mitigates the
module’s non-linearity, thereby lowering computational complexity
and substantially boosting operational efficiency!*.

The dilated reparameterization block in UniRepLKNet further
expands the receptive field, enhancing its ability to capture global
information. This module incorporates multiple convolutional layers
with varying dilation rates (as shown in Figure 6a, with k=9 as an
example). By integrating convolution kernels of varying sizes and
dilation rates, the network’s capability for global feature extraction
is substantially enhanced, leading to a deeper and more nuanced
feature representation. Furthermore, the seamless integration of
batch normalization within the convolutional layers minimizes both
the parameter footprint and computational overhead of the model.
This design both increased deployment efficiency and provided a
novel approach for performance optimization in resource-
constrained environments.

To further enhance feature extraction capabilities, a Multi-Scale
Feature Enhancement Module (MFEM) was proposed, as shown in
Figure 5b. This module integrated the characteristics of DWRSeg
and the dilated reparameterization block, employing a four-branch
structure. The first branch utilized a convolution with a kernel size
of 3, while the second and third branches used dilated
reparameterization block (DRB) convolutions with a kernel size of
5. The fourth branch employed a DRB convolution with a kernel
size of 7. By using convolution kernels of varying sizes and dilation
rates, MFEM extracted features with different receptive fields,
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enabling more comprehensive feature representation. During
deployment, the integration of batch normalization with
convolutional layers facilitated the optimization of both model

footprint and computational demands, rendering MFEM
exceptionally well-suited for real-time implementations in
environments with limited resources.

Conv

| Conv ’

k=3

Output
a. DWR module

Figure 5 Structure of DWR and MFEM modules

9x9
dilation 1

3x3 3x3 9x9
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DRBlock

b. MFEM block

Figure 6  Structure of DRBlock and MFEM block modules

In the Neck network of this study, the Block within the C2f
module was substituted with MFEM for the purpose of extracting
features, as illustrated in Figure 6b. The innovations of this
approach are primarily reflected in the following aspects:

(1) Independent convolutional branch design: A residual
structure was introduced for each branch, assigning independent
convolution operations that enhanced the flexibility and adaptability
of the network.

(2) Combination of multi-scale convolutions and dilated
reparameterization: The use of multiple convolutional layers with
varying dilation rates significantly expanded the receptive field,
thereby strengthening the network’s ability to capture global
information.

(3) Integration of batch normalization: This integration reduced
both model size and computational cost, enhancing efficiency and
adaptability in resource-constrained environments.

3) Adaptive Boundary Refinement Loss (ABRLoss)

In object detection, bounding box regression served an
important role in enhancing model performance by optimizing the

alignment of predicted and ground truth bounding boxes. However,
conventional Intersection over Union (IoU) loss functions exhibited
limitations in providing adequate gradient information under
conditions of minimal overlap between predicted and ground truth
boxes, leading to sluggish model convergence, particularly for
instances characterized by low IoU scores.

To tackle this challenge, the Adaptive Boundary Refinement
Loss (ABRLoss) was introduced. This loss function harnesses the
strengths of both the Inner-IoU and MPDIoU methods, facilitating
swift convergence for high IoU samples while augmenting the
regression performance for those with low IoU values. Specifically,
Inner-IoU focuses on refining the internal area of the bounding box,
offering a refined measure of overlap, as elaborated in Equations (1)-
(8). Compared to traditional IoU, Inner-IoU is capable of providing
effective regression gradients even when the overlap between the
bounding box and the ground truth box is small, thereby
accelerating the convergence of high IoU samples'”'¥. On the other
hand, MPDIoU (Minimum Point Distance IoU)"! addresses the
issue of optimization difficulties in the loss function when the
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predicted and ground truth boxes share the same aspect ratio by
introducing the concept of minimum point distance. It calculates the
minimum Euclidean distance between the four corner points of the
predicted and ground truth boxes. MPDIoU, as detailed in
Equations (10)-(13), not only considers the overlapping area but
also incorporates the distance between the center points and the
width-height deviation, thereby achieving better generalization for
bounding boxes of varying shapes and sizes**"\.

