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Abstract: The small biomass boiler heating system (SBBHS) offers a cost-effective, convenient, safe, and environmentally

friendly heating solution for small-scale users, providing notable social and economic advantages. Temperature prediction and

control methods can enable SBBHS to operate more intelligently and autonomously, further minimizing heating expenses. This

study focuses on a small biomass boiler heating system in Xinyang, Shandong, utilizing data-driven methods to analyze

SBBHS performance in supply water temperature prediction and optimization. To achieve precise temperature predictions, an

enhanced artificial neural network model is developed, trained, and validated, with the Levenberg-Marquardt optimization

algorithm applied to adjust network weights and thresholds. Additionally, a feedback neural network is employed for short-

term, 24-hour temperature predictions of the SBBHS. Experimental results demonstrate that this temperature prediction and

control strategy ensures long-term indoor temperature stability and comfort while reducing heating costs. This research

contributes to the intelligent upgrading and transformation of small biomass boiler control systems, enabling on-demand

heating and reducing carbon emissions.
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1 Introduction

Biomass, recognized as the fourth-largest energy source after
coal, oil, and natural gas, is a form of chemical energy with
properties similar to fossil fuels and holds significant potential as a
renewable replacement without requiring modifications to existing
energy infrastructure!’. Biomass boilers, a type of energy
equipment, can be categorized into biomass steam boilers, biomass
hot water boilers, biomass hot air stoves, and biomass heat-
conducting oil stoves”. The biomass boiler used in this study has
gained popularity due to its high performance and potential for
energy savings, emissions reduction, and economic benefits®.
Goelles et al.” provided a comprehensive review of the history,
current state, and future development trends of biomass fuel and
biomass combustion boilers, proposing a heat transfer model for the
convection section of a biomass boiler. Delubac et al."introduced
an innovative control method for a commercially available small-
scale biomass Dboiler, significantly enhancing operational
performance compared to conventional controls. Saidur et

al.’compared the heating costs of biomass heating systems, fossil
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fuel systems, and electric heating systems, providing a cost analysis
for residential heating applications.

A biomass boiler heating system harnesses biomass energy as
its primary fuel, derived from renewable and abundant organic
materials such as wood and agricultural residues. These systems are
versatile, finding application across residential buildings,
commercial properties, and industrial facilities. Serving as a
renewable, environmentally friendly, and cost-effective alternative
to traditional fossil fuel-based heating, biomass boiler systems
utilize locally sourced fuel and produce minimal greenhouse gases,
making them an ideal solution for sustainable heating. Currently,
biomass boilers are still emerging on a relatively small scale. In
small enterprises and family-operated workshops, limited energy-
saving awareness and varying skill levels among management
personnel often result in low combustion efficiency and energy
waste!”. Presently, boiler management primarily focuses on the
boiler body, or source end, where heat is generated. The boiler
operator adjusts settings based on readings from various meters at
the heat user side (loading end), but feedback is often delayed.
Without timely feedback from the loading end, operators may
struggle to make prompt adjustments, leading to either energy waste
or suboptimal heating quality. Establishing a comprehensive heating
model that encompasses both the source and loading ends could
provide valuable guidance for more effective biomass boiler
management and operation.

As an advanced intelligent modeling method, neural networks
offer robust nonlinear fitting capabilities, parallel information
processing, and self-learning properties, distinguishing them from
traditional models. These attributes include self-learning, self-
organizing, adaptability, strong generalization, and the capacity to
generate objective, reliable results. Neural networks establish
relationships between input and output data through learning,
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making them highly applicable in nonlinear system modeling
prediction®™. For instance, Li et al."” employed an improved BP
neural network algorithm to predict heat load, selecting external
variables like temperature and wind power as independent inputs.
Similarly, Ma'"" used the BP neural network for heating load
modeling, leveraging time, day, and month cycles to predict future
heating loads periodically. Jovanovic et al.'” explored multiple
neural network types, including feed-forward backpropagation
neural networks (FFNN), radial basis function networks (RBFN),
and adaptive inference (ANFIS),
demonstrating that all could accurately predict heating energy

neuro-fuzzy systems
consumption for a university campus. Additionally, Kieltyka et al.!"”)
introduced an Intelligent Prediction System (IPS) based on neural
networks, which has since been implemented for regional heat use
prediction.

