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Abstract: Accurate and rapid wheat morphology reconstruction and trait collection are essential for selecting varieties,
scientific cultivation, and precise management. A single perspective is limited by environmental obstructions, hindering the
collection of high-throughput phenotype data for wheat plants. Therefore, a rapid reconstruction method of multi-view three-
dimensional point cloud is proposed to realize the high-throughput and accurate identification of wheat phenotype. Firstly,
taking wheat at the tillering stage as the experimental object, a multi-view acquisition system based on a RealSense sensor was
constructed, and the point cloud data of wheat were obtained from 16 views. Secondly, a joint photometric and geometric
objective was optimized, and space location was registered by colored Point Cloud Registration (colored) and Iterative Closest
Point (ICP) algorithms. Furthermore, the Multiple View Stereo (MVS) algorithm was used to combine the depth image, RGB
image, and spatial position obtained by coarse registration to enable the fine registration of multi-viewpoint clouds. Compared
with the traditional Structure From Motion (SFM)-MVS algorithm, our proposed method is much faster, with an average
reconstruction time of 33.82 s. Moreover, the wheat plant height, leaf length, leaf width, leaf area, and leaf angle of wheat were
calculated based on the three-dimensional point cloud of the wheat plant. The experimental results showed that the
determination coefficients of the method are 0.996, 0.958, 0.956, 0.984, and 0.849, respectively. Finally, phenotypic
information such as compact degree, convex hull volume, and average leaf area of different wheat varieties was analyzed and
identified, proving that the method could capture the phenotypic differences between varieties and individuals. The proposed
method provides a rapid approach to quantify wheat phenotypic traits, aiding breeding, scientific cultivation, and environmental

management.
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1 Introduction

Research on wheat phenotypes is essential for breeding high-
yielding, high-quality, and resilient varieties'"”. The height and leaf
area of the wheat plant reflect the growth rate and robustness of the
plant, and the leaves have an important influence on wheat yield
and disease resistance®". However, the cost of manually studying
wheat phenotypic information is enormous, and it is prone to error
and takes a long time. Addressing these problems is critical to
accelerate the breeding process and optimize field management®.
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With the development of modern science and technology, especially
the development of sensor technology and computer vision
technology, it is possible
characteristics information utilizing high throughput, high precision,

to obtain crop morphological
and high automation'.

At present, two-dimensional images and three-dimensional
point clouds are widely used to obtain plant phenotypes. Among
them, much progress has been made in obtaining one-dimensional
and two-dimensional phenotypic indicators based on two-
dimensional images”'", but the accuracy of phenotypic indices
obtained under the condition of severe occlusion and complex plant-
type structure is poor'’, and three-dimensional phenotypic
information is missing. To overcome the dimensional data loss,
researchers proposed a three-dimensional point cloud approach.
Kargar et al.'” used mobile lidar to reconstruct three-dimensional
point clouds of agricultural sample plots and accurately measured
leaf area. Sun et al.l"”! analyzed the high-throughput phenotype of
cotton fields and the growth status of cotton plants by three-
dimensional reconstruction of cotton fields with lidar. Lidar had
excellent point cloud acquisition performance and showed strong
advantages in plant phenotype evaluation, but its long scanning time
and high equipment price made it difficult to be widely applied in
the agricultural field"'?. Pound et al."” collected multi-view images
of wheat plants with RGB cameras. Westoby et al.'¥! obtained
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camera pose and sparse point cloud by SFM algorithm. Furukawa
and Hernandez' estimated depth by MVS algorithm, built dense
point cloud generation by matching views, reconstructed the three-
dimensional model of wheat plants, and extracted their phenotypic
measurements. Wu et al. also used the same method to reconstruct
the wheat plant model and designed different multi-view image
acquisition devices®?!. The reconstruction method has the
advantages of low cost, wide application conditions, and high
accuracy of the wheat three-dimensional model. However, it needs
to estimate the image depth in the reconstruction process, which
costs a lot of time and leads to slow reconstruction speed”*. In
contrast, the RealSense D455 sensor based on the principle of
structured light can directly obtain color images and depth
information, making up for the problem that the MVS algorithm
takes a long time to estimate the depth. It is portable, inexpensive,
and easy to integrate into equipment including Low Earth orbit
platforms and autonomous land and air vehicles™.

Therefore, a multi-view acquisition system based on the
RealSense D455 depth camera was constructed in this study to
derive RGB image and depth image data of a single wheat plant.
The RGB image and depth image of wheat were fused to obtain the
point cloud, and a high-throughput method for automatic and rapid
identification of wheat phenotypic traits was proposed. Firstly, a
joint photometric and geometric objective was optimized, and the
spatial location was registered using a combination of colored Point
Cloud Registration (colored) and Iterative Closest Point (ICP)
algorithms. Then, combined with the obtained spatial position, RGB
image, and depth image, the MVS algorithm was used to match the
views, and a complete and reproducible three-dimensional point
cloud model of a single wheat plant was generated. The phenotype
characteristics of wheat were calculated and extracted based on the
three-dimensional point cloud model to meet the actual needs of
wheat with high yield, high quality, and strong stress resistance.

