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Abstract: Accurate  and  rapid  wheat  morphology  reconstruction  and  trait  collection  are  essential  for  selecting  varieties,
scientific  cultivation,  and  precise  management.  A  single  perspective  is  limited  by  environmental  obstructions,  hindering  the
collection of high-throughput phenotype data for wheat plants.  Therefore, a rapid reconstruction method of multi-view three-
dimensional  point  cloud  is  proposed  to  realize  the  high-throughput  and  accurate  identification  of  wheat  phenotype.  Firstly,
taking wheat at the tillering stage as the experimental object, a multi-view acquisition system based on a RealSense sensor was
constructed,  and  the  point  cloud  data  of  wheat  were  obtained  from  16  views.  Secondly,  a  joint  photometric  and  geometric
objective was optimized, and space location was registered by colored Point Cloud Registration (colored) and Iterative Closest
Point (ICP) algorithms. Furthermore, the Multiple View Stereo (MVS) algorithm was used to combine the depth image, RGB
image, and spatial position obtained by coarse registration to enable the fine registration of multi-viewpoint clouds. Compared
with  the  traditional  Structure  From  Motion  (SFM)-MVS  algorithm,  our  proposed  method  is  much  faster,  with  an  average
reconstruction time of 33.82 s. Moreover, the wheat plant height, leaf length, leaf width, leaf area, and leaf angle of wheat were
calculated  based  on  the  three-dimensional  point  cloud  of  the  wheat  plant.  The  experimental  results  showed  that  the
determination  coefficients  of  the  method  are  0.996,  0.958,  0.956,  0.984,  and  0.849,  respectively.  Finally,  phenotypic
information such as compact degree, convex hull volume, and average leaf area of different wheat varieties was analyzed and
identified, proving that the method could capture the phenotypic differences between varieties and individuals.  The proposed
method provides a rapid approach to quantify wheat phenotypic traits, aiding breeding, scientific cultivation, and environmental
management.
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1    Introduction

Research  on  wheat  phenotypes  is  essential  for  breeding  high-
yielding, high-quality, and resilient varieties[1,2]. The height and leaf
area of the wheat plant reflect the growth rate and robustness of the
plant,  and  the  leaves  have  an  important  influence  on  wheat  yield
and  disease  resistance[3,4].  However,  the  cost  of  manually  studying
wheat phenotypic information is enormous, and it  is prone to error
and  takes  a  long  time.  Addressing  these  problems  is  critical  to
accelerate  the  breeding  process  and  optimize  field  management[5].

With the development of modern science and technology, especially
the  development  of  sensor  technology  and  computer  vision
technology,  it  is  possible  to  obtain  crop  morphological
characteristics information utilizing high throughput, high precision,
and high automation[6].

At  present,  two-dimensional  images  and  three-dimensional
point  clouds  are  widely  used  to  obtain  plant  phenotypes.  Among
them,  much  progress  has  been  made  in  obtaining  one-dimensional
and  two-dimensional  phenotypic  indicators  based  on  two-
dimensional  images[7-10],  but  the  accuracy  of  phenotypic  indices
obtained under the condition of severe occlusion and complex plant-
type  structure  is  poor[11],  and  three-dimensional  phenotypic
information  is  missing.  To  overcome  the  dimensional  data  loss,
researchers  proposed  a  three-dimensional  point  cloud  approach.
Kargar  et  al.[12]  used  mobile  lidar  to  reconstruct  three-dimensional
point  clouds  of  agricultural  sample  plots  and  accurately  measured
leaf  area.  Sun  et  al.[13]  analyzed  the  high-throughput  phenotype  of
cotton  fields  and  the  growth  status  of  cotton  plants  by  three-
dimensional  reconstruction  of  cotton  fields  with  lidar.  Lidar  had
excellent  point  cloud  acquisition  performance  and  showed  strong
advantages in plant phenotype evaluation, but its long scanning time
and high equipment  price  made it  difficult  to  be  widely  applied in
the agricultural field[14–16]. Pound et al.[17] collected multi-view images
of  wheat  plants  with  RGB  cameras.  Westoby  et  al.[18]  obtained
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camera  pose  and  sparse  point  cloud  by  SFM algorithm.  Furukawa
and  Hernández[19]  estimated  depth  by  MVS  algorithm,  built  dense
point cloud generation by matching views, reconstructed the three-
dimensional  model  of  wheat  plants,  and extracted their  phenotypic
measurements.  Wu et al.  also used the same method to reconstruct
the  wheat  plant  model  and  designed  different  multi-view  image
acquisition  devices[20,21].  The  reconstruction  method  has  the
advantages  of  low  cost,  wide  application  conditions,  and  high
accuracy of the wheat three-dimensional model.  However,  it  needs
to  estimate  the  image  depth  in  the  reconstruction  process,  which
costs  a  lot  of  time  and  leads  to  slow  reconstruction  speed[22,23].  In
contrast,  the  RealSense  D455  sensor  based  on  the  principle  of
structured  light  can  directly  obtain  color  images  and  depth
information,  making  up  for  the  problem  that  the  MVS  algorithm
takes a long time to estimate the depth.  It  is  portable,  inexpensive,
and  easy  to  integrate  into  equipment  including  Low  Earth  orbit
platforms and autonomous land and air vehicles[24].

Therefore,  a  multi-view  acquisition  system  based  on  the
RealSense  D455  depth  camera  was  constructed  in  this  study  to
derive  RGB  image  and  depth  image  data  of  a  single  wheat  plant.
The RGB image and depth image of wheat were fused to obtain the
point cloud, and a high-throughput method for automatic and rapid
identification  of  wheat  phenotypic  traits  was  proposed.  Firstly,  a
joint  photometric  and  geometric  objective  was  optimized,  and  the
spatial location was registered using a combination of colored Point
Cloud  Registration  (colored)  and  Iterative  Closest  Point  (ICP)
algorithms. Then, combined with the obtained spatial position, RGB
image, and depth image, the MVS algorithm was used to match the
views,  and  a  complete  and  reproducible  three-dimensional  point
cloud model of a single wheat plant was generated. The phenotype
characteristics of wheat were calculated and extracted based on the
three-dimensional  point  cloud  model  to  meet  the  actual  needs  of
wheat with high yield, high quality, and strong stress resistance. 

