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Abstract: China  plants  approximately  20.3  million  hm2  of  winter  wheat  annually.  During  the  recent  one-month  harvesting
period, hundreds of thousands of combine harvesters participated in wheat harvesting from south to north. However, the total
number  of  active  harvesters  remains  a  challenge,  restricting  government  policy-making  and  industry  analysis.  This  study
proposed a nonparametric bootstrap estimation model based on big data to dynamically infer the total number of active agricul-
tural  machines by analyzing the spatio-temporal  trajectories  of  harvesters.  Through Monte Carlo simulation experiments,  the
performance of four nonparametric bootstrap methods was systematically evaluated from dimensions such as bias, mean squar-
ed error, and coverage probability. The results show that the bias-corrected and accelerated bootstrap method (BCa) performs
best and was selected as the 95% confidence interval estimation method. The 95% confidence intervals for the total number of
active harvesters in 2021, 2022, and 2023 are [447 223, 456 387], [441 708, 447 625], and [436 873, 440 608], respectively,
providing a quantitative basis for regulatory supervision and capacity planning in the agricultural machinery industry.
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1    Introduction
China  grows  about  20.3  million  hm2  of  winter  wheat  every

year, with the average planting area per household being only about
0.3  hm2,  and  the  north-south  planting  span  is  about  950  km.
Therefore,  China  adopts  large-scale  cross-regional  harvesting
operations.  During  the  harvesting  period  of  nearly  one  month,
harvesters move from south to north, and complete all winter wheat
harvesting  day  by  day.  The  Ministry  of  Agriculture  and  Rural
Affairs  of  China  announced  that  the  total  number  of  harvesters  in
stock  is  about  1.6  million  units,  and  the  active  number  is  about
650 000 units, which are based on the manufacturer’s sales volume,
the  number  of  machinery  purchase  subsidies,  and  the  empirical
estimates.  However,  the  actual  total  number  of  active  harvesters
should  be  lower  than  this  value  since  sales  volume is  not  equal  to
the  active  number.  For  example,  many  harvesters  broke  down  or
were even scrapped, but the government failed to keep statistics on
time.  While  the  sowing  area  is  determined,  if  there  are  too  many
active  harvesters,  the  harvesting  income  will  be  too  low.  On  the
contrary, if the total number of active harvesters is too small, it will

affect  the  timely  harvesting  of  wheat,  eventually  causing  food
losses.  Therefore,  maintaining  a  reasonable  number  of  active
harvesters  is  not  only  related  to  the  operating  income  of  each
operator,  but  also  to  the  timely  harvesting  of  wheat.  Beyond
ensuring an optimal number of machines, harvest outcomes are also
constrained by other factors. For instance, current scheduling often
relies  on  experience,  leading  to  inefficient  resource  allocation[1].
Furthermore, meteorological hazards such as low-temperature stress
significantly impact winter wheat growth and yield[2]. These hazards
can cause the final harvested area to be smaller than the planted area
by  as  much  as  13%,  which  leads  to  overestimations  of  total
production if not properly accounted for[3].

There  are  reasons  why  this  problem  (estimation  of  the  total
number of active harvesters) has not been solved. In the early stage,
it  was  difficult  to  collect  a  sufficient  sample  size  for  statistical
analysis. For example, a 5% sample size was about 25 000 units of
harvesters,  which  was  too  large  for  a  researcher  to  track  their
harvesting  process  and  area  without  GNSS-enabled  terminals.
Therefore,  it  was  difficult  to  establish  a  corresponding  statistical
model to accurately measure the total active number. Now, China’s
Agricultural  Machinery  Operation  Big  Data  System[4]  based  on
GNSS-enabled  terminals  and  has  accessed  to  280  000  units  of
harvesters (hereinafter “GNSS harvester”). Based on the system, the
operating  area  can  be  accurately  calculated  for  each  GNSS
harvester,  laying the data foundation for the estimation of the total
number of active wheat harvesters.

