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Abstract: China plants approximately 20.3 million hm? of winter wheat annually. During the recent one-month harvesting
period, hundreds of thousands of combine harvesters participated in wheat harvesting from south to north. However, the total
number of active harvesters remains a challenge, restricting government policy-making and industry analysis. This study
proposed a nonparametric bootstrap estimation model based on big data to dynamically infer the total number of active agricul-
tural machines by analyzing the spatio-temporal trajectories of harvesters. Through Monte Carlo simulation experiments, the
performance of four nonparametric bootstrap methods was systematically evaluated from dimensions such as bias, mean squar-
ed error, and coverage probability. The results show that the bias-corrected and accelerated bootstrap method (BCa) performs
best and was selected as the 95% confidence interval estimation method. The 95% confidence intervals for the total number of
active harvesters in 2021, 2022, and 2023 are [447 223, 456 387], [441 708, 447 625], and [436 873, 440 608], respectively,
providing a quantitative basis for regulatory supervision and capacity planning in the agricultural machinery industry.
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1 Introduction

China grows about 20.3 million hm’ of winter wheat every
year, with the average planting area per household being only about
0.3 hm’, and the north-south planting span is about 950 km.
Therefore, China adopts large-scale cross-regional harvesting
operations. During the harvesting period of nearly one month,
harvesters move from south to north, and complete all winter wheat
harvesting day by day. The Ministry of Agriculture and Rural
Affairs of China announced that the total number of harvesters in
stock is about 1.6 million units, and the active number is about
650 000 units, which are based on the manufacturer’s sales volume,
the number of machinery purchase subsidies, and the empirical
estimates. However, the actual total number of active harvesters
should be lower than this value since sales volume is not equal to
the active number. For example, many harvesters broke down or
were even scrapped, but the government failed to keep statistics on
time. While the sowing area is determined, if there are too many
active harvesters, the harvesting income will be too low. On the
contrary, if the total number of active harvesters is too small, it will
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affect the timely harvesting of wheat, eventually causing food
losses. Therefore, maintaining a reasonable number of active
harvesters is not only related to the operating income of each
operator, but also to the timely harvesting of wheat. Beyond
ensuring an optimal number of machines, harvest outcomes are also
constrained by other factors. For instance, current scheduling often
relies on experience, leading to inefficient resource allocation.
Furthermore, meteorological hazards such as low-temperature stress
significantly impact winter wheat growth and yield”. These hazards
can cause the final harvested area to be smaller than the planted area
by as much as 13%, which leads to overestimations of total
production if not properly accounted for”!.

There are reasons why this problem (estimation of the total
number of active harvesters) has not been solved. In the early stage,
it was difficult to collect a sufficient sample size for statistical
analysis. For example, a 5% sample size was about 25 000 units of
harvesters, which was too large for a researcher to track their
harvesting process and area without GNSS-enabled terminals.
Therefore, it was difficult to establish a corresponding statistical
model to accurately measure the total active number. Now, China’s
Agricultural Machinery Operation Big Data System™ based on
GNSS-enabled terminals and has accessed to 280 000 units of
harvesters (hereinafter “GNSS harvester”). Based on the system, the
operating area can be accurately calculated for each GNSS
harvester, laying the data foundation for the estimation of the total
number of active wheat harvesters.

In the field of estimating the total number of active vehicles,
there is no relevant literature in the agricultural sector. However,
there have been several cases in the field of urban traffic. Torok et
al.”’ modeled the relationship between per capita GDP and vehicle
ownership growth based on Hungarian passenger car data using the
Gompertz function. Javid et al. analyzed the development trend of
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electric vehicle ownership in California through multivariate logistic
regression. Zhang et al.” utilized Beijing’s 2017 travel data, heat
maps, and POI data to analyze the impact of accessibility on house-
hold car ownership through the Gradient Boosting Decision Trees
(GBDT) algorithm. However, these studies have two main shortcom-
ings: firstly, the prediction scope is usually limited to a specific city
or region; secondly, the amount of data relied upon is still relatively
small, and the advantages of big data have not been fully utilized.