2    Materials and data collection
 

2.1    Experimental materials
In  this  study,  based  on  the  identification  of  wheat  phenotype

and  screening  of  high-quality  wheat  varieties,  a  method  for  rapid
phenotypic  identification  of  trait  information  was  designed.  Wheat
was cultivated in planters  to  demonstrate  high-throughput  methods
for  sensing  varietal  and  phenotype  characteristics.  The  wheat  was
grown in the growth chamber in the State Key Laboratory of Wheat

Improvement  in  Shandong  Agricultural  University.  The  room
temperature of the growth chamber was maintained at 23°C, the air
humidity  was  maintained  at  40%,  and  the  photoperiod  was  16  h
provided.  Light  illumination  in  the  chamber  was  30 000  lx.  The
plants  were  placed  in  5.7  L  pots  with  the  PINDSTRUP  peat  soil.
The pH of the soil source ranges from 5.5-6.5, mixed with a certain
proportion of vermiculite and perlite.

The  tillering  stage  of  wheat  is  the  main  stage  that  determines
the  spike  number  per  unit  area[25].  In  the  experiment,  point  cloud
data, image information, and phenotype data were obtained from the
tillering stage of wheat. To assess the applicability of the algorithm
proposed  in  the  study,  three  varieties  of  wheat  -  QiMin8,
ShanNong17,  and BaiNong58 - with  significant  differences  in  leaf
compactness,  leaf  morphology,  and  tillering  ability,  were  selected
for  the  experiment.  QiMin8  (QM)  has  wide  and  long  leaves,  dark
green  color,  strong  tillering  ability,  and  loose  plant  shape.
ShanNong17  (SN)  has  strong  tillering  ability,  slightly  loose  plant
shape, upswept flag leaf, and long spike, and BaiNong58 (BN) is a
dwarf-resistant  variety,  with  strong  tillering  ability,  compact  plant
shape, and wide flag leaf. Samples were taken at the tillering stage
of  wheat  on October  5,  October  15,  October  25,  and November  5,
2022  (three  duplicates  for  each  variety).  The  detailed  measured
tiller  numbers  of  each  sampled  shoot  are  listed  in  Table  1.  Each
cultivar involves three sample replicates.
 
 

Table 1    Tiller numbers of each sampled wheat ear shoot in 4 d
Variety QM SN BN

ID 1 2 3 1 2 3 1 2 3

2022.10.05 5 6 6 7 6 6 7 7 5

2022.10.15 7 8 9 9 7 7 7 7 6

2022.10.25 8 8 8 10 8 9 8 7 6

2022.11.05 7 6 6 7 7 6 6 5 5
 

The  basic  computer  configuration  for  processing  3D  point
cloud  data  is  with  a  Core  i5-10200  CPU,  4.0  GB  RAM,  and
NVIDIA GeForce GTX 1650 graphics card, as well as a solid-state
hard disk of Micron MTFDHBA256TDV. 

2.2    Experiment process
The  three-dimensional  reconstruction  of  wheat  plants  and

acquisition  of  phenotypic  traits  were  based  on  the  experimental
design depicted in Figure 1.

 
 

Wheat cultivation Building platform Data acquisition
Filtering

processing

Plant height

Leaf area

Evaluation and
Leaf angleidentification

Convex volume

Compactness
RegistrationSegmentation

Figure 1    Flow chart of data processing
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Firstly,  a  data  acquisition  platform  was  created  using  the
RealSense  D455  sensor  to  capture  point  cloud  data  with  color
information for the target crop.

Secondly,  conditional  filtering and Statistical  Outlier  Removal
(SOR)  filtering  were  applied  to  extract  the  wheat  plant  from  the
original point cloud data.

Thirdly, the wheat point clouds were registered and fused using
colored-ICP and the MVS algorithm along with depth maps.

Fourthly, the Alpha Shape method was employed to accurately
define  the  wheat  plant’s  boundary,  after  which  phenotypic  traits
such as plant height, leaf area, leaf angle, shoot convex volume, and
compactness were calculated.

Finally,  the  accuracy  of  the  three-dimensional  model  and  the
computational  outcomes  of  the  wheat  plant  phenotypes  were
dissected, evaluated, and identified. 

2.3    Multi-view data acquisition
The  multi-view  image  acquisition  platform  was  built  in  an

indoor environment,  and the light source was the LED light below
the  ceiling  of  the  growth  chamber.  During  the  operation  of  the
platform, the wheat plant was evenly illuminated and would not be
blocked. The platform consists of a turntable, a shooting device, and
a  background  plate,  and  the  construction  of  the  shooting  scene  is
shown in Figure 2.
  

Realsense D455

Turntable

Figure 2    Three-dimensional data synchronous acquisition
platform of wheat plant

 

Among  them,  the  turntable  was  composed  of  a  turntable  unit
and  a  calibration  unit.  The  turntable  unit  had  a  built-in  rotation
motor to drive the wheat plant under test to rotate. The diameter of
the  turntable  was  20  cm,  the  speed  was  adjustable,  and  the
calibration unit was 12 cm high. On top of the calibration unit was a
red disk with a  diameter  of  4  cm,  which was used as  the scale  for
later  point  cloud  calibration.  The  shooting  unit  consisted  of  a
triangle  stand,  a  RealSense  D455  sensor,  and  a  high-performance
laptop connected to the laptop via a USB cable.The depth collection
range  was  0.2-10  m.  The  background  plate  was  white  to  reduce
reconstruction noise.

Accurate  color  image  and  depth  image  information  of  wheat
could be collected by the system in a short time. 