In  the  field  of  estimating  the  total  number  of  active  vehicles,
there  is  no  relevant  literature  in  the  agricultural  sector.  However,
there have been several cases in the field of urban traffic. Torok et
al.[5] modeled the relationship between per  capita  GDP and vehicle
ownership growth based on Hungarian passenger car data using the
Gompertz function. Javid et al.[6] analyzed the development trend of
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electric vehicle ownership in California through multivariate logistic
regression.  Zhang  et  al.[7]  utilized  Beijing’s  2017  travel  data,  heat
maps, and POI data to analyze the impact of accessibility on house-
hold  car  ownership  through  the  Gradient  Boosting  Decision  Trees
(GBDT) algorithm. However, these studies have two main shortcom-
ings: firstly, the prediction scope is usually limited to a specific city
or region; secondly, the amount of data relied upon is still relatively
small, and the advantages of big data have not been fully utilized.

In  the  field  of  statistics,  the  Law  of  Large  Numbers  (LLN)
ensures  that  with  a  large  number  of  repeated  experiments  or  a
sufficiently  large  sample  size,  the  sample  mean  will  approach  the
population  mean,  providing  a  theoretical  foundation  for  the
accuracy  of  estimations  and  the  reliability  of  predictions[8].  It  has
been widely applied in fields such as computer technology[9], social
sciences[10],  and  health  insurance[11].  Interval  estimation  not  only
provides  parameter  estimates  but  also  quantifies  the  uncertainty  of

those  estimates  by  giving  a  confidence  interval,  making  the
estimation  more  comprehensive  and  reliable.  In  agriculture,
parameter  estimation  has  been  applied  to  rice  yield  estimation[12,13],
crop straw resource estimation[14],  and the total area of salt-affected
soils[15], and all these studies have achieved good results. 

2    Materials and methods
 

2.1    Technical route
This  study  first  conducted  data  cleaning  on  trajectory  data,

followed  by  field-to-road  segmentation  and  area  calculation,  to
obtain  information  on  the  daily  operating  area  of  each  combine
harvester  and  its  corresponding  province,  city,  and  county  within
the  platform  from  2021  to  2023.  Based  on  the  Law  of  Large
Numbers and four non-parametric Bootstrap models, the number of
active  wheat  combine  harvesters  was  estimated.  The  specific
technical route is shown in Figure 1.
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Figure 1    Technical route for calculating the total number of active harvesters
 
 

2.2    Dataset and data processing 

2.2.1    Original dataset
The dataset of this study comes from the Chinese Agricultural

Machinery  Operation  Big  Data  System  from  2021  to  2023.  This
system stores trajectory data of the harvesters working in nine major
wheat-producing  provinces  of  China  (Hebei,  Henan,  Shanxi,
Shandong,  Anhui,  Hubei,  Shaanxi,  Jiangsu,  and  Sichuan).  The
harvesters’  trajectory  data  spans  from  May  1  to  June  25  of  each
year. The fields of the trajectory data include parameters such as the
harvesters’  ID,  operation  date,  operation  time,  longitude,  latitude,
speed,  and  direction.  95%  of  the  trajectories  have  a  reporting
frequency  of  no  more  than  5  s.  Among  them,  the  wheat  planting
area was obtained from the official data published by the provincial
governments of the major producing areas. 

2.2.2    Data preprocessing
1)  Data  cleaning.  This  study  performed  preprocessing  on  the

trajectory  data,  such  as  noise  smoothing,  drift  point  removal,  and
irregular  velocity  point  elimination,  in  order  to  remove  the
abnormal data.

2)  Field-road  segmenting.  The  density-based  spatial  clustering
algorithm  (DBSCAN)  was  used  to  realize  the  field-road
classification  of  the  trajectory,  as  shown  in  Figure  2,  and  its
accuracy can reach 96.01%, with an F1 score of 95.60%[16].
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Figure 2    Field-road segmentation based on DBSCAN

3)  Area  calculating.  The  area  calculation  method  used  in  this
study is the grid key point method, with the bottom grid size set to
1 m×1 m[17]. 