2 Materials and data collection

2.1 Experimental materials

In this study, based on the identification of wheat phenotype
and screening of high-quality wheat varieties, a method for rapid
phenotypic identification of trait information was designed. Wheat
was cultivated in planters to demonstrate high-throughput methods
for sensing varietal and phenotype characteristics. The wheat was
grown in the growth chamber in the State Key Laboratory of Wheat

Figure 1

Improvement in Shandong Agricultural University. The room
temperature of the growth chamber was maintained at 23°C, the air
humidity was maintained at 40%, and the photoperiod was 16 h
provided. Light illumination in the chamber was 30 000 Ix. The
plants were placed in 5.7 L pots with the PINDSTRUP peat soil.
The pH of the soil source ranges from 5.5-6.5, mixed with a certain
proportion of vermiculite and perlite.

The tillering stage of wheat is the main stage that determines
the spike number per unit area®. In the experiment, point cloud
data, image information, and phenotype data were obtained from the
tillering stage of wheat. To assess the applicability of the algorithm
proposed in the study, three varieties of wheat - QiMin8,
ShanNong17, and BaiNong58 - with significant differences in leaf
compactness, leaf morphology, and tillering ability, were selected
for the experiment. QiMin8 (QM) has wide and long leaves, dark
green color, strong tillering ability, and loose plant shape.
ShanNong17 (SN) has strong tillering ability, slightly loose plant
shape, upswept flag leaf, and long spike, and BaiNong58 (BN) is a
dwarf-resistant variety, with strong tillering ability, compact plant
shape, and wide flag leaf. Samples were taken at the tillering stage
of wheat on October 5, October 15, October 25, and November 5,
2022 (three duplicates for each variety). The detailed measured
tiller numbers of each sampled shoot are listed in Table 1. Each
cultivar involves three sample replicates.

Table 1 Tiller numbers of each sampled wheat ear shoot in 4 d

Variety QM SN BN
ID 1 2 3 1 2 3 1 2 3
2022.10.05 5 6 6 7 6 6 7 7 5
2022.10.15 7 8 9 9 7 7 7 7 6
2022.10.25 8 8 8 10 8 9 8 7 6
2022.11.05 7 6 6 7 7 6 6 5 5

The basic computer configuration for processing 3D point
cloud data is with a Core i5-10200 CPU, 4.0 GB RAM, and
NVIDIA GeForce GTX 1650 graphics card, as well as a solid-state
hard disk of Micron MTFDHBA256TDV.

2.2 Experiment process

The three-dimensional reconstruction of wheat plants and
acquisition of phenotypic traits were based on the experimental
design depicted in Figure 1.

Flow chart of data processing
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Firstly, a data acquisition platform was created using the
RealSense D455 sensor to capture point cloud data with color
information for the target crop.

Secondly, conditional filtering and Statistical Outlier Removal
(SOR) filtering were applied to extract the wheat plant from the
original point cloud data.

Thirdly, the wheat point clouds were registered and fused using
colored-ICP and the MVS algorithm along with depth maps.

Fourthly, the Alpha Shape method was employed to accurately
define the wheat plant’s boundary, after which phenotypic traits
such as plant height, leaf area, leaf angle, shoot convex volume, and
compactness were calculated.

Finally, the accuracy of the three-dimensional model and the
computational outcomes of the wheat plant phenotypes were
dissected, evaluated, and identified.

2.3 Multi-view data acquisition

The multi-view image acquisition platform was built in an
indoor environment, and the light source was the LED light below
the ceiling of the growth chamber. During the operation of the
platform, the wheat plant was evenly illuminated and would not be
blocked. The platform consists of a turntable, a shooting device, and
a background plate, and the construction of the shooting scene is
shown in Figure 2.

AT

Realsense D455 +—__ elli

Figure 2 Three-dimensional data synchronous acquisition
platform of wheat plant

Among them, the turntable was composed of a turntable unit
and a calibration unit. The turntable unit had a built-in rotation
motor to drive the wheat plant under test to rotate. The diameter of
the turntable was 20 cm, the speed was adjustable, and the
calibration unit was 12 cm high. On top of the calibration unit was a
red disk with a diameter of 4 cm, which was used as the scale for
later point cloud calibration. The shooting unit consisted of a
triangle stand, a RealSense D455 sensor, and a high-performance
laptop connected to the laptop via a USB cable.The depth collection
range was 0.2-10 m. The background plate was white to reduce
reconstruction noise.

Accurate color image and depth image information of wheat
could be collected by the system in a short time.

2.4 Data acquisition

The wheat plant was located in the center of the turntable. The
calibration unit was placed in a pot and the wheat plant was not in
contact with the calibration unit. The best distance between the
sensor, turntable, and background was that the wheat plant under
test and the calibration unit could be fully photographed. To capture
the overall structure of the wheat as much as possible, the horizontal
distance between the RealSense D455 sensor and the plant turntable
was set at 1.5 m. The distance was chosen to obtain information
about the inner leaves and stems surrounded by the outer leaves of
the wheat. The sensor was placed at a height of 0.9 m and took a top
view of the wheat plant. The distance between the turntable and the

background plate was 0.3 m.