2.4    Data acquisition
The wheat plant was located in the center of the turntable. The

calibration unit was placed in a pot and the wheat plant was not in
contact  with  the  calibration  unit.  The  best  distance  between  the
sensor,  turntable,  and  background  was  that  the  wheat  plant  under
test and the calibration unit could be fully photographed. To capture
the overall structure of the wheat as much as possible, the horizontal
distance between the RealSense D455 sensor and the plant turntable
was  set  at  1.5  m.  The  distance  was  chosen  to  obtain  information
about the inner leaves and stems surrounded by the outer leaves of
the wheat. The sensor was placed at a height of 0.9 m and took a top
view of the wheat plant. The distance between the turntable and the

background plate was 0.3 m.
The  lighting  environment  for  multi-angle  images  was  the

indoor  ordinary  LED  lighting  source.  The  turntable  rotated  22.5
degrees  each  time  for  a  total  of  16  times.  The  multi-view  image
acquisition  program  controlled  the  acquisition  of  the  RealSense
D455  sensor.  Each  time  the  turntable  rotated,  the  images  were
collected  once  at  an  interval  of  1  s,  and  the  plants  rotated  for  1
week.  A total  of  16  multi-view RGB images  and  16  depth  images
were collected. Multi-view data collection was completed within 60 s
for each wheat plant, and the images were automatically named and
stored. The wheat plant images collected are shown in Figure 3.
 
 

Figure 3    Image acquisition of wheat plant 

3    Calculating methods
Point cloud dispersion in three-dimensional space for the wheat

plant is irregular, lacking a specific numerical relationship due to its
complex  three-dimensional  canopy  morphology.  Establishing  the
spatial relationships between these three-dimensional point clouds is
challenging.  To  create  a  relationship  between  the  depth  and  color
images of the wheat plant captured by the RealSense D455 sensor,
the mapping function of sensor[26] was used. Each point on the wheat
plant  after  image  registration  contained  three-dimensional  x-y-z
coordinates  and  RGB  color  attributes.  Additionally,  there  were
undesired  backdrop  point  clouds  and  some  noise  in  the  original
images, affecting the space location and three-dimensional structure
of  the  wheat  plant.  Thus,  the  preprocessing  of  three-dimensional
point cloud involved two key steps:

Firstly, conditional filtering was applied to eliminate redundant
background  point  cloud,  enhancing  the  significance  of  the  point
cloud by focusing on wheat structures.

Secondly, to address outlier issues with the wheat plant’s point
cloud,  the SOR filtering algorithm was employed.  This step aimed
to  improve  measurement  accuracy  and  the  speed  of  recognizing
wheat plant characteristics.

These  preprocessing  steps  resulted  in  an  accurate  point  cloud,
featuring a clear wheat structure devoid of any clustered outliers or
non-matching points. 

3.1    Three-dimensional point cloud preprocess 

3.1.1    Conditional filter
Three-dimensional point cloud, background noise, and mottled

spots of wheat plants were obtained by the RealSense D455 sensor.
According  to  the  general  attributes  of  points,  conditional  filtering
was used to eliminate these points. The target plant point cloud was
obtained from the primary point cloud of a single view by using the
condition constraint of coordinate execution in Equation (1):

Xd < x < Xu

Yd < y < Yu

Zd < z < Zu

(1)

where, (Xd, Xu), (Yd, Yu), and (Zd, Zu) represent the limited range of
three-dimensional  Cartesian  coordinates.  Since  the  RealSense
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sensor  is  stationary,  the  same  constraints  are  applied  to  the  point
clouds  of  each  view.  The  clear  wheat  plant’s  point  cloud  was
obtained as shown in Figure 4.
  

Conditional filter

Figure 4    Point cloud after conditional filter
 

The wheat plant point cloud retained substantial proximal noise
and anomalies near leaf structures. The SOR algorithm was applied
to  streamline  point  cloud  data  by  eliminating  spatially  dispersed
noise artifacts. 

3.1.2    SOR filter
Point  clouds  representing  wheat  plants  often  exhibited  uneven

spacing, resulting in numerous sparse outliers. Any point within leaf-
space  held  valuable  information,  with  denser  regions  conveying
more information. On the contrary, noisy or outlier points were seen
as less informative and typically had a larger average point-to-point
distance  within  the  point  cloud.  Considering  these  conditions,  the
information expressed by points where the average distance to their
neighboring  points  within  the  point  cloud  exceeded  a  specific
threshold was disregarded[27,28].

The  SOR  filtering  involves  analyzing  each  point’s  k
neighborhood  statistically  and  calculating  the  mean  distance  from
the point to the k-neighbor. The filter operates under the assumption
that the distances follow a Gaussian normal distribution. Points with
an  average  distance  outside  the  predefined  threshold  are  identified
as outliers and subsequently removed from the dataset. The steps of

the process are as follows:
(1) Calculate the distance di from each point to its k-neighbors.

di =
√

(x0 − xi)
2
+ (y0 − yi)

2
+ (z0 − zi)

2 (2)

(2) Calculate the sum D of di and mean distance μ between any
point and its nearest k-neighbors.

(3) Geometry is determined by μ and standard deviation σ, that
is, as in the following equation with Gaussian distribution:

σ =

Õ
k∑

i=1

(di −µ)

k
(3)

4) dt is considered as the distance threshold, as in the following
equation. Points with μ greater than dt are rejected.

dt = µ+n ·σ (4)

where,  n  is  the  arithmetic-coefficient  of  the  standard  deviation  of
the distance. The filter outcomes are shown in Figure 5.
 
 

SOR filter

Figure 5    Point cloud after SOR filter
 

The  point  clouds  of  wheat  plants  with  16  views  after  filtering
are shown in Figure 6.

 
 

Figure 6    Point clouds of wheat plants from 16 views after filtering
 
 

3.2    Three-dimensional  point  cloud  registration  from  multiple
views

To perform precise registration of multi-view point clouds, the
colored-ICP algorithm was employed in this study for optimizing a
joint  photometric  and  geometric  object  to  calculate  the  relative
position  of  the  camera  and  complete  the  coarse  registration.  The
MVS algorithm was applied to the coarse registration of wheat plant
point  cloud.  The  registration  process  of  the  multi-view  three-
dimensional point cloud is shown in Figure 7b. 