2.2.3    Final dataset
Finally,  the  detailed  operation  data  of  each  harvester  on  each

farmland  are  able  to  be  obtained,  including  the  farmland  ID,
operation area,  operation start  and end time,  latitude and longitude
of  the  center  point,  and  the  province,  city,  and  county  where  the
harvester worked.

In order to eliminate the abnormal operating area, this study set
a  threshold  for  the  harvesting  area  according  to  the  investigation.
Minimum  total  harvesting  area:  During  one  season,  if  the  total
harvesting  area  is  less  than  2.02  hm2,  the  harvester  would  be
excluded. Maximum harvesting area per farmland: If the harvesting
area  of  a  single  farmland  is  larger  than  47.23  hm2,  the  area
data  would  be  excluded.  All  excluded  anomalous  data  underwent
manual  verification.  Due  to  poor  data  quality,  they  could  not  be
utilized.

According  to  the  above  thresholds,  the  number  of  harvesters
excluded  in  2021,  2022,  and  2023  is  4830,  3144,  and  5443,
respectively. 

2.3    Estimating  total  number  of  active  harvesters  and  its
confidence interval 

2.3.1    Confidence interval estimate

n

x̄1 x̄2 x̄n

Bootstrap  is  a  scientific  statistical  method  that  estimates  the
sampling  distribution  of  a  statistic  by  repeatedly  sampling  the
original  sample  data.  As  shown  in  Figure  3,  assume  that  {x1,  x2,
x3, …, xn} is a random sample of size   (population sample) drawn
from a process, where n is an integer greater than or equal to 1000,
and  { ,  ,  ...,  }  represents  a  sample  of  size n  drawn  from the
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original  sample  with  replacement.  Therefore,  there  are nn  possible
resampling methods.
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Figure 3    Schematic diagram of Bootstrap sampling
 

According  to  different  sampling  methods,  Bootstrap  methods
can  be  divided  into  two  types:  parametric  Bootstrap  and  non-
parametric  Bootstrap.  Compared  with  the  parametric  Bootstrap
method, the core advantage of the non-parametric Bootstrap method
lies  in  its  non-parametric  nature,  that  is,  it  does  not  need  to  make
any  assumptions  about  the  underlying  distribution  of  the  data.  At
the same time, it can make full use of the information in the sample
data,  and  the  estimation  results  are  more  accurate.  This  feature
makes the non-parametric Bootstrap method particularly suitable for
actual  data  analysis  scenarios  where  it  is  difficult  to  meet  the
distribution  assumptions  required  by  traditional  parametric
statistical  methods.  In  our  task,  the  number  of  active  harvesters  is
estimated by sampling using non-parametric Standard Bootstrap[18,19]

and  its  three  modified  Bootstrap  methods,  including  Percentile
Bootstrap[20],  Biased-Corrected  Percentile  Bootstrap[21],  and  Bias-
Corrected  and  Accelerated  Bootstrap[22].  Then,  the  accuracy  of  the
four  methods  was  evaluated,  and  the  result  of  the  optimal  method
was  selected  as  the  estimation  result  of  the  number  of  active
harvesters. 

2.3.2    Evaluation index
When choosing the optimal method among the four estimation

methods  for  estimating  the  total  number  of  active  harvesters  from
2021  to  2023,  it  was  crucial  to  consider  the  two  key  indicators  of
accuracy and precision. Accuracy and precision measure the ability
of an estimation method to measure the true value of a feature and

the  variability  of  the  measurements,  respectively.  In  order  to
comprehensively evaluate the effects of the four methods, this study
used  Monte  Carlo  simulation  research  to  numerically  analyze  the
statistical  properties  of  the  four  confidence  intervals  from  three
perspectives: coverage performance index, interval mean index, and
interval standard deviation index. 