In the field of statistics, the Law of Large Numbers (LLN)
ensures that with a large number of repeated experiments or a
sufficiently large sample size, the sample mean will approach the
population mean, providing a theoretical foundation for the
accuracy of estimations and the reliability of predictions™. It has
been widely applied in fields such as computer technology"!, social
sciences!"”, and health insurance!'”. Interval estimation not only
provides parameter estimates but also quantifies the uncertainty of

those estimates by giving a confidence interval, making the
estimation more comprehensive and reliable. In agriculture,
parameter estimation has been applied to rice yield estimation!",
crop straw resource estimation'*; and the total area of salt-affected
soils'), and all these studies have achieved good results.

2 Materials and methods

2.1 Technical route

This study first conducted data cleaning on trajectory data,
followed by field-to-road segmentation and area calculation, to
obtain information on the daily operating area of each combine
harvester and its corresponding province, city, and county within
the platform from 2021 to 2023. Based on the Law of Large
Numbers and four non-parametric Bootstrap models, the number of
active wheat combine harvesters was estimated. The specific
technical route is shown in Figure 1.
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Figure 1 Technical route for calculating the total number of active harvesters

2.2 Dataset and data processing
2.2.1 Original dataset

The dataset of this study comes from the Chinese Agricultural
Machinery Operation Big Data System from 2021 to 2023. This
system stores trajectory data of the harvesters working in nine major
wheat-producing provinces of China (Hebei, Henan, Shanxi,
Shandong, Anhui, Hubei, Shaanxi, Jiangsu, and Sichuan). The
harvesters’ trajectory data spans from May 1 to June 25 of each
year. The fields of the trajectory data include parameters such as the
harvesters’ ID, operation date, operation time, longitude, latitude,
speed, and direction. 95% of the trajectories have a reporting
frequency of no more than 5 s. Among them, the wheat planting
area was obtained from the official data published by the provincial
governments of the major producing areas.

2.2.2 Data preprocessing

1) Data cleaning. This study performed preprocessing on the
trajectory data, such as noise smoothing, drift point removal, and
irregular velocity point elimination, in order to remove the
abnormal data.

2) Field-road segmenting. The density-based spatial clustering
algorithm (DBSCAN) was wused to realize the field-road
classification of the trajectory, as shown in Figure 2, and its
accuracy can reach 96.01%, with an F1 score of 95.60%!"°.

- Field
- Road

Figure 2 Field-road segmentation based on DBSCAN

3) Area calculating. The area calculation method used in this
study is the grid key point method, with the bottom grid size set to
1 mx1 m!'",

2.2.3  Final dataset

Finally, the detailed operation data of each harvester on each
farmland are able to be obtained, including the farmland ID,
operation area, operation start and end time, latitude and longitude
of the center point, and the province, city, and county where the
harvester worked.

In order to eliminate the abnormal operating area, this study set
a threshold for the harvesting area according to the investigation.
Minimum total harvesting area: During one season, if the total
harvesting area is less than 2.02 hm? the harvester would be
excluded. Maximum harvesting area per farmland: If the harvesting
area of a single farmland is larger than 47.23 hm’ the area
data would be excluded. All excluded anomalous data underwent
manual verification. Due to poor data quality, they could not be
utilized.

According to the above thresholds, the number of harvesters
excluded in 2021, 2022, and 2023 is 4830, 3144, and 5443,
respectively.

2.3 Estimating total number of active harvesters and its
confidence interval
2.3.1 Confidence interval estimate

Bootstrap is a scientific statistical method that estimates the
sampling distribution of a statistic by repeatedly sampling the
original sample data. As shown in Figure 3, assume that {x|, x,,
X3, ..., X,} is a random sample of size n (population sample) drawn
from a process, where # is an integer greater than or equal to 1000,

and {x,, X, ..., X,} represents a sample of size n drawn from the
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original sample with replacement. Therefore, there are n" possible
resampling methods.