3.2.1    Colored-ICP algorithm coarse registration
The  colored-ICP  algorithm  jointly  optimizes  the  photometric

objective and the point-to-plane ICP objective to register the RGB-
D  sequence  and  colored  point  cloud  of  wheat  plants.  Firstly,  the
RGB-D image sequences are registered to create segments, and then

the  joint  optimization  objective  is  generalized  to  calculate  the
camera pose and register the colored point clouds. The wheat plant
point clouds from 16 views are shown in Figure 7a.
 
 

a

b

c

Figure 7    Registration principle of point cloud
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The transformation matrix equation between point clouds is as
follows:

E (T ) = (1−σ)EC(T )+σEG(T ) (5)

where,  EC  and  EG  are  the  photometric  and  geometric  errors,
respectively. σ ∈ [0, 1] is a weight that balances the two terms.

EG(T ) =
∑
(p,q)∈κ

((p−Tq) ·np)
2 (6)

κwhere,    is  the  corresponding  set  in  the  current  iteration; np  is  the
normal  to  point  p; Ec  is  conversion  error  about  color,  that  is,  the
difference  between  the  color  of  the  measurement  point q  (denoted
as C(q)) and its projected color on the tangent plane of p.

EC(T ) =
∑
(p,q)∈κ

(Cp( f (Tq))−C(q))2 (7)

Cp( f (Tq))
( f (Tq))

where,    is  a  precomputed  function  defined  continuously
on  the  tangent  plane  of  p.  The  function    projects  a  three-
dimensional point onto the tangent plane.

The  markers  in  the  basin  have  regular  shapes  and  prominent
colors.  Therefore,  the  colored-ICP  algorithm  was  used  to  register
the  red  cylindrical  markers  in  the  basin  to  obtain  accurate  initial
camera poses,  as shown in Figure 7b, and coarse registration point
cloud, as shown in Figure 7c[29]. 

3.2.2    MVS algorithm fine registration
The point clouds of wheat plants with multiple views obtained

a better initial pose after coarse registration. In order to enable rapid
three-dimensional  reconstruction,  the  MVS  algorithm  was  applied
for fine registration.

The MVS algorithm is a process that involves finding points in
space with luminosity consistency, after obtaining the initial pose of
the point cloud from multiple camera views, and performing stereo
matching  on  the  scene.  The  algorithmic  process  is  illustrated  in
Figure 8: Firstly, a three-dimensional point P was selected from the
initial  coarse  registered  point  cloud.  Then,  the  three-dimensional
points  were  projected  onto  the  images  using  the  camera’s  intrinsic
and extrinsic  parameters.  Two small  square  patches,  f  and g,  were
extracted  with  the  projection  point  as  the  center.  The  similarity
between the  scenes  contained in  these  patches  was  then evaluated.
Conversely,  if  the  point  lay  outside  the  object,  there  was  a
noticeable  difference  between  the  two  patches.  By  measuring  the
consistency between these patches, the algorithm could estimate the
likelihood  that  the  three-dimensional  point  lay  on  the  object’s
surface.
  

≈

dP c

f= =g

Figure 8    MVS algorithm process
 

Given a set of N input images and a three-dimensional point p
seen  by  all  the  images,  one  can  define  the  photo-consistency  of p
w.r.t. each pair of images Ii and Ij as:

Ci j(p) = ρ(Ii(Ω(πi(p))), I j(Ω(π j(p)))) (8)

where,  ρ(f,  g)  is  a  similarity  measure  that  compares  two  vectors,
πi(p) denotes the projection of p into image i, Ω(x) defines a support
domain  around  point  x,  and  Ii(x)  denotes  the  image  intensities
sampled  within  the  domain.  Every  photo  consistency  measure  can
be described as a particular choice of ρ and Ω.

The  photographic  consistency  points  were  found  in  three-
dimensional  space,  the  noise  points  of  coarse  registration  were
removed,  and  the  fine  registration  of  the  wheat  point  cloud  was
realized. 

3.3    Original point cloud preprocess
After obtaining the fine-registered wheat plant point cloud, it is

essential  to  correct  the  point  cloud  and  the  positive  orientation  of
the point cloud to convert it to its real size with the X-O-Y plane as
the  reference  plane  and  the  Z-axis  as  the  positive  orientation.  In
addition, wheat plants have to be segmented from the original point
cloud to promote the following phenotypic extraction.

The  original  point  cloud  of  the  wheat  plant  was  subjected  to
coarse  segmentation  as  shown in Figure  9a,  and  any  points  with  a
height  less  than  40% of  the Z-axis  direction  were  eliminated.  The
process yielded the point cloud depicted in Figure 9b. Subsequently,
to calibrate the size of the point cloud, markers placed in pots were
used as a reference. Next, the border points were identified, and the
marker  circumference  was  estimated,  as  shown  in  Figure  9c.
Finally, the diameter ratio of the approximated circumference to the
actual marker plate size was utilized as a scaling factor to calculate
the  dimensions  of  the  wheat  point  cloud.  Figure  9d  shows  the
segmentation result.
 
 

a b c d

Figure 9    Process of point cloud calibration and shooting
segmentation

 

d̃i di

The  obtained  results  were  then  compared  with  manual
measurements to evaluate the accuracy of the calibration. To ensure
accuracy, multiple measurements were taken and averaged to avoid
human error. The error generated between the estimated and actual
diameter  was  quantitatively  evaluated  using  the  indicator  mean
absolute percentage error (MAPE) metric as shown in Equation (9),
where    is  the  estimated  diameter  from the  point  cloud,  and    is
the real size of the plate (4 cm):

MAPE = 100%1
n

n∑
i=1

∣∣d̃i −di

∣∣
di

(9)
 

3.4    Calculation  method  of  phenotypic  traits  for  the  wheat
plant 

3.4.1    Calculation method of wheat plant height
The difference in  height  between the maximum and minimum

values of the point cloud on the Z-axis was recognized as the height
of the plant[30]. 