3    Results and discussion
 

3.1    Average harvesting area of GNSS harvesters
Through  data  pre-processing,  area  calculation,  and  statistical

analysis, the operation data of GNSS harvesters from 2021 to 2023
are  listed  in  Table  1.  It  can  be  seen  that  as  the  number  of  GNSS
harvesters increases year by year, the total operating area of GNSS
harvesters has grown rapidly, but the average operating area has not
increased  much.  In  2021,  2022,  and  2023,  the  operating  area  of
GNSS  harvesters  accounted  for  5.17%,  12.89%,  and  18.28%,
respectively.  These  data  show  that  the  dataset  established  by  the
author has a large scale.
  

Table 1    2021-2023 GNSS harvester operating
area statistical data

Year
Number
of GNSS
harvesters

Total area of
wheat in the

main producing
provinces/hm2

Total operation
area by GNSS
harvester/

hm2

Average area
of GNSS
harvester/

hm2

Proportion of
GNSS harvester

operations

2021 23 356 20 117 410 1 039 853 44.52 5.17%
2022 57 314 20 262 110 2 611 074 45.56 12.89%
2023 80 188 20 57 510 3 702 141 45.50 18.28%
 

Figure 4 shows the histogram and QQ plot of the operating area
of  GNSS  harvesters  in  2023.  It  can  be  observed  that  the  data
distribution  of  the  operating  area  of  GNSS  harvesters  in  2023
significantly  deviates  from  the  characteristics  of  the  normal
distribution.  To  statistically  verify  this  observation,  this  study
further used the Kolmogorov-Smirnov test to evaluate the normality
of  the  data  from  different  dimensions.  The  results  show  that  the
operating  area  data  of  GNSS  harvesters  in  2023  do  not  follow  a
normal  distribution,  and  the  data  in  2021  and  2022  also  do  not
follow a normal distribution.
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Figure 4    Statistics of GNSS harvesters’ operating area in 2023
 

After  obtaining  the  GNSS  harvesters’  operating  area  data  in
China’s  nine  main  wheat-producing  provinces  from 2021  to  2023,
this  study  screened  the  operating  area  of  the  newly  added  GNSS
harvesters  every  year  and  calculated  their  average  operating  area
(Table 2).

Through  horizontal  comparison,  it  was  found  that  the  average
operating area of  newly added GNSS harvesters  in  2022 and 2023

showed  a  year-by-year  downward  trend  within  three  years  after
purchase.  Further  vertical  comparison  revealed  that  the  average
operating  area  of  newly  purchased  GNSS  harvesters  each  year
showed  a  downward  trend  compared  with  that  of  old  harvesters.
This  may  be  because  in  China’s  main  wheat-producing  areas,  the
newly  purchased  GNSS  harvesters  did  not  show  significant
differences  in  work  efficiency  compared  with  the  early  batches  of
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old  harvesters  not  equipped  with  GNSS  terminals.  The  reason
behind this phenomenon may be that the total number of harvesters
in China has become saturated, making it difficult to fully leverage
the high-performance advantages of new harvesters over old ones. 

3.2    Estimation of harvester interval
Given  the  non-normal  distribution  of  the  data,  traditional

parametric statistical methods that rely on the assumption of normal
distribution may not be suitable for this study. Therefore, this study
turned  to  non-parametric  statistical  methods  and  selected  the  non-
parametric  Bootstrap  method  for  further  analysis.  The  non-
parametric  Bootstrap  method  does  not  rely  on  the  specific
distribution  assumptions  of  the  data,  so  it  shows  higher  flexibility
and applicability when dealing with non-normally distributed data.

By  using  the  non-parametric  standard  Bootstrap  method  and
three improvements, this study successfully estimated the number of
active  harvesters  in  the  main  wheat-producing  areas  from  2021  to
2023  and  their  95%  estimation  interval.  Combining  the  results
obtained  from  these  four  methods  shows  that  the  total  number  of
active  harvesters  from  2021  to  2023  and  their  estimated  interval
have a high degree of confidence (Table 3).
  