However, heating load, while essential, does not directly guide
boiler management in biomass boilers, which, due to their relatively
recent development, still rely heavily on manual operation. As such,
heating load data may not be directly actionable for boiler operators.
Outdoor temperature fluctuations, particularly during the heating
season, have a significant impact on supply and return water
temperatures, directly influencing both heat energy efficiency and
indoor thermal comfort!". Additionally, indoor temperature exerts a
clear influence on heating load, with a generally inverse relationship
between heating load and room temperature fluctuations, as the
latter is a primary determinant of heating demand due to its
perceptibility!”. Thus, developing a model that incorporates a range
of parameters, including outdoor temperature, heating water
temperature, and indoor temperatures in rural households, can
provide more actionable and effective guidance for biomass boiler
management and operation.

In this study, the BP neural network functions as the heating
model for both the source and loading ends, with temperature as the
primary forecasting target rather than heat load. Parameters include
outdoor-related temperature data, heating water temperature, and
room temperature. The data underwent preprocessing, including
outlier removal and normalization, and was filtered based on
correlation and p-values. To improve the BP neural network’s
accuracy in predicting the loading end temperature, the model was
optimized within the empirical formula range by varying the
number of hidden layer nodes. The performance of different hidden
layer configurations was tested and analyzed, and the BP neural
network structure with the highest accuracy and optimal
performance was selected. This optimized BP neural network model
then predicted the water supply temperature for the next 24 hours,
offering a quality evaluation of the heating system. These results
provide an effective reference for boiler managers, helping to
minimize energy loss at the source end while ensuring the heating
quality for end users.

2 Materials and methods

2.1 Data collection

The data utilized for model establishment primarily originates
from sensors and official meteorological bureau records.
Huaniuwang village in Shangdian, Xinyang County, Shandong
Province, was chosen as the project and experimental site, with data
collected from January 1 2022, to March 1 2022. Local outdoor
temperature, wind speed, and wind direction data were provided by
the China Meteorological Administration for Xinyang County.
Temperature data for supply and return water was collected from
sensors positioned at the midpoint of the boiler’s supply and return

water pipelines. To assess heating quality for rural households, data
was taken from the household with the lowest heating performance.
Following the JGJT132-2009 standard for residential building
energy-saving assessment, temperature sensors were installed in
central indoor locations on walls with heating pipes, ensuring no
exposure to light or drafts. These sensor readings were taken as
room temperature measurements. Due to variations in villagers’
living habits and requirements, there were discrepancies between
actual conditions and standardized testing. Factors such as wall
materials and building structure'*'® also affected individual room
temperatures; however, these
throughout the data collection and were not included as alternative
input variables. Data from both the source and loading ends were
uploaded to a cloud platform via Internet of Things (IoT)
technology, with a recording frequency of 5 min for further
analysis.

After due consideration of the delay in the heating system, hot
water circulated in the village through pipes for 1 h. Temperature, a

variables remained constant

slower-changing variable floating by roughly 1°C in 1 h, was
recorded and officially released every hour. See the data in Table 1.

Table 1 Part of data for Xinyang County, Shandong Province

) e Ot i Dot K WS

oC tempgrature/ oC humidity/ ©) oC Grade
C %

47.2 38.8 -6 87 73 19.8 1
47.1 38.9 -7 90 304 19.4 1
46.9 38.8 -7 92 257 19.2 1
46.6 384 -7 92 276 18.8 1
46.3 384 -8 91 180 18.8 0
46.8 39.0 -6 49 242 19.5 1
46.8 38.9 -7 56 317 19.3 1
46.5 39.0 -6 47 291 19.1 2
46.3 39.0 -6 47 263 18.7 1
46.0 38.7 -8 54 313 18.5 1
459 38.7 -8 55 299 18.2 1
45.2 38.1 -9 72 278 17.9 1
453 37.7 -10 70 261 18.0 1
445 36.8 -9 61 295 19.3 1
44.6 36.9 -5 42 354 19.8 2
45.8 38.1 -2 39 32 20.0 2