3.4.2    Calculation  method  of  projected  area  and  multi-layer
projected area

The  plant  point  cloud  was  initially  projected  onto  the X-O-Y
plane,  as  shown  in  Figure  10b.  The  sparsely  sampled  points  were
used  to  generate  a  mesh  using  the  greedy  triangulation  algorithm.
The  summation  of  the  triangle  mesh  areas  was  recognized  as  the
projected area of the plant, as shown in Figure 10c. The plant point
cloud was then divided into equal segments in order to calculate the
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multilayer  projection  area,  which  was  used  to  determine  the
projected area of  the plant,  as  shown in Figure 10. Figure 10a and
Figure  10d  show  the  initial  point  cloud  of  wheat  and  multi-layer
initial  point  cloud  of  wheat,  respectively.  Figure  10e  shows  the
plant  point  of  multi-layer  onto  the X-O-Y  plane. Figure  10f  shows
the summation of the triangle mesh areas, which was recognized as
the multi-storey projected area.
  

a b c

d e f

Figure 10    Projected area and multi-storey projected area
calculation process

  

3.4.3    Calculation method of leaf area and leaf angle
Firstly,  the  wheat  plant  point  cloud  (Figure  11a)  was

downsampled  using  the  voxel-grid  to  enhance  the  computational
performance of the next phase and to ensure the consistency of the
point cloud concentration, as shown in Figure 11b. The leaves were
extracted from the wheat  plant,  as  shown in Figure 11c.  The point
cloud  was  then  smoothed  by  moving  least  squares  to  keep  the
bending  and  twisting  phases  of  the  blade,  as  shown  in Figure  11c
and  Figure  11d.  Furthermore,  the  mesh  was  generated  from  the
smoothed  point  cloud  using  greedy  triangulation.  Finally,  the  total
of the areas of all triangular cross sections was the wheat leaf area.
Figure 11e shows the combined visualization of the generated mesh
and the original colored point cloud.
  

a b c d e

Figure 11    Leaf area estimation
 

When  calculating  leaf  angle  as  shown  in  Figure  12,  random
point A on the main stem of wheat, tillering on wheat, and random
endpoint B above A were linked to form line segment a. The vertex
A  was  linked  to  the  endpoint C  on  the  tillering  form  segment  c.
Then, the leaf angle θ was calculated from the coordinates of A, B,
and C and the lengths of a, b, and c[31].
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Figure 12    Calculation diagram of leaf angle 

3.4.4    Calculation  method  of  wheat  plant  convex  volume  and
compactness

The  convex  volume  was  estimated  by  calculating  the  convex
hull of the plant point cloud, as shown in Figure 13a. As shown in
Figure  13b,  the  degree  of  compactness  of  wheat  is  the  ratio  of
projected area to convex hull area[32].
 
 

a b

Figure 13    Wheat plant convex volume and
compactness calculation

  

4    Results and discussion
 

4.1    Analysis of registration results
The  object  is  reconstructed  by  the  MVS  algorithm.  The

reconstruction effect depends on the quality of the input image and
camera parameters. To obtain camera parameters, MVS algorithms
are  often  used  in  combination  with  SFM  algorithms.  But  SFM
algorithm  is  slow  and  has  low  precision  in  obtaining  camera
parameters. It can not meet the demand for precision agriculture for
virtual  plant  reconstruction  with  low time  cost  and  high  precision.
Therefore,  the  colored-ICP  algorithm  is  applied  to  the  coarse
registration of point clouds to obtain camera parameters accurately
and  quickly.  In  addition,  the  method  of  using  the  MVS  algorithm
combined  with  depth  maps  eliminates  the  process  of  stereo
matching, which saves a lot of time [33]. 

4.1.1    Analysis of coarse registration performance
The  point  clouds  of  each  viewpoint  after  conditional  filtering

and  SOR  processing  were  registered.  Colored-ICP  algorithm
combined with photometric  and geometric  optimization algorithms
was  used  to  calculate  the  camera  pose  according  to  Equation  (5).
Camera  parameters  and  coarse  registration  point  cloud  were
obtained. The effect is shown in Figure 14, where the camera pose
of each view image was calculated more accurately, and the coarse
registration point cloud was relatively complete.

Traditional SFM uses a robust SIFT algorithm to extract feature
points  in  images  and  uses  a  nearest  neighbor  method  to  match
feature points. To ensure the fairness of the comparison between the
processing  effects  of  different  algorithms,  the  image  of  each  view
was cropped, and the range of cropping was the same as that of the
point  cloud  processed  by  conditional  filtering.  The  image  was
cropped and processed as shown in Figure 15.
 
 

Figure 14    Effects of colored-ICP coarse registration
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Figure 15    Effects of images of each view after cropping
 

The  processing  effect  of  SFM  algorithm  is  shown  in
Figure 16.
  

Figure 16    Effects of SFM sparse reconstruction
 

In  Figure  16,  the  camera  pose  of  each  view  angle  image
calculated by the SFM algorithm was basically in front of the wheat
plant, which was caused by the fact that the image background was
consistent  and  the  wheat  plant  leaves  were  slender,  making  it
difficult  to  capture  the  feature  points  of  wheat  leaves.  So,  the
camera  pose  calculation  was  not  accurate.  As  a  result,  the  point
cloud obtained by SFM sparse reconstruction was also not complete
enough and had poor accuracy.

The  time  cost  and  completeness  of  the  reconstructed  point
cloud  of  the  colored-ICP  algorithm  and  SFM  algorithm  are
compared, as listed in Table 2:

In Table 2, the experiments were repeated four times using the
two  algorithms,  respectively.  The  average  total  points  of  the  point
cloud  obtained  by  using  the  colored-ICP  algorithm  is  31 943,  the

average  number  of  points  after  removing  the  pot  and  calibration
object is 9899, and the average time consumption is 29.1686 s. The
average  total  points  of  the  point  cloud obtained by using  the  SFM
algorithm is 9735, the average number of points after removing the
pot  and  calibration  object  is  2231,  and  the  average  time
consumption is 36.071 58 s.
  

