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Abstract: The primary aim of this study was to classify the hazard level of brown planthopper (BPH) damage in rice. Three
datasets, including spectral reflectance corresponding to the sensitive wavelengths from rice canopy spectral wavelengths, rice
stem spectral wavelengths, and fusion information of rice canopy and stem spectral wavelengths were used for BPH hazard
level classification by using different algorithms. Datasets and algorithms were optimized by the BPH hazard level
classification effects (which was evaluated by indices of accuracy, precision, recall, |, and k-value). The optimized algorithm
combination was used to build a hazard level classification model for spectral reflectance corresponding to the sensitive
wavelength from the rice canopy spectral images. Results showed that: (1) The spectral reflectance corresponding to the
sensitive wavelengths of fusion information dataset performed best in BPH hazard level classification, with the highest
accuracy (99.08%), precision (99.31%), recall (98.83%), F, (0.99), and k-value (0.99). (2) The optimum algorithm combination
was Savitzky-Golay (S-G) smoothing, principal component analysis (PCA) for sensitive wavelength selection, and broad-
learning system (BLS) for modeling. (3) The spectral reflectance corresponding to the sensitive wavelengths dataset of rice
canopy spectral images achieved accuracy (80.63%), precision (80.28%), recall (77.03%), F; (0.79), and k-value (0.74) in
classifying BPH hazard level by using the optimum algorithm combination.
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1 Introduction

Rice is the main staple food crop for more than half of the
world’s population. In China alone, around 30 million hm? are under
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rice cultivation, yielding an annual production of 208 Mt. Among
the various pests affecting rice, the brown planthopper (BPH) is one
of the most destructive, particularly in Asia'". The BPH infestation
of rice annually results in about 20% of yield loss and significant
economic damage across Asia?. Therefore, it is essential to monitor
the incidence of BPH in the crop in a timely manner, and adopt
appropriate methods to control and prevent the yield losses
in rice.

However, the monitoring of BPH remains one of the world’s
most challenging technical tasks. BPH can significantly alter the
chemical and physical properties of rice plants, including changes in
chlorophyll characteristics, chemical concentrations, cell structure,
nutrient and water uptake, and gas exchange. These alterations
consequently lead to variations in spectral reflectance of the foliage.
The changes in plant spectra can be distinguished by the reflectance
spectral signatures’of their surfaces produced over different
wavebands of the electromagnetic spectrum®.

The use of non-destructive methods for reflectance spectra
detection of plants is widely adopted for monitoring vegetation
conditions. This is primarily due to the advancement of
hyperspectral remote sensing equipment*. Such technology offers
additional bands within the visible, near-infrared (NIR), and
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shortwave-infrared (SWIR) regions, enhancing the ability to detect
and analyze the biotic stresses in vegetation. Therefore, the use of
hyperspectral remote sensing to detect the affected rice plants at an
early stage of potential increase in BPH populations is promising
for the development of better pest management tactics™. The
reflectance pattern of plant foliage is determined by the chemical
composition and physical properties of the plant tissues.

Prasannakumar et al.”* identified four sensitive wavelengths, at
1986, 665, 1792, and 500 nm, in relation to BPH stress on rice
plants. They developed and validated a multiple-linear regression
model (R=0.71, RMSE=1.74, p<0.0001 in training set and R>=0.73,
RMSE=0.71, p<0.0001 in validation) that would help to monitor
BPH stress on rice. Similarly, Huang et al.”’ investigated the
sensitive bands affected by BPH damage across different growth
stages of rice, utilizing SPAD and spectral data. Results showed that
the spectral reflectance of the near-infrared wavelength range of the
rice canopy significantly decreased with increasing BPH infestation.
Furthermore, the modified chlorophyll absorption ratio index
(MCARI710) proved to be related to the number of BPH under
different nitrogen fertilizer rates and durations of BPH infestation.
Tan et al.'” established a stepwise regression model linking the
spectral indices to the amount of BPH, and found that the ratio
vegetation index RVl;670 was sensitive to BPH damage,
suggesting a potential advance for monitoring BPH.

These studies demonstrated a significant correlation between
the spectral index and BPH infestation, with most research to date
focusing on the rice canopy spectra for BPH monitoring. However,
the detection of stem spectra for BPH infestation monitoring
remains unexplored. BPH generally feeds by inserting its stylet into
the vascular tissue of a rice stem to extract the rice sap, which
results in changes in leaf chlorophyll and relative water content of
rice"""”. Hypothetically, alterations of the rice stem spectra would
occur before changes in the rice canopy spectra when a rice plant is
damaged by BPH. Hence, the detection of changes in the rice stem
spectra could be crucial for the early monitoring of BPH.