The lighting environment for multi-angle images was the
indoor ordinary LED lighting source. The turntable rotated 22.5
degrees each time for a total of 16 times. The multi-view image
acquisition program controlled the acquisition of the RealSense
D455 sensor. Each time the turntable rotated, the images were
collected once at an interval of 1 s, and the plants rotated for 1
week. A total of 16 multi-view RGB images and 16 depth images
were collected. Multi-view data collection was completed within 60 s
for each wheat plant, and the images were automatically named and
stored. The wheat plant images collected are shown in Figure 3.

Image acquisition of wheat plant

Figure 3

3 Calculating methods

Point cloud dispersion in three-dimensional space for the wheat
plant is irregular, lacking a specific numerical relationship due to its
complex three-dimensional canopy morphology. Establishing the
spatial relationships between these three-dimensional point clouds is
challenging. To create a relationship between the depth and color
images of the wheat plant captured by the RealSense D455 sensor,
the mapping function of sensor was used. Each point on the wheat
plant after image registration contained three-dimensional x-y-z
coordinates and RGB color attributes. Additionally, there were
undesired backdrop point clouds and some noise in the original
images, affecting the space location and three-dimensional structure
of the wheat plant. Thus, the preprocessing of three-dimensional
point cloud involved two key steps:

Firstly, conditional filtering was applied to eliminate redundant
background point cloud, enhancing the significance of the point
cloud by focusing on wheat structures.

Secondly, to address outlier issues with the wheat plant’s point
cloud, the SOR filtering algorithm was employed. This step aimed
to improve measurement accuracy and the speed of recognizing
wheat plant characteristics.

These preprocessing steps resulted in an accurate point cloud,
featuring a clear wheat structure devoid of any clustered outliers or
non-matching points.

3.1 Three-dimensional point cloud preprocess
3.1.1 Conditional filter

Three-dimensional point cloud, background noise, and mottled
spots of wheat plants were obtained by the RealSense D455 sensor.
According to the general attributes of points, conditional filtering
was used to eliminate these points. The target plant point cloud was
obtained from the primary point cloud of a single view by using the
condition constraint of coordinate execution in Equation (1):

X, <x<X,
Y,<y<Y, (1)
Zd<Z<Zu

where, (X, X,), (Y, Y,), and (Z,, Z,) represent the limited range of
three-dimensional Cartesian coordinates. Since the RealSense


https://www.ijabe.org

August, 2025

Li M, etal. Three-dimensional reconstruction and phenotypic identification of the wheat plant

Vol. 18 No. 4 257

sensor is stationary, the same constraints are applied to the point
clouds of each view. The clear wheat plant’s point cloud was
obtained as shown in Figure 4.

Conditional filter

Figure 4 Point cloud after conditional filter

The wheat plant point cloud retained substantial proximal noise
and anomalies near leaf structures. The SOR algorithm was applied
to streamline point cloud data by eliminating spatially dispersed
noise artifacts.

3.1.2 SOR filter

Point clouds representing wheat plants often exhibited uneven
spacing, resulting in numerous sparse outliers. Any point within leaf-
space held valuable information, with denser regions conveying
more information. On the contrary, noisy or outlier points were seen
as less informative and typically had a larger average point-to-point
distance within the point cloud. Considering these conditions, the
information expressed by points where the average distance to their
neighboring points within the point cloud exceeded a specific
threshold was disregarded®’*".

The SOR filtering involves analyzing each point’s &
neighborhood statistically and calculating the mean distance from
the point to the k-neighbor. The filter operates under the assumption
that the distances follow a Gaussian normal distribution. Points with
an average distance outside the predefined threshold are identified
as outliers and subsequently removed from the dataset. The steps of

the process are as follows:
(1) Calculate the distance d; from each point to its k-neighbors.

di= /o= 3 + o=y + (20— 2 )

(2) Calculate the sum D of d; and mean distance x4 between any

point and its nearest k-neighbors.
(3) Geometry is determined by u and standard deviation o, that
is, as in the following equation with Gaussian distribution:

)

4) d,is considered as the distance threshold, as in the following
equation. Points with u greater than d, are rejected.

d=p+n-o 4)

where, n is the arithmetic-coefficient of the standard deviation of
the distance. The filter outcomes are shown in Figure 5.

SOR filter

Figure 5 Point cloud after SOR filter

The point clouds of wheat plants with 16 views after filtering
are shown in Figure 6.

Figure 6 Point clouds of wheat plants from 16 views after filtering

3.2 Three-dimensional point cloud registration from multiple
views

To perform precise registration of multi-view point clouds, the
colored-ICP algorithm was employed in this study for optimizing a
joint photometric and geometric object to calculate the relative
position of the camera and complete the coarse registration. The
MVS algorithm was applied to the coarse registration of wheat plant
point cloud. The registration process of the multi-view three-
dimensional point cloud is shown in Figure 7b.
3.2.1 Colored-ICP algorithm coarse registration

The colored-ICP algorithm jointly optimizes the photometric
objective and the point-to-plane ICP objective to register the RGB-
D sequence and colored point cloud of wheat plants. Firstly, the
RGB-D image sequences are registered to create segments, and then

the joint optimization objective is generalized to calculate the
camera pose and register the colored point clouds. The wheat plant
point clouds from 16 views are shown in Figure 7a.