2.2 Data preprocessing

Due to factors such as equipment malfunction, human error,
device precision limitations, data transmission interference, and
adverse weather conditions!”, some data exhibited errors and
reduced reliability. In this study, outlier removal and normalization
methods were applied to reduce error rates and enhance data
credibility. During the data processing phase, issues such as data
upload failures and access irregularities on the cloud platform
necessitated the removal of affected records. Additionally,
fluctuating water levels in the pipeline contributed to data instability
due to sensor placement, occasionally resulting in abnormally low
values, as illustrated in Figure 1. Where, the red line represents the
median, while the blue line indicates the mean. The top and bottom
edges of the box correspond to the 75th percentile (Q3) and 25th
percentile (Q1), respectively, with the maximum and minimum
values positioned outside the box. Independent points beyond these
boundaries are classified as outliers. Both supply and return water
temperatures displayed outliers. The box length, calculated as the
interquartile range (IQR) using the formula (IQR=Q3-Q1), defines
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the interval for outlier detection. Minimum (min) and maximum
(max) values were determined using (min=Q1-1.5xIQR) and
(max=Q3+1.5xIQR). These bounds were used as thresholds for
identifying and excluding outliers from the dataset.
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Note: The red line represents the median; the blue line indicates the mean.
Figure 1 Diagram of supply and return water and household room

temperature box

Data normalization and inverse normalization are techniques
used to transform dimensional data into a dimensionless range,
typically between 0 and 1. This transformation accelerates network
learning by reducing the mean of input signals for all samples,
bringing it closer to zero or to a smaller value relative to its mean
square error. Normalization also addresses issues of slow
convergence and extended training time in neural networks caused
by large data variation ranges”. Once input data is normalized, it
must undergo inverse normalization to revert to its original
dimensional values. The input and output variables are normalized
according to Equation (1).

Yot = Yoin
(X - Xmin) (1)

Y= Ymin to—
Kinax = Xonin

where, Y.« and Y, are the maximum and minimum data in the
data set, respectively. Y is the normalized value of the original data,
and X is the unprocessed value. X, and X_;, represent the
maximum and minimum values in the data group for processing.
2.3 BP neural network

The BP neural network,
backpropagation network, is among the most widely used artificial
neural networks. It operates with a “supervised” learning mode,

also known as the error

characterized by strong learning capabilities, robust nonlinear
mapping, and high fault tolerance!"”. With a suitable data sample, it
effectively establishes associations between input and output
variables”. Structurally, the BP neural network™ comprises an
input layer, a hidden layer, and an output layer. As illustrated in
Figure 2, its learning process involves two main steps: forward
transmission of input information and backpropagation of error
information. During forward propagation, the input signals pass
through the hidden layer and reach the output layer, where the mean
square error is calculated. If the mean square error exceeds the
acceptable threshold, backpropagation initiates, transferring errors
sequentially from the output layer to the hidden layer, and finally to
the input layer. This process involves iterative adjustments of
weights and biases between layers, specifically from the hidden
layer to the output layer, and from the input layer to the hidden
layer. Input variable parameters are repeatedly trained until the
mean square error meets the target threshold, ensuring accuracy in
network learning.
2.4 Establishment and optimization of neural network
structure

In this study, the nntool toolbox in MATLAB software was

employed to construct the heating model for both the source and
loading ends of the biomass boiler. When determining the number
of nodes in the output layer, a comprehensive and extensive
selection of variables was prioritized, followed by data analysis and
other screening methods to test the variables, ultimately establishing
the optimal node count™. For the hidden layer, the BP neural
network’s capacity to approximate any continuous nonlinear
function with a single hidden layer was leveraged™. Therefore, a
single hidden layer was prioritized in the network design to achieve
model accuracy, as increasing the number of hidden layer nodes can
reduce error™?*. This single hidden layer configuration was adopted
to achieve optimal fitting within the model.