Table 2    Time cost and registration accuracy of coarse
registration algorithms

Algorithm Total points Total points of the wheat plant Time cost/s

colored-ICP

31 885 9844 29.3503
32 018 9916 29.7877
32 114 9907 28.4832
31 755 9930 29.0532

SFM

9733 2294 35.4650
9664 2188 36.0872
9795 2284 36.4358
9751 2158 36.2983

 

Therefore,  compared with the wheat  point  cloud reconstructed
by the traditional SFM sparse reconstruction, the wheat point cloud
obtained  by  the  colored-ICP  algorithm  for  coarse  registration  has
higher completeness and less time consumption. 

4.1.2    Analysis of fine registration performance
The  registration  results  of  the  proposed  and  the  conventional

algorithm are shown in Figures 17-19.
 
 

MVS

+ +

Figure 17    Result of SFM-MVS algorithm
 
 

MVS
+ +

Figure 18    Result of MVS algorithm after colored-ICP algorithm coarse registration
 
 

MVS

+

Figure 19    Result of MVS combined with depth map algorithm after colored-ICP algorithm coarse registration
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Figure  17  shows  the  results  of  SFM-MVS  algorithm
registration. Figure 18 shows the result of MVS algorithm following
colored-ICP  algorithm  coarse  registration.  Figure  19  shows  the
result  of  MVS  combined  with  the  depth  map  algorithm  after  the
colored-ICP algorithm coarse registration.

In Figure 17, each view RGB image and camera pose are used
as input. Due to the inaccuracy of the camera pose obtained by the
sparse reconstruction of SFM, the depth map calculated by the MVS
algorithm is  not  accurate  enough,  and  the  wheat  plant  point  cloud
obtained  by  the  dense  reconstruction  is  incomplete,  which  affects
the  computational  precision  of  phenotype  characteristics.  In
addition,  the  process  of  obtaining  the  depth  map  of  the  image  by
using the MVS algorithm for stereo matching also consumes a lot of
time.

In  Figure  18,  RGB  images  are  combined  with  camera  poses
calculated by the colored-ICP algorithm. Then the MVS algorithm
is used to stereo-match the images of each view to obtain the depth
map  of  each  view,  and  finally  the  wheat  point  cloud  is

reconstructed.  There are two problems with this  method.  Firstly,  it
will  consume  a  lot  of  time  in  the  process  of  computing  the  depth
map. Secondly, the accuracy of the computed depth map is not high,
and  many  pixels  are  missing  depth  values,  resulting  in  incomplete
wheat point cloud reconstruction with large errors.

In Figure 19, the RGB image and depth image obtained by the
RealSense  D455  sensor  are  combined  with  the  camera  pose
obtained after coarse registration by the colored-ICP algorithm, and
MVS algorithm is applied to fine registration, which skips the stereo
matching  process  and  saves  a  lot  of  time.  In  addition,  the  depth
image obtained by the RealSense D455 sensor is more accurate, and
the final reconstructed wheat point cloud is more complete.

In  Figure  19,  the  proposed  method  has  a  clearer  three-
dimensional  wheat  plant  texture.  To  further  validate  the
performance of the three-dimensional reconstruction method, time-
cost  comparative  results  and  registration  precision  comparative
results are listed in Table 3.

 
 

Table 3    Time cost and registration accuracy of different inputs and algorithms
Combination
number

Coarse
registration

Fine
registration Input Total points Total points of the

wheat plant
Time cost of coarse

registration/s
Time cost of fine
registration/s

Total time
cost/s

1 SFM MVS
RGB

+CAMERA
POSE

25 641 6071 36.0872 1466.53 1502.6172
27 650 6766 38.6647 1531.33 1569.9947
28 035 7296 39.9635 1619.67 1659.6335
29 286 7614 41.7587 1699.47 1741.2287
31 988 8837 43.4985 1771.19 1814.6885

2 colored-ICP MVS
RGB

+CAMERA
POSE

31 975 8360 28.4683 1409.67 1438.1383
32 092 8738 29.0781 1512.32 1541.3981
35 621 10 647 30.4413 1536.67 1567.1113
37 145 11 128 30.6411 1654.9 1685.5411
41 155 12 041 31.4438 1725.61 1757.0538

3 colored-ICP MVS RGB+DEPTH
+CAMERA POSE

34 589 10 126 28.4683 3.0385 31.5068
35 602 10 508 29.0781 3.1688 32.2469
37 308 11 858 30.4413 3.8604 34.3017
39 424 12 961 30.6411 4.1244 34.7655
42 942 14 072 31.4438 4.8602 36.304

 

Combinations  2  and  1  in  Table  3  show  that  the  point  clouds
obtained by registration using the colored-ICP algorithm and MVS
algorithm are more complete than those obtained by the SFM-MVS
algorithm,  and  the  wheat  plant  point  cloud  accounts  for  a  higher
proportion, 28.50%, of the total point cloud.

Combination  3  and  Combination  2  in  Table  3  show  that  the
camera  pose  obtained  by  the  colored-ICP  algorithm  is  coarsely
registered, the RGB images and depth images are used as input, and
the  point  cloud  reconstructed  by  the  MVS  algorithm  is  more
complete.  The  wheat  plant  point  cloud  accounts  for  a  higher
proportion  of  the  total  point  cloud,  which  is  31.24%,  and  the
average  reconstruction  time  is  33.82  s.  It  is  97.89%  faster  than
Combination 2.

Therefore,  the  proposed  method  can  greatly  shorten  the

reconstruction  time  while  obtaining  high-precision  camera  poses.
Under  the  same  conditions,  computational  performance  and
registration  precision  are  better  than  the  traditional  SFM-MVS
algorithm.  The  reconstructed  wheat  was  more  observable  and
structurally clearer. 

4.2    Phenotype characteristic calculation and analysis 

4.2.1    Plant height calculation and analysis
In  order  to  validate  the  validity  of  reconstruction-based  three-

dimensional wheat plant height calculation method, the correlations
between  the  calculated  values  and  the  measured  values  were
investigated. Plant heights of the reconstructed wheat plant structure
model  were  calculated  according  to  the  plant  height  calculation
method presented in Section 3.4.1.