The ABRLoss function [Equation (9)] further improved the
accuracy of bounding box predictions and the overall model
performance by combining the internal overlap optimization of
Inner-IoU and the minimum point distance measure of MPDIoU.
This loss function adaptively balances the gradient distribution of
different IoU samples by adjusting the size ratio parameter of the
auxiliary bounding box. When the ratio is less than 1, the loss
function focuses on optimizing high IoU samples, thereby
accelerating convergence. Conversely, when the ratio exceeds 1, the
loss function expands the effective optimization range for low IoU
samples, enhancing the model’s ability to locate bounding boxes in
the early stages.

bg,:xﬁ,_w’”xfmtio, bf,:quw%ratio (1)
bf'=Yf’—m, b§‘=y§’+m ©)
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4) Simple Attention Module (SimAM) attention mechanism

The attention mechanism plays a critical role in enhancing the
performance and robustness of computer vision models, particularly
in object detection tasks. Common attention modules, such as
CBAM™, SE™, CAP, and ECA™, unique
characteristics in emphasizing spatial and channel attention.

each have

However, these modules are often associated with additional
computational and memory overhead, making them difficult to
deploy efficiently in resource-constrained embedded environments.

In this study, tailored to the apple flowers dataset and the
computational constraints of the embedded device, an attention

module was designed to operate efficiently within a lightweight
model framework while enhancing the precision of apple flower
detection. Consequently, the SimAM attention mechanism™ was
introduced, which operates without introducing additional
parameters to the base network, instead augmenting the model’s
focus on target features through a streamlined adaptive weighting
procedure.

SimAM employs a minimum energy function to assess the
significance of individual neurons. This function determines the
weights assigned to each neuron, serving as a metric for evaluating
the degree of linear discriminability between the target neuron and
its counterparts. Specifically, the minimum energy function for the k-

th neuron is formulated as:

462+ 1)
A C R L 14
T —ay 200124 (14)

where, A is regular term; #, is k-th neuron of the input feature mAP
on a single channel; # is mean value of all neurons on a single
channel; 67 is variance of all neurons on a single channel.

Smaller values of e, indicate lower energy, and neuron K is
more differentiated from peripheral neurons and more important for
visual processing. Therefore, the importance of each neuron is the

inverse of e;. The output feature mAP was calculated as:
- 1
X=sigm0id(E>X (15)

To enhance the detection capabilities of the model presented in
this paper, the SImAM module was incorporated into the middle
two layers of the Neck stage. This integration effectively bolstered
the model’s responsiveness and discriminatory power for apple
flower features, without incurring any additional computational
overhead.

2.3 YOLO-FL model deployment

1) Flower thinning robot system construction

To evaluate the practical application of the YOLO-FL, it was
successfully deployed on a robot specifically designed for flower
thinning in orchards. The hardware configuration of this robot
system is shown in Figure 7, which included a tracked chassis, a six-
axis collaborative robotic arm, LiDAR, depth cameras, and other
high-precision sensors. Additionally, a laser-based flower thinning
device was mounted on the end of the robotic arm, enabling precise
removal of apple flowers through laser targeting.

oIl N uvo-8003
{ .

Depth
camera

End

: effector

Note: This figure illustrates the key components of the flower thinning robot,

including the tracked chassis, six-axis robotic arm, LiDAR, end effector, and
depth camera, all working in conjunction with the YOLO-FL model for apple
flower detection and thinning operations.

Figure 7 Schematic of flower thinning robot system
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The robot’s control system is based on the Neousys Nuvo-8003
rugged embedded industrial PC from Neousys Technology. This
industrial PC runs on the Ubuntu 20.04.6 operating system and a
GeForce RTX 2060 GPU, providing sufficient computational power
to support real-time image processing and object detection using the
YOLO-FL model, ensuring the efficient operation of the vision
system in dynamic working environments.

2) Model transfer

In order to enhance the generalization and adaptability of the
YOLO-FL model for apple flower detection across diverse orchard
environments, this study implemented a transfer learning approach.
As shown in Figure 8, the YOLO-FL model pre-trained on the
dataset served as the initial weights, which were then transferred to
the specific task of apple flower detection within the context of
flower thinning robots. Subsequently, the model underwent further
refinement through fine-tuning to match the unique characteristics
of the new dataset.

Transfer process
(Convolutional layer
" weight transfer, freezing
backbone layers)

Fine-tuning
(Adjusting learning rate, optimizer)
Fine-tuning process: freezing
backbone layers, optimizing other
layers, using cross-entropy loss,
adam optimizer,
learning rate 0.00005

Source task fataset
(Original apple
blossom dataset)

Target task dataset
— (Thinning robot apple
blossom dataset)

Figure 8 Flowchart of model migration

During the transfer process, the convolutional layer weights
learned from the source task were retained and transferred to the
target task. To prevent overfitting to the features of the original task
while enhancing the learning of apple flower features, the model’s
Backbone layer was frozen, and the remaining layers were fine-
tuned. Fine-tuning was performed using a dataset of 200 apple
flower images from the orchard environment of the flower thinning
robot.