| Start

Weight threshold

. 4

N

Input training |
\ - /
[ ¥

( Updata weight | | Calculate the input and
threshold output of each neuron

|
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Backward
Forward
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Figure 2 Diagram of BP neural network training process

The primary challenge in configuring the BP neural network
lies in selecting an appropriate number of hidden layer nodes. An
excessive number of hidden nodes may lead to an overly complex
network structure, potentially resulting in overfitting, reduced fault
tolerance, weakened generalization, and diminished processing
capability. Conversely, too few hidden nodes produce an overly
simplified structure, which may prevent adequate learning of input
information and negatively impact the training outcomes®. To
determine the optimal number of hidden layer nodes, the BP neural
network employs an empirical formula, as shown in Equation (2).

th V Ivin+Noul+n (2)

where, N, represents the number of nodes in the hidden layer, N,
represents the number of nodes in the input layer, and N,
represents the number of nodes in the output layer, while n serves
as an adjustable parameter typically ranging from 1 to 10, allowing
for fine-tuning of hidden layer node counts.

During the training phase of the neural network, the choice of
training algorithm plays a critical optimization role. This study
employs the Levenberg-Marquardt algorithm, known for its rapid
convergence and ability to mitigate the common issues of the BP
algorithm, including susceptibility to local minima and slow
convergence". Additionally, the learning rate selection is typically
experience-based, as it is challenging to determine through specific
methods™'.

2.5 Evaluation and test of BP neural network model
After establishing the BP neural network model, factors such as



276  December, 2024 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 17 No. 6

unknown information, missing input variables, and numerous
uncontrollable influences may introduce inevitable errors between
the model’s predictions and actual values. The BP neural network’s
training process primarily focuses on adjusting parameters to
minimize the mean square error (MSE) to meet the target accuracy.
As shown in Equation 3, the MSE is a critical metric for model
evaluation.

MSE= 13 (v~ 7 3)
" i=1

where, nrepresents the dataset length, Y denotes the actual
household temperature data, and ¥ represents the predicted
household temperature data. Additionally, the correlation
coefficients between the training, test, validation, and overall
datasets and their corresponding prediction sets serve as important
indicators for assessing the network model’s performance.

3 Results and analysis

3.1 Analysis of input variable

The collected data included several candidate variables for
input, such as supply water temperature, return water temperature,
outdoor temperature, wind direction, and wind speed. The final
input variables for modeling were selected based on the correlation
and p-values between these candidate variables and the output
variable, room temperature.

As listed in Table 2, supply water temperature, return water
temperature, and outdoor temperature exhibit a strong correlation
with room temperature and possess very low p-values, indicating
their suitability as input variables. However, since this model is
primarily designed for management purposes, return water
temperature, which cannot be obtained in advance for forecasting,
was excluded as an input variable. Although wind speed has a weak
correlation with room temperature, its low p-value justifies its
inclusion as an input variable. Conversely, wind direction and
outdoor relative humidity, with low correlations and high p-values,
were excluded from the model as input variables.

Table 2 Correlation and significance between different data
and room temperature

Data matching name Correlation The value of p

The supply temperature and room temperature 0.6110 <0.002 00
Returning water temperature and room temperature ~ 0.6690 <0.002 00
Wind power and room temperature 0.2893 <0.002 00
Wind direction and room temperature —0.0218 0.611 67
Outdoor temperature and room temperature 0.7476 <0.002 00
Outdoor relative humidity and room temperature —0.1932 0.000 01

3.2 Establishment and performance evaluation of BP neural
network model

Parameter selection is essential for establishing an effective
neural network model. Based on the empirical formula for
determining the number of hidden layer nodes in a BP neural
network: Equation (2), the input layer consists of 3 nodes, and the
output layer contains 1 node. Therefore, the number of nodes in the
hidden layer should range between 3 and 12. Various models were
trained using BP neural networks with different numbers of hidden
layer nodes. A learning rate of 0.001 was applied for optimal fitting.