Table 3    Comparison of estimation methods for the active
number of harvesters in 2023

Year Number of GNSS
harvesters Method

95% confidence interval
Lower limit Upper limit

2021 23 356

SB 447 271 456 535
PB 447 106 456 846

BCPB 447 245 456 749
BCa 447 223 456 387

2022 57 314

SB 441 767 447 794
PB 441 703 447 754

BCPB 441 940 447 636
BCa 441 708 447 625

2023 80 188

SB 436 939 440 507
PB 436 753 440 694

BCPB 436 907 440 588
BCa 436 873 440 608

 

The  coverage  performance  index,  interval  mean  index,  and
interval  standard  deviation  index  obtained  by  the  four  estimation
methods are shown in Figure 5.

After  a  comprehensive  comparative  analysis  of  the  four
methods, it was found that the Standard Bootstrap (SB) showed the
lowest  interval  standard  deviation  but  longer  interval  mean  index
and  lower  coverage  performance  index,  potentially  reducing  result
accuracy. The other methods had similar interval standard deviation
and  interval  mean  index,  but  the  Bias-Corrected  and  Accelerated
(BCa) Bootstrap method had a higher coverage performance index,
indicating greater reliability.

Therefore,  it  can  be  concluded  that  the  Bias-Corrected  and
Accelerated  (BCa)  Bootstrap  method  performs  best  in  terms  of
accuracy and precision. Therefore, the BCa method was selected as
the main method for estimating the total number of active harvesters
from 2021 to 2023, and the final results are shown in Figure 6. The
data in the table is the estimated value of the total number of active
harvesters  in  the  main  wheat-producing  areas  from  2021  to  2023,

calculated  using  the  BCa  method  and  the  corresponding  95%
estimate interval.
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Figure 5    Performance comparison of four methods
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Table 2    Average operating area of the newly added GNSS
harvesters (hm2)

Year 2021 2022 2023
2021 57.25 52.74 46.90
2022 - 43.84 51.79
2023 - - 38.76
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4    Conclusions
This  study  proposes  a  method  for  estimating  the  total  number

of  active  harvesters  based  on  big  data.  Using  GNSS  harvester
trajectory data  as  the foundation,  this  method accurately  calculates
the  operational  area  of  each  GNSS  harvester  and  then  derives  the
average harvesting area of all  GNSS harvesters.  By integrating the
total  sown  area  of  winter  wheat  in  China’s  main  wheat-producing
provinces  from  2021  to  2023,  and  utilizing  the  95%  Bootstrap
confidence  interval,  this  method  provides  confidence  intervals  for
the  number  of  active  harvesters.  The  specific  conclusions  are  as
follows:

1)  The  operational  area  data  of  GNSS  harvesters  in  China’s
main  wheat-producing  regions  from 2021  to  2023  do  not  follow a
normal distribution.

2)  The  95%  confidence  interval  values  estimated  by  the  four
methods  (SB,  PB,  BCPB,  and BCa)  are  similar,  demonstrating  the
feasibility  of  using  these  methods  for  estimating  the  number  of
active harvesters.

3)  Newly  purchased  GNSS  harvesters  have  not  shown
significant  differences  in  work  efficiency  compared  with  older
harvesters not equipped with GNSS terminals.

4)  The  total  number  of  harvesters  in  China  may  have  become
saturated,  making  it  difficult  for  new  harvesters  to  fully  leverage
their high-performance advantages over old models.

5) From the three perspectives of coverage performance index,
interval mean index, and interval standard deviation index, the four
non-parametric  estimation  methods  were  evaluated,  and  it  was
found that BCa had the best effect.

6) The 95% confidence intervals for the total number of active
harvesters from 2021 to 2023 estimated by the BCa method are [447
223, 456 387], [441 708, 447 625], and [436 873, 440 608]. 
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