Figure 7 Registration principle of point cloud
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The transformation matrix equation between point clouds is as
follows:

E(T)=(1-0)E(T)+0E(T) &)

where, E- and E; are the photometric and geometric errors,
respectively. o € [0, 1] is a weight that balances the two terms.

Eg(T)=> ((p=Tq)n,) (6)

(pa)ex

where, « is the corresponding set in the current iteration; 7, is the
normal to point p; E, is conversion error about color, that is, the
difference between the color of the measurement point ¢ (denoted
as C(g)) and its projected color on the tangent plane of p.

E«T) =Y (C,(f(Tg)~C(@) (7

(pq)ex

where, C,(f(Tq)) is a precomputed function defined continuously
on the tangent plane of p. The function (f(Tq)) projects a three-
dimensional point onto the tangent plane.

The markers in the basin have regular shapes and prominent
colors. Therefore, the colored-ICP algorithm was used to register
the red cylindrical markers in the basin to obtain accurate initial
camera poses, as shown in Figure 7b, and coarse registration point
cloud, as shown in Figure 7¢*.

3.2.2 MVS algorithm fine registration

The point clouds of wheat plants with multiple views obtained
a better initial pose after coarse registration. In order to enable rapid
three-dimensional reconstruction, the MVS algorithm was applied
for fine registration.

The MVS algorithm is a process that involves finding points in
space with luminosity consistency, after obtaining the initial pose of
the point cloud from multiple camera views, and performing stereo
matching on the scene. The algorithmic process is illustrated in
Figure 8: Firstly, a three-dimensional point P was selected from the
initial coarse registered point cloud. Then, the three-dimensional
points were projected onto the images using the camera’s intrinsic
and extrinsic parameters. Two small square patches, f and g, were
extracted with the projection point as the center. The similarity
between the scenes contained in these patches was then evaluated.
Conversely, if the point lay outside the object, there was a
noticeable difference between the two patches. By measuring the
consistency between these patches, the algorithm could estimate the
likelihood that the three-dimensional point lay on the object’s
surface.

N P
Figure 8 MVS algorithm process

Given a set of N input images and a three-dimensional point p
seen by all the images, one can define the photo-consistency of p
w.r.t. each pair of images /; and /; as:

Cii(p) = pU(Q(m(p))), 1,((7;(p)))) (3)

where, p(f, g) is a similarity measure that compares two vectors,
7(p) denotes the projection of p into image i, Q(x) defines a support
domain around point x, and /(x) denotes the image intensities
sampled within the domain. Every photo consistency measure can
be described as a particular choice of p and Q.

The photographic consistency points were found in three-
dimensional space, the noise points of coarse registration were
removed, and the fine registration of the wheat point cloud was
realized.

3.3 Original point cloud preprocess

After obtaining the fine-registered wheat plant point cloud, it is
essential to correct the point cloud and the positive orientation of
the point cloud to convert it to its real size with the X-O-Y plane as
the reference plane and the Z-axis as the positive orientation. In
addition, wheat plants have to be segmented from the original point
cloud to promote the following phenotypic extraction.

The original point cloud of the wheat plant was subjected to
coarse segmentation as shown in Figure 9a, and any points with a
height less than 40% of the Z-axis direction were eliminated. The
process yielded the point cloud depicted in Figure 9b. Subsequently,
to calibrate the size of the point cloud, markers placed in pots were
used as a reference. Next, the border points were identified, and the
marker circumference was estimated, as shown in Figure 9c.
Finally, the diameter ratio of the approximated circumference to the
actual marker plate size was utilized as a scaling factor to calculate
the dimensions of the wheat point cloud. Figure 9d shows the

segmentation result.
w o 2V
| @, |

a b c d

Figure 9 Process of point cloud calibration and shooting
segmentation

The obtained results were then compared with manual
measurements to evaluate the accuracy of the calibration. To ensure
accuracy, multiple measurements were taken and averaged to avoid
human error. The error generated between the estimated and actual
diameter was quantitatively evaluated using the indicator mean
absolute percentage error (MAPE) metric as shown in Equation (9),
where d; is the estimated diameter from the point cloud, and d, is
the real size of the plate (4 cm):

_ o 1 - ’d~‘ —d; |
MAPE = IOM;ZT )
3.4 Calculation method of phenotypic traits for the wheat
plant
3.4.1 Calculation method of wheat plant height
The difference in height between the maximum and minimum
values of the point cloud on the Z-axis was recognized as the height
of the plant®.
3.4.2 Calculation method of projected area and multi-layer
projected area
The plant point cloud was initially projected onto the X-O-Y
plane, as shown in Figure 10b. The sparsely sampled points were
used to generate a mesh using the greedy triangulation algorithm.
The summation of the triangle mesh areas was recognized as the
projected area of the plant, as shown in Figure 10c. The plant point
cloud was then divided into equal segments in order to calculate the
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multilayer projection area, which was used to determine the
projected area of the plant, as shown in Figure 10. Figure 10a and
Figure 10d show the initial point cloud of wheat and multi-layer
initial point cloud of wheat, respectively. Figure 10e shows the
plant point of multi-layer onto the X-O-Y plane. Figure 10f shows
the summation of the triangle mesh areas, which was recognized as
the multi-storey projected area.