As listed in Table 3, the model with 3 hidden layer nodes
exhibited the highest mean square error, while the model with 11
hidden layer nodes achieved the lowest mean square error.
Examining the correlation coefficient between the entire dataset and

its corresponding prediction set, the model with the highest
correlation contained 12 hidden layer nodes, and the one with the
lowest correlation contained 3 nodes. Notably, the correlation does
not increase linearly with the number of hidden layer nodes.
Consequently, the model that achieved both the minimum mean
square error and a high correlation coefficient was selected as the
source and loading end heating model for the biomass boiler,
according to the performance criteria. In this study, the optimal BP
neural network configuration includes 11 hidden layer nodes.

Table 3 Performance of models with different hidden nodes

Nllllr.nber of Training Verify Test All

idden MSE . . .

layer nodes correlation dependencies correlation relevance
3 1.11520  0.87991 0.866 63 0.858 11  0.874 80
4 1.01820  0.888 41 0.895 34 0.873 14  0.887 40
5 0.86627  0.879 95 0914 14 0.88002  0.884 96
6 093056  0.888 14 0.889 78 0.90760  0.89170
7 0.87940  0.894 09 0.888 08 0.88595  0.89243
8 092772 0.897 40 0.905 80 0.87553  0.89537
9 099075  0.884 08 0.899 40 0.86759  0.884 40
10 091284  0.899 23 0.876 02 0.86513  0.891 86
11 0.83360  0.893 64 0.890 80 0.87157  0.889 65
12 0.89563  0.867 62 0.902 53 0.87262  0.89559

The BP neural network model, depicted in Figure 3, is
configured with eleven hidden layer nodes, three input variables,
one output variable, and uses a sigmoid activation function in the
hidden layers. In Figure 4, which illustrates the mean square error
(MSE) performance, the x-axis represents the number of BP neural
network iterations, while the y-axis represents the MSE. The three
curves shown correspond to the mean square error of the training
set, validation set, and test set, respectively. The iteration count that
achieves the closest value to the optimal (Best) mean square error
occurs at the 8th iteration.

Hidden Output
W Output
3 i E 1
11 1

Figure 3  Structure of neural network

Best validation performance is 0.8336 at epoch 8

10°¢

—Train
—Validation
—Test

Best

10’1 1 1 1 i 1 1 1
0 2 4 6 8 10 12 14
14 epochs
Figure 4 Trend of mean square error of each dataset

Furthermore, linear regression plots are generated to illustrate
the relationship between the true values and their corresponding
predicted values across various datasets, including the training set,
validation set, test set, and the entire dataset (as depicted in
Figure 5). The correlation coefficients for these relationships are
found to be 0.893 64, 0.89080, 0.87157, and 0.889 65,
respectively. Notably, a majority of data points are closely clustered
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around the Y=T dotted line with minimal deviation from it as
indicated by small angles with the fit line. These findings suggest
that the neural network model established in this study exhibits
excellent performance with high accuracy.

R=0.89364 R=0.8908
26+ Data Data
¥ 24t Fit
Y=T¢ 4
% 2r te .*)?/
8 g
A20F o 2
o
18 # "‘
16 18 20 22 24 26 18 20 22 24
Target Target
a. Training b. Validation
R=0.87157 R=0.88965
Data 26} Data .
24} = Fit ) — Fit 35
Y=T 24 Y=T 4
529 92 - o & 3
2 Ry
e 2
& 20 (=W 20
18 18
18 20 22 24 16 18 20 22 24 26
Target Target
c. Test d. All

Figure 5 Goodness of fit between true and predicted values

3.3 The management of supply water temperature based on
prediction model

The objective of boiler regulation and management is to ensure
an appropriate supply water temperature that meets indoor
temperature requirements. To control the boiler’s supply water
temperature, a pre-simulation approach based on the proposed
model was adopted, with the corresponding flowchart illustrated in
Figures 6-10.