The error of plant height calculation is shown in Figure 20.
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Figure 20    Calculation error of plant height
 

Figure 20 shows the calculated data's error range (0.1-1.8 cm),
average  error  (0.917  cm),  and  RMSE  (0.424  cm)  compared  to
measured values. The calculation achieved 97.03% accuracy with a

2.97% error rate.
To  further  demonstrate  the  validity  of  the  plant  height

calculation  method,  the  linear  correlation  of  the  calculated  and
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measured plant height was determined for the wheat plant model, as
shown in Figure 21.
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Figure 21    Correlation between calculated and measured values of
plant height

Figure  21  shows  a  high  correlation  (R²  =  0.968)  between
calculated  and  measured  plant  heights  on  the  basis  of  three-
dimensional  wheat  reconstructions.  The  regression  line
(slope=0.975,  intercept=0.573)  confirms  strong  agreement,
validating  the  three-dimensional  reconstruction  algorithm’s
performance. 

4.2.2    Leaf length and width calculation and analysis
Because  automated  leaf  segmentation  and  identification  was

difficult to achieve, maximum leaf length and width were measured
manually using CloudCompare software.

To  validate  the  three-dimensional  wheat  reconstruction  model
and  the  CloudCompare-based  method  for  leaf  dimension
calculation, the study correlated calculated and measured leaf length
and width. The results are shown in Figure 22.
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Figure 22    Correlation between calculated and measured values of leaf length and leaf width
 

For leaf length, the determination-coefficient (R²) is 0.958, the
RMSE  is  1.032  cm,  the  calculation  accuracy  is  91.28%,  and  the
error  rate  is  8.72%.  For  leaf  width,  the  corresponding  values  are
0.956 (R²), 0.112 cm (RMSE), 93.66% (accuracy), and 6.34% (error
rate). 

4.2.3    Calculation and analysis of leaf area and leaf angle
To  validate  the  reliability  of  the  reconstructed  wheat  three-

dimensional  model  and  the  greedy  triangulation-based  leaf  area
calculation  method,  the  correlation  between  calculated  and
measured leaf area values was established. The discrepancy in leaf
area estimation is presented in Figure 23.
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Figure 23    Correlation between calculated and measured values of
leaf area

 

Figure  23  depicts  the  correlation  between  calculated  and
measured leaf  areas,  yielding an R²  of  0.966.  The fitted  regression
line  exhibits  a  slope  (regression-coefficient)  of  0.959  and  an
intercept  of  4.913.  The  calculation  accuracy  is  92.80%,  with  an
error rate of 8.2%. The mean absolute error is 3.6132 cm², spanning
a range from 1 to 7.2 cm². The calculated value of leaf area is closer
to  the  authentic  wheat  leaf  measurement,  which  demonstrated  the
efficiency  of  three-dimensional  reconstruction  algorithms  of  the
wheat plant.

To authenticate the credibility of the reconstructed wheat three-
dimensional  model  and  the  method  of  calculating  leaf  angle,  a
correlation  between  the  calculated  values  and  the  measured  values
of  leaf  angle  was  developed.  Leaf  angle  calculation  errors  derived
from the calculated and measured data are shown in Figure 24.

Figure  24  illustrates  the  correlation  between  calculated  and
measured  leaf  angles,  yielding  an  R²  value  of  0.849.  The  fitted
regression line exhibits a slope (regression-coefficient) of 0.928 and
an intercept of 1.647. The error distribution spans from 0.1° to 9.8°,
with a mean absolute error of 4.42°. The primary source of error is
attributed  to  the  hardware's  minimum  recognition  precision.
Moreover,  manual  measurement  had  human  errors,  which  would
cause some destruction to the wheat leaf structure.  On the basis of
the  reconstructed  wheat  plant  three-dimensional  model,  wheat
leaves  and  skeletons  were  extracted.  The  accuracy  rate  is  95.17%,
and the error rate is 4.83%.
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4.3    Identification and analysis of wheat phenotype
Through the above analysis, it  is proven that the reconstructed

wheat  point  cloud  model  has  high  accuracy.  The  phenotypic
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information  extracted  from  the  wheat  model  can  be  directly
analyzed and identified.

Therefore,  the  phenotypes  of  36  wheat  sample  plants  were
calculated,  as  shown  in  Figure  25.  At  each  growth  stage,  cultivar
QM  showed  the  smallest  compactness,  indicating  that  the  plant
configuration of QM was more loose than that of other cultivars and
belonged to the loose type. The mean leaf area was estimated based

on  the  number  of  tillers  per  plant  to  enable  comparison  of  tiller
phenotypes,  as  listed  in Table  1.  QM had  the  largest  average  leaf
area  per  plant,  and  BN  had  the  lowest  average  plant  leaf  area  on
Nov 5, 2022. The results showed that QM had a larger leaf area per
plant. Figure  25  indicates  that  the  reconstructed  wheat  point  cloud
model  is  capable  of  capturing  phenotypic  differences  between
cultivars and individual plants.
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Figure 25    Calculation values of different plant compactness, averaged leaf area per tiller and convex volume
 
 

5    Discussion
 

5.1    Reconstruction strategy
In this study, a multi-perspective method was proposed with a

RealSense sensor to achieve the three-dimensional reconstruction of
the wheat plant. On the foundation, the phenotype characteristics of
wheat plants were accurately calculated.

The three-dimensional  reconstruction of  wheat  plants  played a
vital  role  in  calculating  their  phenotypic  traits.  Due to  the  reduced
presence  of  noise  points  in  the  three-dimensional  point  cloud  data
obtained  from the  multi-view reconstruction  system employed,  the
adopted  conditional  filtering  and  SOR  filtering  methods
demonstrated  improved  effectiveness  in  achieving  target
segmentation  and  data  smoothing  for  individual  crop  leaves.
However, the current method for leaf segmentation in wheat plants
only  allowed  for  coarse  target  extraction,  indicating  the  necessity
for  further  algorithmic  refinement  and  parameter  configuration
enhancement.