Vo o~

a b c

A

d e f

Figure 10  Projected area and multi-storey projected area
calculation process

3.4.3 Calculation method of leaf area and leaf angle

Firstly, the wheat plant point cloud (Figure 1la) was
downsampled using the voxel-grid to enhance the computational
performance of the next phase and to ensure the consistency of the
point cloud concentration, as shown in Figure 11b. The leaves were
extracted from the wheat plant, as shown in Figure 11c. The point
cloud was then smoothed by moving least squares to keep the
bending and twisting phases of the blade, as shown in Figure 11c
and Figure 11d. Furthermore, the mesh was generated from the
smoothed point cloud using greedy triangulation. Finally, the total
of the areas of all triangular cross sections was the wheat leaf area.
Figure 11e shows the combined visualization of the generated mesh
and the original colored point cloud.

Leaf area estimation

Figure 11

When calculating leaf angle as shown in Figure 12, random
point 4 on the main stem of wheat, tillering on wheat, and random
endpoint B above 4 were linked to form line segment a. The vertex
A was linked to the endpoint C on the tillering form segment c.
Then, the leaf angle 6 was calculated from the coordinates of 4, B,
and C and the lengths of a, b, and c"".

¥ 7
% 4,
- gﬁ' b_ Jc
24— \\ A )h
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Figure 12 Calculation diagram of leaf angle

3.4.4 Calculation method of wheat plant convex volume and
compactness

The convex volume was estimated by calculating the convex
hull of the plant point cloud, as shown in Figure 13a. As shown in
Figure 13b, the degree of compactness of wheat is the ratio of
projected area to convex hull area®.

Figure 13 Wheat plant convex volume and
compactness calculation

4 Results and discussion

4.1 Analysis of registration results

The object is reconstructed by the MVS algorithm. The
reconstruction effect depends on the quality of the input image and
camera parameters. To obtain camera parameters, MVS algorithms
are often used in combination with SFM algorithms. But SFM
algorithm is slow and has low precision in obtaining camera
parameters. It can not meet the demand for precision agriculture for
virtual plant reconstruction with low time cost and high precision.
Therefore, the colored-ICP algorithm is applied to the coarse
registration of point clouds to obtain camera parameters accurately
and quickly. In addition, the method of using the MVS algorithm
combined with depth maps eliminates the process of stereo
matching, which saves a lot of time .

4.1.1 Analysis of coarse registration performance

The point clouds of each viewpoint after conditional filtering
and SOR processing were registered. Colored-ICP algorithm
combined with photometric and geometric optimization algorithms
was used to calculate the camera pose according to Equation (5).
Camera parameters and coarse registration point cloud were
obtained. The effect is shown in Figure 14, where the camera pose
of each view image was calculated more accurately, and the coarse
registration point cloud was relatively complete.

Traditional SFM uses a robust SIFT algorithm to extract feature
points in images and uses a nearest neighbor method to match
feature points. To ensure the fairness of the comparison between the
processing effects of different algorithms, the image of each view
was cropped, and the range of cropping was the same as that of the
point cloud processed by conditional filtering. The image was
cropped and processed as shown in Figure 15.

AR
tBi m l%,.

¢
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V

Figure 14 Effects of colored-ICP coarse registration
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Figure 15 Effects of images of each view after cropping

The processing effect of SFM algorithm is shown in
Figure 16.

Figure 16  Effects of SFM sparse reconstruction

In Figure 16, the camera pose of each view angle image
calculated by the SFM algorithm was basically in front of the wheat
plant, which was caused by the fact that the image background was
consistent and the wheat plant leaves were slender, making it
difficult to capture the feature points of wheat leaves. So, the
camera pose calculation was not accurate. As a result, the point
cloud obtained by SFM sparse reconstruction was also not complete
enough and had poor accuracy.

The time cost and completeness of the reconstructed point
cloud of the colored-ICP algorithm and SFM algorithm are
compared, as listed in Table 2:

In Table 2, the experiments were repeated four times using the
two algorithms, respectively. The average total points of the point
cloud obtained by using the colored-ICP algorithm is 31 943, the

average number of points after removing the pot and calibration
object is 9899, and the average time consumption is 29.1686 s. The
average total points of the point cloud obtained by using the SFM
algorithm is 9735, the average number of points after removing the
pot and calibration object is 2231, and the average time
consumption is 36.071 58 s.