3 Results and discussion

3.1 Experiment environment

The device used in this experiment for training and testing the
model is Lenovo R9000p 2021, RTX 3060 graphics card, and
Windows 11 Home Chinese version 2021. Python version was
3.10.10, Pytorch version was 1.13.1, and Cuda version was 11.7%".
3.2 Evaluative metrics

This paper adopted precision, recall, and mAP as the core
evaluation metrics®® in order to comprehensively evaluate the
performance of the trained model in the apple flower detection task.
The specific calculation methods and meanings of these metrics are
detailed as follows:

Precision = T % 100% (16)
ptlp
Recall = —— x 100% (17)
ecall = =0 )
1 K
mAP = — )" APG) (18)

i=1

where, Precision is precision, %; Recall is recall rate, %; mAP is
mean average precision, %; mAP is a comprehensive evaluation
metric that combines precision and recall by calculating the average

of the areas under the precision-recall (P-R) curves. mAP can more
comprehensively reflect the model’s performance at different recall
levels. AP is the area under the P-R curves; T, is the number of true
positives, the number of apple flowers correctly predicted; Ty is true
negative, the number of predicted non-apple flower samples that are
indeed non-apple flowers; F) is false positive, the number of non-
apple flowers incorrectly predicted as apple flowers; Fy is false
negative, the number of apple flowers incorrectly predicted as non-
apple flowers.

3.3 Model component comparison and optimization validation
experiments

3.3.1 Architecture improvement validation experiments

In order to verify the effectiveness of the improvement of the
detection model in this paper, different modules are used for the
comparison test of Bottleneck part and Neck part, as listed in
Table 1. In which, the serial numbers are defined as 1: Exclusively
employed the C3 module in both the backbone and neck parts.
Serial number 2: Integrated EC3DFM in the backbone and C3 in the
neck. Serial number 3: Deployed C3 in the backbone and MFEM in
the neck. Serial number 4: Applied EC3DFM in the backbone and
MFEM in the neck. Serial number 5: Utilized MFEM in the
backbone and EC3DFM in the neck.

Among these configurations, the combination of EC3DFM in
the Backbone and MFEM in the Neck achieved the peak p-value of
74.4% and an mAP value of 77.54% in apple flower detection tasks.
Compared to the baseline model, which solely used C3 in both
parts, this combination led to improvements in P, R, and mAP by
2.48%, 1.31%, and 1.61%, respectively. Notably, serial number 3
attained the highest R-value of 71.52%, which was slightly higher
(by 0.14%) than serial number 4. After comprehensive evaluation of
all metrics, this paper adopts the combination of EC3DFM in the
Backbone and MFEM in the Neck to construct the apple flower
detection model.

Table 1 Verification results of different combinations of
EC3DFM, MFEM modules

Serial number Model formulation C3 EC3DFM MFEM P/% R/% mAP/%
Backbone v X x

1 71.92 70.07 75.93
Neck v x
Backbone x v X

2 71.44 7391 76.92
Neck v x x
Backbone \ x X

3 72.83 71.52 76.55
Neck X v
Backbone x v X

4 74.40 71.38 77.54
Neck X x v
Backbone x x \

5 72.54 69.57 75.96
Neck X \ X

3.3.2 ABRLoss and SimAM mechanism validation experiments

In this paper, ABRLoss was incorporated into the loss function,
while the SimAM mechanism was employed in the attention
mechanism. To assess their individual and combined effects,
experiments were conducted utilizing CloU, MPDIoU, and Inner-
CIoU, and performance with and without the SimAM mechanism
was evaluated. The results of these experiments are presented in
Table 2.

Examining Table 2,when using MPDIoU alone as the loss
function, the model showed some improvement in precision and
recall compared to CloU, but a slight decrease in mAP/%. When
using Inner-CloU at the same time there was an improvement in
recall and mAP/%, but a slight decrease in precision. When using
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ABRLoss loss function there was a slight decrease of 0.05
percentage points in precision compared to CloU and an increase of
1.96% in recall and 0.62% in mAP, indicating that the performance
of different loss function realizations varies in this dataset.