Building an effective automatic system is essential for
monitoring BPH. Advances in machine learning and deep learning
have significantly enhanced crop pest monitoring capabilities'*'*.
These techniques have achieved breakthroughs
applications!*'", However, despite the powerful capabilities, most

in  many

deep learning methods suffer from the time-consuming training
process, due to numerous hyperparameters and complex structures.
To tackle this challenge, the Broad Learning System (BLS)"” has
been established in the form of a flat network, where the original
inputs are transferred and placed as “mapped features™ in the feature
nodes, and the structure is expanded in a broad sense in the
“enhancement nodes”. The incremental learning algorithms are
developed for fast remodeling in broad expansion without a
retraining process if the model deems to be expanded. It is
especially suitable for systems with a small data scale and few
features, but high requirements for real-time prediction, such as
crop pests monitoring!*..

This study aimed to classify the hazard level of BPH damage in
rice. The specific objectives included: (1) Detecting the spectral
reflectance of spectral wavelengths of the rice canopy and stem
using a FieldSpec3 ASD, and collecting the spectral images of the
rice canopy using a Nano-Hyperspec® VNIR. (2) Acquiring datasets
of spectral wavelengths that correlate with the spectral wavelengths
of the rice canopy, rice stem, the fusion information from both, as
well as the spectral images of rice. (3) Developing models to
classify BPH hazard level based on the spectral reflectance

corresponding to sensitive wavelengths datasets, and optimizing
both the datasets and algorithms for effective BPH hazard level
classification.

2 Materials and methods

2.1 Materials and devices

The experiments were conducted at the research test base of
South China Agricultural University in Guangzhou, China
(31.24°N, 121.29°E). Rice seedlings were planted in seven cement
pit test plots, each measuring 7 m in length and 2 m in width. These
cement pits were enclosed with mesh to protect the rice samples
from external pest invasions and to contain any insects released
during study. Prior to the experiments, preparations were made,
including soil preparation, weeding, pest control, etc.

BPHs were provided by the Plant Protection Research Institute
at the Guangdong Academy of Agricultural Science. Additionally,
rice plants of the Hybrid rice variety No. 5 were provided by the
College of Agriculture at South China Agricultural University
(SCAU).

The spectral reflectance of rice plant canopies and stems
infested with different BPH densities (and thus potential damage
levels) was measured using a field-portable spectroradiometer
(FieldSpec3, Analytical Spectral Devices® [ASD]) at 1 nm intervals
with a waveband from 350 to 2500 nm. The instrument had a
facility to communicate through wireless access with a laptop
computer. The laptop was used to record and process the spectral
data with the ASD software. The main specifications of the ASD
FieldSpec3 are listed in Table 1.

Table 1 Main specifications of FieldSpec3, Analytical Spectral
Devices® [ASD]
Parameters
350-2500 nm
1.4 nm (350-1000 nm)
2 nm (1001-2500 nm)

3 nm@700 nm
10 nm@1400, 2100 nm
512@350-1000 nm, 520*2@1001-1800 nm,
520*2@1801-2500 nm

Specifications
Waveband

Sampling interval

Spectral resolution

Number of detector array
channels

The spectral images of the rice canopy were obtained using the
Nano-Hyperspec® VNIR, a push broom imaging spectrometer
manufactured by Headwall in the United states. The main
specifications of Nano-Hyperspec” VNIR are listed in Table 2.

Table 2 Specifications of Nano-Hyperspec® VNIR

Specifications Parameters
Waveband 400-1000 nm
Sampling interval 1.74 nm/pixel
Spectral resolution 6 nm@700 nm
Number of detector array channels 340

In this study, Intel(R) Core™ 17-10750H CPU @ 2.30GHz and
NVIDIA GeForce 2080Ti GPU were employed for network
modeling.

2.2 Spectral data measurements
2.2.1 Rice spectral reflectance measurements

Four BPH hazard level classification strategies were tested in
an experiment conducted from 2021 to 2023. Rice seedlings were
transferred to test plots, and then inoculated with different BPH
densities, corresponding to potential damage levels based on the
BPH Hazard Level (2009) classification standard, during the
tillering stage as listed in Table 3.
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Four treatments with different BPH densities were arranged,
including a control treatment with hazard level 0 (marked as CK), a
test treatment with BPH hazard level 1 (marked as T)), a test
treatment with BPH hazard level 2 (marked as 7)), and a test
treatment with BPH hazard level 3 (marked as T3). Each test plot
used a block design comprising four treatments with different BPH
densities, with each treatment replicated three times. The four
treatments with different BPH densities were arranged in a cement
pit to avoid the influence of water and nutrition difference on the
rice spectra. In each treatment area, 25 rice seedlings were planted
in a 5x5 grid, resulting in 75 rice seedlings per BPH hazard level.
Rice spectral data were continuously monitored for 35 d after BPH
inoculation.