Table 2 Time cost and registration accuracy of coarse
registration algorithms

Algorithm Total points ~ Total points of the wheat plant ~ Time cost/s
31885 9844 29.3503
32018 9916 29.7877
colored-ICP
32114 9907 28.4832
31755 9930 29.0532
9733 2294 35.4650
9664 2188 36.0872
SFM
9795 2284 36.4358
9751 2158 36.2983

Therefore, compared with the wheat point cloud reconstructed
by the traditional SFM sparse reconstruction, the wheat point cloud
obtained by the colored-ICP algorithm for coarse registration has
higher completeness and less time consumption.

4.1.2  Analysis of fine registration performance

The registration results of the proposed and the conventional

algorithm are shown in Figures 17-19.

Figure 19 Result of MVS combined with depth map algorithm after colored-ICP algorithm coarse registration
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Figure 17 shows the results of SFM-MVS algorithm
registration. Figure 18 shows the result of MVS algorithm following
colored-ICP algorithm coarse registration. Figure 19 shows the
result of MVS combined with the depth map algorithm after the
colored-ICP algorithm coarse registration.

In Figure 17, each view RGB image and camera pose are used
as input. Due to the inaccuracy of the camera pose obtained by the
sparse reconstruction of SFM, the depth map calculated by the MVS
algorithm is not accurate enough, and the wheat plant point cloud
obtained by the dense reconstruction is incomplete, which affects
the computational precision of phenotype -characteristics. In
addition, the process of obtaining the depth map of the image by
using the MVS algorithm for stereo matching also consumes a lot of
time.

In Figure 18, RGB images are combined with camera poses
calculated by the colored-ICP algorithm. Then the MVS algorithm
is used to stereo-match the images of each view to obtain the depth
map of each view, and finally the wheat point cloud is

reconstructed. There are two problems with this method. Firstly, it
will consume a lot of time in the process of computing the depth
map. Secondly, the accuracy of the computed depth map is not high,
and many pixels are missing depth values, resulting in incomplete
wheat point cloud reconstruction with large errors.

In Figure 19, the RGB image and depth image obtained by the
RealSense D455 sensor are combined with the camera pose
obtained after coarse registration by the colored-ICP algorithm, and
MVS algorithm is applied to fine registration, which skips the stereo
matching process and saves a lot of time. In addition, the depth
image obtained by the RealSense D455 sensor is more accurate, and
the final reconstructed wheat point cloud is more complete.

In Figure 19, the proposed method has a clearer three-
To further validate the
performance of the three-dimensional reconstruction method, time-

dimensional wheat plant texture.

cost comparative results and registration precision comparative
results are listed in Table 3.

Table3 Time cost and registration accuracy of different inputs and algorithms

Combination Coarsg .Fine' Input Total points Total points of the ~ Time cost o_f coarse Time_cost pf fine  Total time
number registration registration wheat plant registration/s registration/s cost/s
25 641 6071 36.0872 1466.53 1502.6172
RGB 27 650 6766 38.6647 1531.33 1569.9947
1 SFM MVS +CAMERA 28 035 7296 39.9635 1619.67 1659.6335
POSE 29 286 7614 41.7587 1699.47 1741.2287
31988 8837 43.4985 1771.19 1814.6885
31975 8360 28.4683 1409.67 1438.1383
RGB 32092 8738 29.0781 1512.32 1541.3981
2 colored-ICP MVS +CAMERA 35621 10 647 30.4413 1536.67 1567.1113
POSE 37145 11128 30.6411 1654.9 1685.5411
41155 12 041 31.4438 1725.61 1757.0538
34 589 10 126 28.4683 3.0385 31.5068
35602 10 508 29.0781 3.1688 32.2469
3 colored-ICP MVS e 37308 11858 304413 3.8604 343017
39424 12 961 30.6411 4.1244 34.7655
42 942 14 072 31.4438 4.8602 36.304

Combinations 2 and 1 in Table 3 show that the point clouds
obtained by registration using the colored-ICP algorithm and MVS
algorithm are more complete than those obtained by the SFM-MVS
algorithm, and the wheat plant point cloud accounts for a higher
proportion, 28.50%, of the total point cloud.

Combination 3 and Combination 2 in Table 3 show that the
camera pose obtained by the colored-ICP algorithm is coarsely
registered, the RGB images and depth images are used as input, and
the point cloud reconstructed by the MVS algorithm is more
complete. The wheat plant point cloud accounts for a higher
proportion of the total point cloud, which is 31.24%, and the
average reconstruction time is 33.82 s. It is 97.89% faster than
Combination 2.

Therefore, the proposed method can greatly shorten the

M Calculated-value/cm

50
0\ N v v ™
&
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reconstruction time while obtaining high-precision camera poses.
Under the same conditions, computational performance and
registration precision are better than the traditional SFM-MVS
algorithm. The reconstructed wheat was more observable and
structurally clearer.
4.2 Phenotype characteristic calculation and analysis
4.2.1 Plant height calculation and analysis

In order to validate the validity of reconstruction-based three-
dimensional wheat plant height calculation method, the correlations
between the calculated values and the measured values were
investigated. Plant heights of the reconstructed wheat plant structure
model were calculated according to the plant height calculation
method presented in Section 3.4.1.