Table 2 ABRLoss letter validation results

Model  CloU MPDIoU Ig{‘:ﬂ ABRLoss SimAM P/% R/% mAP/%
YOLO-FL X x X x 7440 7138 77.54
YOLO-FL  x N x X x 7481 71.77 77.39
YOLO-FL  x X N X X 72.68 7335 78.23
YOLO-FL  x X x N x 7435 7334 78.16
YOLO-FL  x x x x/ N 7463 7382 79.97

Upon incorporating the SimAM attention mechanism in
conjunction with ABRLoss, the model’s precision, recall, and mAP
were augmented by 0.28%, 0.48%, and 1.81%, respectively. This
demonstrated that the SimAM attention mechanism enhanced the
model’s overall performance by amplifying its focus on critical
features within the image. The synergistic impact of the ABRLoss
function and SimAM attention mechanism within the YOLO-FL
framework confirms their effectiveness as potent strategies for
elevating the performance of the target detection model and refining
its detection accuracy and stability.

3.4 ABRLoss optimization ratio analysis experiments

In the model presented in this paper, the ABRLoss was utilized,
and the optimization ratio within this loss function exerted a
significant influence on the model’s performance. In order to deeply
investigate the effect of different optimization ratios on the model
performance, this section was tested by adjusting only the ratio
parameter in the ABRLoss function with other settings of the
YOLO-FL unchanged, and the results are shown in Figure 9.

80r W P/% WR% ©mAP/%
78t
76t
74t
X
7t
70t
68t
66 . . . .
0.6 0.8 1.0 12 1.4

Ratio

Figure 9 Verification results of different ratios of ABRLoss
functions

Figure 9 shows the test results for different ratios: 0.6, 0.8, 1.0,
1.2, and 1.4. The model achieved the highest performance when the
ratio parameter was set to 1.2, with P at 74.35%, R at 73.34%, and
mAP at 78.16%, outperforming all other subgroups. The model’s
performance decreased as the ratio parameter deviated from 1.2.
The lowest performance was observed when the ratio was 0.6, with
P at 72.45% and R at 70.14%. Similarly, the mAP value was the
lowest among all models when the ratio was 0.8, at 74.53%. The
experimental results indicate that selecting the appropriate ratio
parameter is crucial for optimizing the ABRLoss function, as it has
a direct bearing on the model’s detection capabilities and overall
efficacy. For the lower IoU samples of this paper’s dataset, a larger
auxiliary bounding box was found to be appropriate, while the

detection performance of the YOLO-FL was optimal when the ratio
parameter was 1.2. This further validated the reliability of the
ABRLoss function proposed in this paper.
3.5 Discussion of results for different attention mechanism
functions

This section examined the performance of four distinct
attention mechanisms—CBAM, SE, EMA®™), and SimAM—within
the YOLOvS model for apple flower detection, specifically under
identical experimental conditions. The four attention mechanisms
were added to the same middle two layers of outputs of the Head
and tested under the same experimental environment. The results
are listed in Table 3. Table 3 shows that the benchmark YOLOVS
model achieved an accuracy of 71.92%, a recall of 70.07%, and a
mean average precision of 75.93%. The introduction of CBAM
improved the accuracy, but the recall and mean averages of
precision decreased slightly. The introduction of SE improved the
recall, but the accuracy decreased. The introduction of EMA
resulted in a substantial decrease in both the recall and accuracy by
1.4%. This study demonstrated that the introduction of the SimAM
attention mechanism had a positive impact on the model’s accuracy,
recall, and mean average precision. Specifically, the model’s
accuracy increased to 73.09%, recall increased to 70.9%, and mean
average precision increased to 76.12%. It is crucial to observe that
the impact of various attention mechanisms on the model varied
significantly. Notably, one particular attention mechanism exhibited
a more balanced performance across the evaluative indicators
compared to the other three. Furthermore, the incorporation of this
mechanism did not entail an increase in the model’s size, thereby
highlighting its practical viability.