GNSS harvesters

Active harvesters

000

Number of harvester: stock harvesters X=x,

Figure 3 Schematic diagram of Bootstrap sampling

According to different sampling methods, Bootstrap methods
can be divided into two types: parametric Bootstrap and non-
parametric Bootstrap. Compared with the parametric Bootstrap
method, the core advantage of the non-parametric Bootstrap method
lies in its non-parametric nature, that is, it does not need to make
any assumptions about the underlying distribution of the data. At
the same time, it can make full use of the information in the sample
data, and the estimation results are more accurate. This feature
makes the non-parametric Bootstrap method particularly suitable for
actual data analysis scenarios where it is difficult to meet the
distribution assumptions required by
statistical methods. In our task, the number of active harvesters is

traditional parametric
estimated by sampling using non-parametric Standard Bootstrap!*"”!
and its three modified Bootstrap methods, including Percentile
Bootstrap™, Biased-Corrected Percentile Bootstrap®’, and Bias-
Corrected and Accelerated Bootstrap®. Then, the accuracy of the
four methods was evaluated, and the result of the optimal method
was selected as the estimation result of the number of active
harvesters.
2.3.2  Evaluation index

When choosing the optimal method among the four estimation
methods for estimating the total number of active harvesters from
2021 to 2023, it was crucial to consider the two key indicators of
accuracy and precision. Accuracy and precision measure the ability
of an estimation method to measure the true value of a feature and
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the variability of the measurements, respectively. In order to
comprehensively evaluate the effects of the four methods, this study
used Monte Carlo simulation research to numerically analyze the
statistical properties of the four confidence intervals from three
perspectives: coverage performance index, interval mean index, and
interval standard deviation index.

3 Results and discussion

3.1 Average harvesting area of GNSS harvesters

Through data pre-processing, area calculation, and statistical
analysis, the operation data of GNSS harvesters from 2021 to 2023
are listed in Table 1. It can be seen that as the number of GNSS
harvesters increases year by year, the total operating area of GNSS
harvesters has grown rapidly, but the average operating area has not
increased much. In 2021, 2022, and 2023, the operating area of
GNSS harvesters accounted for 5.17%, 12.89%, and 18.28%,
respectively. These data show that the dataset established by the
author has a large scale.

Table 1 2021-2023 GNSS harvester operating
area statistical data

Total area of Total operation Average area

Number . Proportion of

Year of GNSS w-heat m th.e areaby GNSS  of GNSS GNSS harvester

main producing  harvester/ harvester/ .
harvesters : s ) ) operations

provinces/hm hm hm

2021 23356 20117 410 1039 853 44.52 5.17%

2022 57314 20262 110 2611074 45.56 12.89%

2023 80188 2057510 3702 141 45.50 18.28%

Figure 4 shows the histogram and QQ plot of the operating area
of GNSS harvesters in 2023. It can be observed that the data
distribution of the operating area of GNSS harvesters in 2023
significantly deviates from the characteristics of the normal
distribution. To statistically verify this observation, this study
further used the Kolmogorov-Smirnov test to evaluate the normality
of the data from different dimensions. The results show that the
operating area data of GNSS harvesters in 2023 do not follow a
normal distribution, and the data in 2021 and 2022 also do not
follow a normal distribution.
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Figure 4 Statistics of GNSS harvesters’ operating area in 2023

After obtaining the GNSS harvesters’ operating area data in
China’s nine main wheat-producing provinces from 2021 to 2023,
this study screened the operating area of the newly added GNSS
harvesters every year and calculated their average operating area
(Table 2).

Through horizontal comparison, it was found that the average
operating area of newly added GNSS harvesters in 2022 and 2023

showed a year-by-year downward trend within three years after
purchase. Further vertical comparison revealed that the average
operating area of newly purchased GNSS harvesters each year
showed a downward trend compared with that of old harvesters.
This may be because in China’s main wheat-producing areas, the
newly purchased GNSS harvesters did not show significant
differences in work efficiency compared with the early batches of



198  August, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 4

Table 2 Average operating area of the newly added GNSS
harvesters (hm?)