The error of plant height calculation is shown in Figure 20.

Measured-value/cm

PN A N B
Q,%Q,%

Figure 20  Calculation error of plant height

Figure 20 shows the calculated data's error range (0.1-1.8 cm),
average error (0.917 cm), and RMSE (0.424 cm) compared to
measured values. The calculation achieved 97.03% accuracy with a

2.97% error rate.
To further demonstrate the validity of the plant height
calculation method, the linear correlation of the calculated and
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measured plant height was determined for the wheat plant model, as
shown in Figure 21.
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Figure 21 Correlation between calculated and measured values of
plant height
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Figure 21 shows a high correlation (R* = 0.968) between
calculated and measured plant heights on the basis of three-

dimensional ~wheat reconstructions. The regression line
(slope=0.975, intercept=0.573) confirms strong agreement,
validating the three-dimensional reconstruction algorithm’s

performance.
4.2.2 Leaf length and width calculation and analysis

Because automated leaf segmentation and identification was
difficult to achieve, maximum leaf length and width were measured
manually using CloudCompare software.

To validate the three-dimensional wheat reconstruction model
and the CloudCompare-based method for leaf dimension
calculation, the study correlated calculated and measured leaf length
and width. The results are shown in Figure 22.
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Figure 22  Correlation between calculated and measured values of leaf length and leaf width

For leaf length, the determination-coefficient (R?) is 0.958, the
RMSE is 1.032 cm, the calculation accuracy is 91.28%, and the
error rate is 8.72%. For leaf width, the corresponding values are
0.956 (R?), 0.112 cm (RMSE), 93.66% (accuracy), and 6.34% (error
rate).

4.2.3 Calculation and analysis of leaf area and leaf angle

To validate the reliability of the reconstructed wheat three-
dimensional model and the greedy triangulation-based leaf area
calculation method, the correlation between calculated and
measured leaf area values was established. The discrepancy in leaf
area estimation is presented in Figure 23.

100 =0.959x+4.913
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Figure 23  Correlation between calculated and measured values of
leaf area

Figure 23 depicts the correlation between calculated and
measured leaf areas, yielding an R? of 0.966. The fitted regression
line exhibits a slope (regression-coefficient) of 0.959 and an
intercept of 4.913. The calculation accuracy is 92.80%, with an
error rate of 8.2%. The mean absolute error is 3.6132 cm?, spanning
arange from 1 to 7.2 cm? The calculated value of leaf area is closer
to the authentic wheat leaf measurement, which demonstrated the
efficiency of three-dimensional reconstruction algorithms of the
wheat plant.

To authenticate the credibility of the reconstructed wheat three-
dimensional model and the method of calculating leaf angle, a
correlation between the calculated values and the measured values
of leaf angle was developed. Leaf angle calculation errors derived
from the calculated and measured data are shown in Figure 24.

Figure 24 illustrates the correlation between calculated and
measured leaf angles, yielding an R? value of 0.849. The fitted
regression line exhibits a slope (regression-coefficient) of 0.928 and
an intercept of 1.647. The error distribution spans from 0.1° to 9.8°,
with a mean absolute error of 4.42°. The primary source of error is
attributed to the hardware's minimum recognition precision.
Moreover, manual measurement had human errors, which would
cause some destruction to the wheat leaf structure. On the basis of
the reconstructed wheat plant three-dimensional model, wheat
leaves and skeletons were extracted. The accuracy rate is 95.17%,
and the error rate is 4.83%.
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Figure 24  Correlation between calculated and measured values of
leaf angle

4.3 Identification and analysis of wheat phenotype
Through the above analysis, it is proven that the reconstructed
wheat point cloud model has high accuracy. The phenotypic
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information extracted from the wheat model can be directly
analyzed and identified.

Therefore, the phenotypes of 36 wheat sample plants were
calculated, as shown in Figure 25. At each growth stage, cultivar
QM showed the smallest compactness, indicating that the plant
configuration of QM was more loose than that of other cultivars and
belonged to the loose type. The mean leaf area was estimated based

on the number of tillers per plant to enable comparison of tiller
phenotypes, as listed in Table 1. QM had the largest average leaf
area per plant, and BN had the lowest average plant leaf area on
Nov 5, 2022. The results showed that QM had a larger leaf area per
plant. Figure 25 indicates that the reconstructed wheat point cloud
model is capable of capturing phenotypic differences between
cultivars and individual plants.
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Figure 25 Calculation values of different plant compactness, averaged leaf area per tiller and convex volume

5 Discussion

5.1 Reconstruction strategy

In this study, a multi-perspective method was proposed with a
RealSense sensor to achieve the three-dimensional reconstruction of
the wheat plant. On the foundation, the phenotype characteristics of
wheat plants were accurately calculated.

The three-dimensional reconstruction of wheat plants played a
vital role in calculating their phenotypic traits. Due to the reduced
presence of noise points in the three-dimensional point cloud data
obtained from the multi-view reconstruction system employed, the
adopted conditional and SOR filtering methods
demonstrated improved effectiveness in achieving target
segmentation and data smoothing for individual crop leaves.

filtering

However, the current method for leaf segmentation in wheat plants
only allowed for coarse target extraction, indicating the necessity
for further algorithmic refinement and parameter configuration
enhancement.