Table 3 Validation results of different attention mechanisms
Model CBAM SE EMA SimAM P/% R/% mAP/% Model size/KB

YOLOvVS x  x  x x 7192 70.07 75.93 5163
YOLOvS v x  x x 724 6928 74.68 5206
YOLOvV5 — x \Noox X 69.68 71.05 74.75 5166
YOLOvV5 — x x A x 7332 70.05 76.10 5174
YOLOvVS x  x  x N73.09 709 76.12 5164

3.6 Field test experiment of a flower thinning robot

After deploying the YOLO-FL apple flower detection model to
the multifunctional orchard robot, in order to test its detection
performance, it was tested in the dwarf and densely planted apple
test garden of Shandong Agricultural University. Initially, Figure 10
displays the video detection segment of the imagery, demonstrating
the model’s capacity to efficiently identify apple flowers within the
video stream. Additionally, to assess the model’s practical
performance more rigorously, 60 randomly selected groups of apple
images were subjected to detection, achieving a frame rate of 40.7
FPS. The images were divided into two major categories according
to the far target and the near target, and divided into non-congested,
moderately congested, and very congested according to the number
of apple flowers. The number of apple blossoms, the number of
missed detections, and the number of false detections in the images
were counted, and the results are shown in Table 4. Some of the
detected images and the corresponding heat mAPs generated by
GradCAM are shown in Figure 11.
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Figure 10 On-site video detection

The tabled data in Table 4 indicate that the model demonstrated
superior overall detection performance, boasting an average un-
detection rate of 7.26% and an average false detection rate of
6.89%. The detection performance under different distances and
target densities was different. The overall detection effect of near
targets was better than that of far targets, and the un-detection rate
and false detection rate were relatively low in the non-clustered
case, with the lowest un-detection rate at 3.57% and the lowest false
detection rate at 1.85%. The un-detection rate and false detection
rate were relatively high in the highly congested case. The leakage
detection rate was 16.25% and the false detection rate was 14.69%
in the case of a highly congested distant target. This shows that the
model is more prone to un-detection and false detection under high

target density in the distant situation.

Upon examination of the detection images and corresponding
heat mAPs presented in Figure 11, it is clear that the model
possessed the capability to detect apple flowers with a speed that
aligns with the operational demands of this robotic vision system in
practical field conditions. However, it is still evident that under
intense illumination and a varying number of flowers, the precision
of detection diminished, while the miss rate escalated. A thorough
assessment of diverse detection performance metrics further
substantiates that the proposed model in this paper fulfilled the
target recognition needs of multifunctional robots in orchard
environments.

Table 4 Experimental results of the YOLO-FL model
deployed into a multifunctional robotic vision system

Total Detected/ Undetected/ Falsp Un—_ Falsgs
detection/ detection detection
number numbers numbers

Classification

numbers rate/%  rate/%

Non- = g4 76 3 5 357 595
congested

Far - Moderately ., 5, 11 9 6.21 5.08
target congested

Very 330 221 52 47 1625  14.69
congested

Non-— 5y 5 2 1 370 185
congested

Near Moderately 534, 8 5 523 327

target congested : :

Very 267 216 23 28 8.61 1049

congested

c. GradCAM image

Figure 11

4 Discussion

4.1 Comprehensive performance comparison analysis of
YOLO-FL apple flower detection models

This subsection undertakes a comparative analysis of the
efficacy of several cutting-edge target detection models for the

Field image detection

apple flower recognition task, encompassing YOLOvVSPY,
YOLOv6E!, YOLOv7®, YOLOv8®! and the refined model
introduced in this study. The outcomes presented in Table 5 reveal
that, in the realm of precision, the refined model introduced herein
demonstrates a notable superiority compared to its contemporary
counterparts. The accuracy rate of this paper’s model reached
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74.63%, which was improved by 2.71% compared with the 71.92%
of the benchmark model, YOLOVS. Additionally, compared with
YOLOvV6, YOLOV7, and YOLOVS, this paper’s model had different
degrees of improvement. Secondly, in terms of recall rate, this paper’
s model also showed excellent performance. The recall rate reached
73.82%, which was improved by 3.7% compared to 70.07% in
YOLOVS. In terms of mAP, this paper’s model also achieved the
optimal result of 79.97%. In contrast to other models, the model
introduced in this study demonstrated a superior balance in overall
performance, consistently delivering high detection accuracy across
various scenarios. Additionally, in terms of model size, this study’s
model exhibited a compact design of 4693 KB, marking a
substantial decrease of approximately 60.8% and 44.8% in
comparison to YOLOv7’s 11977 KB and YOLOv6’s 8502 KB,
respectively. Consequently, through a rigorous evaluation of diverse
state-of-the-art models on the apple flower recognition task, the
strengths of the proposed model in accuracy, recall, mAP, and
model compactness were further highlighted.