Point cloud overlap with massive unstructured group plants can
be  used  by  Rand  -  LA  network  and  pixel  to  achieve  target
detection[34,35].  Lidar  extracts  plant  phenotypes  with  high  accuracy
and  plays  an  essential  role  in  agricultural  breeding  and
management[36].  However,  it  is  difficult  for  lidar  to  achieve  high-
speed  data  acquisition  and  process  it  in  real  time  with  algorithms.
By ensuring accurate phenotype calculation, the point cloud can be
streamlined  using  adaptive  curvature-based,  downsampling,  or
random sampling methods to remove redundant data while retaining
essential  crop  information.  Subsequently,  techniques  such  as
Intrinsic  Shape  Signatures  (ISS),  k-dimensional  Tree  (KD-Tree),
and Sample Consensus Initial  Alignment (SAC-IA) can be applied
during  reconstruction  to  enhance  three-dimensional  leaf  modeling
quality and expedite algorithm processing[37–39]. 

5.2    Experimental design and analysis
This study utilized a multi-view and omnidirectional automated

image acquisition device to establish a rapid wheat plant phenotype

identification  method.  Potting  experiments  for  wheat  enabled
precise  control  of  soil,  fertilizer,  and  water  conditions,  facilitating
study of  physiological  index trends and development of  automated
detection methods for challenging metrics like leaf area, leaf angle,
and  projected  area,  which  are  difficult  to  measure  manually.  This
approach addresses the shortage of mobile wheat phenotyping tools
in  field  or  greenhouse  settings.  Furthermore,  the  potting  method
allows for indoor use of large-scale testing equipment, which is also
applicable to other field-crops.

There  are  also  some deficiencies  in  the  study.  When  applying
point  cloud  collection  devices  with  RealSense  sensor,  due  to
insufficient light,  irregular hetero-colored noise points appeared on
the  edge  of  the  leaf.  Therefore,  to  boost  the  detection  precision  of
high-throughput  wheat  plant  phenotypes,  it  is  essential  to  further
refine  the  data  preprocessing  algorithm.  It  is  difficult  to  remove
noise with conditional filtering based on color gamut distribution.

In  addition,  slight  vibration  will  be  generated  when  the
turntable  drives  the  plant  to  rotate,  so  the  image  can  be  acquired
after  the  turntable  is  stabilized,  which  increases  the  reconstruction
time. 

5.3    Future work
In  this  work,  a  high-precision  and  low-cost  multi-perspective

three-dimensional  reconstruction  technology  of  a  wheat  plant  was
proposed  based  on  the  Realsense  D455  sensor.  Data  collection,
model reconstruction, and phenotypic trait extraction were achieved
in  a  stable  indoor  environment.  Moreover,  the  physiological
indicators  that  can  be  measured  manually,  including  plant  height,
leaf  area,  and  leaf  angle,  can  all  be  calculated  nearly  in  real  time,
and good calculation outcomes have been obtained. In future work,
a three-dimensional laser scanning platform will be designed for the
identification  of  crop  phenotypes  by  combining  multiple  laser  dot
detectors.  The  platform  as  a  whole  is  a  cube  framework,  and  the
module drives multiple laser dot detectors to launch lasers to obtain
the depth values of these points, which are used for high-throughput
crop  point  cloud  acquisition.  Combined  with  the  software  we
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developed, the automatic segmentation of group crops is realized. It
provides a low-cost method for the phenotypic identification of field
crops.

In  addition  to  further  minimizing  the  error  introduced  by  the
algorithm,  we  will  develop  curvature-aware  models  to  better
approximate natural leafstalk morphology and optimize point cloud
density  through  adaptive  voxel  filtering  tailored  to  leafstalk
dimensions. 

6    Conclusions
Accurately and quickly reconstructing the wheat morphological

structure  and  obtaining  wheat  traits  are  the  keys  to  wheat  variety
selection,  scientific  cultivation,  and  precision  management.
Therefore, a multi-view image acquisition device was designed. The
three-dimensional reconstruction of the wheat plant was realized by
multi-view  acquisition  mode,  and  the  nondestructive  detection
method of wheat phenotypic traits was proposed.

This  study  utilized  conditional  filtering  and  SOR  filtering
algorithms  to  reduce  noise  in  wheat  plant  point  cloud  data.  A
combined photometric and geometric objective was optimized, and
space  positioning  was  achieved  through  integration  with  colored
Point Cloud Registration (colored) and Iterative Closest Point (ICP)
algorithms.  Subsequently,  the  MVS  algorithm  was  applied  to
correspond  to  views  using  the  obtained  spatial  position,  RGB
images,  and  depth  images,  resulting  in  the  development  of  a
complete  wheat  plant  point  cloud  model.  The  algorithm's  average
reconstruction  time  is  33.82  s,  significantly  faster  than  traditional
non-destructive testing algorithms.

Utilizing  the  reconstructed  wheat  plant  model,  the  proposed
algorithms  achieved  high  accuracy  in  estimating  phenotype
characteristics,  with  plant  height,  leaf  length,  leaf  width,  leaf  area,
and  leaf  angle  exhibiting  accuracies  of  97.57%,  91.28%,  93.66%,
92.80%, and 95.17%, respectively. The correlation-coefficients (R²)
with  the  calculated  and  measured  values  for  these  characteristics
were  0.996,  0.958,  0.956,  0.984,  and  0.849,  indicating  a  strong
positive correlation. These findings demonstrate that the algorithms
can accurately and efficiently compute phenotype characteristics. In
addition,  the  phenotypic  information  of  different  wheat  varieties,
such  as  compactness,  convex  hull  volume,  and  average  leaf  area,
was  analyzed  and  identified,  which  proved  that  the  method  could
capture  the  phenotypic  differences  between  varieties  and
individuals. The outcomes of this research are capable of providing
technical  support  and  acting  as  a  reference  in  the  realm of  growth
monitoring. Especially, it could also provide a phenotypic basis for
scientific cultivation and good breeding of wheat plant. 
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