Point cloud overlap with massive unstructured group plants can
be used by Rand - LA network and pixel to achieve target
detection®*]. Lidar extracts plant phenotypes with high accuracy
and plays an essential role in agricultural breeding and
management™. However, it is difficult for lidar to achieve high-
speed data acquisition and process it in real time with algorithms.
By ensuring accurate phenotype calculation, the point cloud can be
streamlined using adaptive curvature-based, downsampling, or
random sampling methods to remove redundant data while retaining
essential crop information. Subsequently, techniques such as
Intrinsic Shape Signatures (ISS), k-dimensional Tree (KD-Tree),
and Sample Consensus Initial Alignment (SAC-IA) can be applied
during reconstruction to enhance three-dimensional leaf modeling
quality and expedite algorithm processing® ..

5.2 Experimental design and analysis
This study utilized a multi-view and omnidirectional automated

image acquisition device to establish a rapid wheat plant phenotype

identification method. Potting experiments for wheat enabled
precise control of soil, fertilizer, and water conditions, facilitating
study of physiological index trends and development of automated
detection methods for challenging metrics like leaf area, leaf angle,
and projected area, which are difficult to measure manually. This
approach addresses the shortage of mobile wheat phenotyping tools
in field or greenhouse settings. Furthermore, the potting method
allows for indoor use of large-scale testing equipment, which is also
applicable to other field-crops.

There are also some deficiencies in the study. When applying
point cloud collection devices with RealSense sensor, due to
insufficient light, irregular hetero-colored noise points appeared on
the edge of the leaf. Therefore, to boost the detection precision of
high-throughput wheat plant phenotypes, it is essential to further
refine the data preprocessing algorithm. It is difficult to remove
noise with conditional filtering based on color gamut distribution.

In addition, slight vibration will be generated when the
turntable drives the plant to rotate, so the image can be acquired
after the turntable is stabilized, which increases the reconstruction
time.

5.3 Future work

In this work, a high-precision and low-cost multi-perspective
three-dimensional reconstruction technology of a wheat plant was
proposed based on the Realsense D455 sensor. Data collection,
model reconstruction, and phenotypic trait extraction were achieved
in a stable indoor environment. Moreover, the physiological
indicators that can be measured manually, including plant height,
leaf area, and leaf angle, can all be calculated nearly in real time,
and good calculation outcomes have been obtained. In future work,
a three-dimensional laser scanning platform will be designed for the
identification of crop phenotypes by combining multiple laser dot
detectors. The platform as a whole is a cube framework, and the
module drives multiple laser dot detectors to launch lasers to obtain
the depth values of these points, which are used for high-throughput
crop point cloud acquisition. Combined with the software we
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developed, the automatic segmentation of group crops is realized. It
provides a low-cost method for the phenotypic identification of field
Crops.

In addition to further minimizing the error introduced by the
algorithm, we will develop curvature-aware models to better
approximate natural leafstalk morphology and optimize point cloud
density through adaptive voxel filtering tailored to leafstalk
dimensions.

6 Conclusions

Accurately and quickly reconstructing the wheat morphological
structure and obtaining wheat traits are the keys to wheat variety
selection, scientific cultivation, and precision management.
Therefore, a multi-view image acquisition device was designed. The
three-dimensional reconstruction of the wheat plant was realized by
multi-view acquisition mode, and the nondestructive detection
method of wheat phenotypic traits was proposed.

This study utilized conditional filtering and SOR filtering
algorithms to reduce noise in wheat plant point cloud data. A
combined photometric and geometric objective was optimized, and
space positioning was achieved through integration with colored
Point Cloud Registration (colored) and Iterative Closest Point (ICP)
algorithms. Subsequently, the MVS algorithm was applied to
correspond to views using the obtained spatial position, RGB
images, and depth images, resulting in the development of a
complete wheat plant point cloud model. The algorithm's average
reconstruction time is 33.82 s, significantly faster than traditional
non-destructive testing algorithms.

Utilizing the reconstructed wheat plant model, the proposed
algorithms achieved high accuracy in estimating phenotype
characteristics, with plant height, leaf length, leaf width, leaf area,
and leaf angle exhibiting accuracies of 97.57%, 91.28%, 93.66%,
92.80%, and 95.17%, respectively. The correlation-coefficients (R?)
with the calculated and measured values for these characteristics
were 0.996, 0.958, 0.956, 0.984, and 0.849, indicating a strong
positive correlation. These findings demonstrate that the algorithms
can accurately and efficiently compute phenotype characteristics. In
addition, the phenotypic information of different wheat varieties,
such as compactness, convex hull volume, and average leaf area,
was analyzed and identified, which proved that the method could
capture the phenotypic
individuals. The outcomes of this research are capable of providing
technical support and acting as a reference in the realm of growth
monitoring. Especially, it could also provide a phenotypic basis for

differences between varieties and

scientific cultivation and good breeding of wheat plant.
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