Table 5 Test results of different models

Model P/% R/% mAP/% Model size/KB
YOLOV5 71.92 70.07 75.93 5163
YOLOv6 68.47 70.05 76.27 8502
YOLOvV7 72.14 70.46 76.07 11977
YOLOvV8 71.32 70.84 76.11 6115
YOLO-FL 74.63 73.82 79.97 4693

4.2 Practical applicability analysis of the YOLO-FL apple
flower detection model

To assess the efficacy of the YOLO-FL model in practical
orchard applications, it was integrated into a laser-based flower
thinning robot and subjected to field trials. The YOLO-FL model’s
exceptional detection performance in complex orchard
environments was evident from the results presented in Table 4,
which were corroborated by the visual representation in Figure 11.
In terms of detection speed, YOLO-FL achieved a high rate of 40.7
FPS, meeting real-time requirements. Moreover, in scenarios
involving nearby targets and non-clustered conditions, the model
showed lower un-detection and false detection rates, further
confirming its reliability in practical applications.

However, it was also observed that under conditions of long
distances and high flower density, the detection accuracy of YOLO-
FL declined, with both un-detection rate and false detection rate
increasing. This was attributed to the smaller size of flowers in
images captured at greater distances compared to those in the
training dataset, as well as the greater disparity between the two.
Additionally, high flower density led to increased occlusion and
overlap, further complicating detection.

Overall, the YOLO-FL model proposed in this study was
successfully deployed on the laser-based flower thinning robot,
enabling effective apple flower detection. This validated the
model’s detection performance and deployment capabilities on
embedded devices, providing reliable visual detection support for
the flower thinning robot.

This finding implies that future research endeavors should
prioritize refining the model to achieve enhanced adaptability to
increasingly complex environmental conditions. Potential avenues
include the incorporation of sophisticated image preprocessing
techniques to bolster image contrast and clarity, as well as the
utilization of innovative data augmentation methodologies to bolster
the model’s resilience and enhance its ability to generalize
effectively.

4.3 Limitations analysis of the YOLO-FL apple flower
detection model

The YOLO-FL developed in this study was shown to
effectively detect apple flowers, achieving high detection accuracy
while improving detection speed. However, in complex orchard
environments, the model encountered challenges with un-detection
and false detection rates under certain conditions, such as long
distances, high flower density, and varying lighting conditions. As
shown in Table 4, under scenarios with long distances and extreme
flower clustering, the un-detection rate reached 16.25%, and the
false detection rate reached 14.69%. These limitations were
primarily caused by the adverse effects of complex environmental
factors, which reduced detection performance.

In summary, although the overall performance of the model
was significantly improved, enhancing its robustness and
generalization ability for apple flower detection under complex
conditions remains a priority for future optimization efforts.

5 Conclusions

This study introduced an enhanced apple flower detection
model, YOLO-FL, which built upon the YOLO object detection
framework. The model exhibited notable advancements in detection
accuracy without compromising on speed, thereby offering a robust
and dependable approach for apple flower recognition tasks,
characterized by both efficiency and reliability.

In the model development process, a comprehensive data
collection and preprocessing procedure was conducted on the apple
flower dataset, establishing a solid foundation for subsequent
training and validation. The Backbone was optimized by
incorporating the EC3DFM architecture, which enhanced the
model’s feature extraction capabilities. The MFEM structure was
introduced in the Neck section, effectively improving feature
fusion. Furthermore, the ABRLoss function was employed to refine
the predictions of bounding boxes, thereby increasing localization
accuracy. To further boost detection performance, the SimAM
attention mechanism was integrated into the two middle detection
heads in the Neck section.

On the test set, the model achieved a precision (P) of 74.63%,
recall (R) of 73.82%, and mean average precision (mAP) of 79.97%,
with a compact model size of 4693 KB. These results represent
improvements of 2.71%, 3.75%, and 4.04%, respectively, compared
to the YOLOv5 model, while the model size was reduced by 470
KB, demonstrating notable advantages in efficiency and storage.

The YOLO-FL was subsequently deployed on a
multifunctional orchard robot. The system delivered an image with
40.7 FPS, with an average missed detection rate of 7.26% and a
false detection rate of 6.89%, meeting the operational requirements
of the robot’s visual detection system. These findings indicate that
the model demonstrates high performance and efficiency in apple
flower recognition tasks.

This work not only augments the precision and efficacy of
apple flower recognition but also contributes invaluable technical
insights to applications within orchard management, agricultural
production, and plant research. Prospective endeavors will
concentrate on refining the model’s performance and seamlessly
integrating it with a laser-based flower thinning robot to facilitate
intelligent thinning operations.
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