Start

|

Load the neural network model
L y

|

Determine the standard room temperature

l

‘ R
Enter a single time variable (outlet water ‘

temperature, outdoor temperature, wind)

|
+

Modify the outlet water temperature in the
variable to 7.=T
J— - |

Predict the room

Modify the temperature 7,
outletwater
temperature J
in the Y A TR
variable to \TH<T
T=T+1 T

|~
Get the outletwater
temperature

L

End

{

Figure 6 Flow diagram of model prediction at a single time

According to the Indoor Air Quality Standard (GB/T18883-
2002), the recommended winter indoor temperature ranges from
16°C to 24°C, considered a comfortable temperature range. Due to
significant heat losses, the minimum supply water temperature
(input variable) must exceed either 16°C or 24°C to achieve an
indoor temperature of 16°C or 24°C for rural households. As shown
in Figure 6, after the model is loaded, the room standard
temperature 7 is set to 16°C or 24°C. A single variable (supply
temperature, outdoor temperature, or wind speed) is input, and the
supply temperature 7, is adjusted to meet the target room
temperature 7. Modified variables are then used for simulated
predictions. If the predicted room temperature 7, is less than the
standard temperature 7, 7, is incremented by 1, and the simulation
is repeated until 7,>7. This final T, value is recommended as the
supply water temperature.

With a standard room temperature of 16°C, the increasing trend
of supply water temperature is illustrated in Figure 7, where the
solid line represents the supply water temperature and the dotted
line indicates the room temperature. The simulation cycle was
conducted under conditions of wind speed 1, outdoor temperature
—6°C, and an initial supply water temperature of 16°C. After 20
simulation cycles, the optimal supply water temperature was
determined. When the supply water temperature reaches at least
34°C, the room temperature achieves or exceeds the standard of 16°C.

The final water temperature is 34°C

— Outlet temperature
--'Room temperature

Temperature/°C

10 12 14 16 18 20
Cycles
Figure 7 Increasing trend of supply water temperature with 16°C
as the room temperature standard

Taking 24°C as the standard room temperature, the increasing
trend of supply temperature is in Figure 8. The supply water
temperature and room temperature are with the solid line and the
dotted line, respectively. The cycle simulation was carried out under
wind power 1, the outdoor temperature —6°C, and the supply
temperature 24°C. The final supply temperature was obtained by
280 cycles. When the supply water temperature was at least 302°C,
the room temperature could be greater than 24°C. However, the

The final water temperature is 302°C
350 1

—— Outlet temperature
------ Room temperature

Temperature/°C

0 50 100 150 200 250 300
Cycles
Figure 8 Increasing trend of supply water temperature with 24°C
as the room temperature standard
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continuous increase of supply water temperature has little influence
on the change in room temperature. The supply water temperature
of the biomass hot water boiler could not reach 302°C, so the room
temperature could not be 24°C simply through heating of the boiler.

Through multiple simulations, it was determined that 21°C is
the maximum achievable room temperature provided by the heating
system under certain constraints. As shown in Figure 9, which
illustrates the increasing trend of supply water temperature, the
solid line represents the supply water temperature, while the dotted
line indicates the room temperature. The simulation was conducted
with wind speed 1, an outdoor temperature of —-6°C, and an initial
supply water temperature of 21°C. After 37 cycles, the optimal
supply water temperature was identified. When the supply water
temperature reaches at least 56°C, the room temperature can exceed
21°C.

The final water temperature is 56°C

[ — Outlet temperature
50 F Room temperature

Temperature/°C
(%)
(=]

Cycles
Figure 9 Increasing trend of supply water temperature with 21°C

as the room temperature standard

The results of multi-time simulation predictions were consistent
with those of single-time simulations. In Figure 10, after the model
was loaded, the room standard temperature 7 was set to either 16°C
or 24°C. In multi-time simulations, the variable sequence was input
prior to each single-time simulation cycle. Individual variables were
input sequentially, and the supply temperature 7, was adjusted to
meet the room temperature standard 7. After the simulation using
the adjusted variables, the predicted room temperature 7, was
compared to the standard room temperature 7. If 7,<7, the model
increased 7, by 1 and re-rank the simulation until 7,>7. The
resulting value of 7, was recorded as the supply water temperature.