Year 2021 2022 2023
2021 57.25 52.74 46.90
2022 - 43.84 51.79
2023 - - 38.76

old harvesters not equipped with GNSS terminals. The reason
behind this phenomenon may be that the total number of harvesters
in China has become saturated, making it difficult to fully leverage
the high-performance advantages of new harvesters over old ones.
3.2 Estimation of harvester interval

Given the non-normal distribution of the data, traditional
parametric statistical methods that rely on the assumption of normal
distribution may not be suitable for this study. Therefore, this study
turned to non-parametric statistical methods and selected the non-
parametric Bootstrap method for further analysis. The non-
parametric Bootstrap method does not rely on the specific
distribution assumptions of the data, so it shows higher flexibility
and applicability when dealing with non-normally distributed data.

By using the non-parametric standard Bootstrap method and
three improvements, this study successfully estimated the number of
active harvesters in the main wheat-producing areas from 2021 to
2023 and their 95% estimation interval. Combining the results
obtained from these four methods shows that the total number of
active harvesters from 2021 to 2023 and their estimated interval
have a high degree of confidence (Table 3).

Table 3 Comparison of estimation methods for the active
number of harvesters in 2023

Number of GNSS 95% confidence interval
Year Method . .
harvesters Lower limit Upper limit
SB 447271 456 535
PB 447 106 456 846
2021 23356
BCPB 447 245 456 749
BCa 447223 456 387
SB 441 767 447 794
PB 441703 447 754
2022 57314
BCPB 441 940 447 636
BCa 441708 447 625
SB 436939 440 507
PB 436 753 440 694
2023 80 188
BCPB 436 907 440 588
BCa 436 873 440 608

The coverage performance index, interval mean index, and
interval standard deviation index obtained by the four estimation
methods are shown in Figure 5.

After a comprehensive comparative analysis of the four
methods, it was found that the Standard Bootstrap (SB) showed the
lowest interval standard deviation but longer interval mean index
and lower coverage performance index, potentially reducing result
accuracy. The other methods had similar interval standard deviation
and interval mean index, but the Bias-Corrected and Accelerated
(BCa) Bootstrap method had a higher coverage performance index,
indicating greater reliability.

Therefore, it can be concluded that the Bias-Corrected and
Accelerated (BCa) Bootstrap method performs best in terms of
accuracy and precision. Therefore, the BCa method was selected as
the main method for estimating the total number of active harvesters
from 2021 to 2023, and the final results are shown in Figure 6. The
data in the table is the estimated value of the total number of active
harvesters in the main wheat-producing areas from 2021 to 2023,

calculated using the BCa method and the corresponding 95%
estimate interval.
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4 Conclusions

This study proposes a method for estimating the total number
of active harvesters based on big data. Using GNSS harvester
trajectory data as the foundation, this method accurately calculates
the operational area of each GNSS harvester and then derives the
average harvesting area of all GNSS harvesters. By integrating the
total sown area of winter wheat in China’s main wheat-producing
provinces from 2021 to 2023, and utilizing the 95% Bootstrap
confidence interval, this method provides confidence intervals for
the number of active harvesters. The specific conclusions are as
follows:

1) The operational area data of GNSS harvesters in China’s
main wheat-producing regions from 2021 to 2023 do not follow a
normal distribution.

2) The 95% confidence interval values estimated by the four
methods (SB, PB, BCPB, and BCa) are similar, demonstrating the
feasibility of using these methods for estimating the number of
active harvesters.

3) Newly purchased GNSS harvesters have not shown
significant differences in work efficiency compared with older
harvesters not equipped with GNSS terminals.

4) The total number of harvesters in China may have become
saturated, making it difficult for new harvesters to fully leverage
their high-performance advantages over old models.

5) From the three perspectives of coverage performance index,
interval mean index, and interval standard deviation index, the four
non-parametric estimation methods were evaluated, and it was
found that BCa had the best effect.

6) The 95% confidence intervals for the total number of active
harvesters from 2021 to 2023 estimated by the BCa method are [447
223,456 387], [441 708, 447 625], and [436 873, 440 608].
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