For each single variable input, 7, was adjusted and simulated
until the room temperature 7, met or exceeded 7. The supply water
temperature 7, for each time point was stored in Ty, for the next
round of single-time simulations. This process was repeated until
the entire time series was simulated, yielding the complete supply
water temperature sequence 7.

As required for next-day management, official 24-hour
forecasts of outdoor temperature and wind speed from the local
meteorological bureau can be input in advance. A 24-hour data
sample from the actual dataset was selected to extract its outdoor
temperature and wind speed as multi-time variable sequences.
Using 21°C and 16°C as target room temperatures, the neural
network model predicted room temperature with outdoor
temperature and wind speed as the multi-time input sequence.

In Figure 11, two 24-hour supply water temperature curves are
shown, representing the actual supply water temperature. The solid
line and dotted line illustrate the lower-limit and upper-limit supply
temperatures, respectively. The 24-hour supply water temperature
curve, obtained from an indoor temperature simulation with a target
of 16°C, is shown by the solid line, while the dotted line represents
the upper-limit supply temperature curve based on a target room
temperature of 21°C. Managers are advised to maintain supply

water temperatures within these upper and lower bounds to achieve
room temperatures between 16°C and 21°C, thus avoiding energy
waste while ensuring adequate heating quality.
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Figure 10 Flow diagram of model prediction at a multi-time
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Figure 11 The upper limit and the lower limit of the supply water

temperature in 24 h

The boiler heating quality is assessed during data acquisition
using the model, which predicts and simulates supply water
temperature. In Figure 12, the real water temperature is represented
by the solid line, while the lower-limit and the upper-limit of outlet
water temperature are indicated by different types of dashed lines.
The simulated dashed curve, which represents the 24-hour supply
water temperature, is based on a target room temperature of 16°C.
The upper-limit outlet water temperature for a target room
temperature of 21°C over the same period. Throughout this period,
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most of the real supply water temperatures exceed the lower limit,
with certain segments also slightly surpassing the upper limit. This
suggests that there is some degree of energy waste within the
heating system.

—Real water temperature
-- Minimum outlet water temperature

100 Upper outlet water temperature

Temperature/°C

100 200 300 400 500 600
Time/h

Figure 12 The upper limit and the lower limit of the supply water

temperature during the heating experiment

In Figure 13, the x-axis represents operation time, while the y-
axis indicates the household room temperature. The room
temperature in this village generally exceeds the standard target of
16°C, although it tends to be slightly lower in households located
toward the middle and end of the pipeline. This trend reflects the
room temperatures experienced by most households in the village.
Overall, the biomass boiler heating system is capable of providing
high-quality heating for the majority of local users.
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Figure 13 Curve of the room temperature of the household

4 Conclusions

Through correlation analysis between outdoor temperature,
supply and return water temperatures, wind speed, wind direction,
and outdoor relative humidity with peasant household room
temperature, outdoor temperature, water temperature, and wind
speed were identified as the primary factors affecting indoor
temperature. Consequently, water temperature, outdoor temperature,
and wind speed were selected as input variables for the neural
network. Outliers were removed, and data normalization was
applied to improve data quality.

A 24-h supply water temperature prediction for the SBBHS
was achieved using actual measurements from the biomass boiler.
The prediction utilized a feed-forward neural network with a
backpropagation learning algorithm, achieving a mean square error
(MSE) of 0.8336. Correlations for the training set, validation set,
test set, overall predicted values, and actual values were 0.893 64,
0.890 80, 0.871 57, and 0.889 65, respectively.

The simulation results from the neural network predictions
were compared with actual supply water temperature data from the
biomass boiler, yielding satisfactory results with an acceptable
average error. Future work will focus on strategies to further reduce
the energy consumption of the biomass boiler system.
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