Table 3 Classification standard of brown planthopper hazard
level (2009 Standards Press of China, National Standards
Survey and Reporting Standards of the People’s Republic of

China)
Level 0 Level 1 Level 2 Level 3
. Moderate  Serious damage
Light damage
. damage (Most of the
Hazard Levels No damage (Lze;;l:;i;;lan];e:::y (Leaves with  leaves wilting
g “}:i th no h§ or pronounced with hopper
burn) PP yellowing and burn; all plants
some wilting) dead)
Density of BPH
on one hundred (uninfected) <250 700-1200 >1600
rice plants

Prior to measurement, the instrument was calibrated for solar
radiation using a Spectralon® reference panel. The spectroradiometer
was configured to provide an average of 50 spectral reflectance data
for each target at a time. To ensure comprehensive coverage, each
rice plant designated for testing was measured three times with a
25° field of view, and the sensor was kept at 80 cm height above the
rice plant. The mean spectral reflectance from these measurements

£73 =
Al WEERTEE

a. Test plots including BPH hazard
level 0, level 1, level 2 and level 3

was calculated and recorded as the spectral reflectance for each rice
plant. As the spectral reflectance data measurement is highly
sensitive to solar radiation, the experiments were conducted on
sunny days from 10:00 AM to 2:00 PM to ensure optimal lighting
conditions. Additionally, to reduce the influence of BPH migration,
reproduction, and mortality, the number of BPH on each rice
seedling was recorded. Rice seedlings with abnormal BPH densities
were excluded from the data records to maintain the integrity and
accuracy of the results.

d. 35 d after BPH infested

c. 30 d after BPH infested
Test plot with BPH hazard level 3

Figure 1

2.2.2  Rice spectral images acquisition

Four BPH hazard levels with different BPH densities were
established for the experiment. Each hazard level plot was enclosed
with mesh, measuring 1 m in width and 1 m in length, and planted
with rice plants in an arrangement of 6 rows by 6 columns. Each
hazard level plot consisted of three replications (Figure 2).

¥

b. Nano-Hyperspec® VNIR
spectral imaging system

Figure 2 Spectral images acquisition

2.3 Spectral data processing
2.3.1 Spectral reflectance extraction

For the analysis of hyperspectral images, the spectral
of wavelength should be extracted from the
hyperspectral images to facilitate sensitive wavelength selection and
modeling. The Environment for Visualizing Images (ENVI) was
employed for Region of Interest (ROI) extraction, and the spectral
reflectance of wavelength was extracted in each ROIL.
2.3.2 Savitzky-Golay (S-G) smoothing

Due to the high resolution of the hyperspectral instruments, the
large amount of redundant information in raw spectral data
aggravates the problems related to the curse of dimensionality™.

reflectance

The information contained in each set of the correlation matrix

principal diagonal (over the threshold) is contained in one of those
bands. In this study, in order to select the most discriminative spectral
band between classes, Savitzky-Golay (S-G)*” was used to reduce
dimensionality while preserving relevant information for posterior
feature selection. S-G smoothing applies a polynomial to fit the
wavelength data, thereby eliminating noise and preserving the
overall trend and characteristics of the spectral signal. This method
is a weighted mean algorithm, which is realized by Equation (1)®".

~ 1 +w
Xk,smoolh =X = ITI Z X hi, (1)

where, X, oo 1S the spectra data of & point after smoothing; H is a
normalizing factor; and /; is a smoothing factor.
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a. Hyperspectral image with ROIL
(area: 10x10 pixels)
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b. Spectral reflectance of wavelength in ROI

Figure 3 ROl extraction for hyperspectral images

2.3.3 Principal component analysis (PCA) sensitive wavelength
selection

After eliminating the redundant information, a set of self-
contained information bands were obtained. The next crucial step
involves identifying those bands that most effectively discriminate
between different BPH hazard levels for classification purposes.
Principal component analysis (PCA) is a fundamental method for
analyzing multivariate signals, including spectral reflectance,
hyperspectral images, and other high-dimensional datasets which
contain hidden information®. PCA uses principal components for
linear composition of spectral variables™. Each principal
component contains distinct information of the spectrum, ensuring
that the principal components are mutually independent and with no
overlapping information. This approach effectively resolves the

collinearity problem among spectral variables.

In the context of PCA, given m number of spectral variables
that have been normalized, such as x;, x,, ... x,, each variable is
represented by a linear combination of n (where n<m) factors
including f, f5, ... f,- Then the mathematical model of principal
component analysis can be expressed as™:

xi=ayfitanfs+...a,f+& (2)
X\ =ayfitanfst...anfte (3)

...... 4)
X = i fi + Qo fo + .. [+ En (5)

where, F is factor, and 4 is factor loading matrix. The PCA
approach aims to extract the most important information from the
original data by keeping the optimal number of Principal
Components (PCs). The number of retained PCs can be determined
according to the characteristic value, cumulative contribution rate,
and actual needs of each PC. In actual calculation, PCs with a
cumulative contribution rate greater than 85% (80%, 90%, or any
other predefined value) of the total data variance are usually used
for practical analysis to represent the original spectral variables for
modeling calculations®. In this study, 85% was selected as the
number of PCs that explains least of the total data variance.
2.4 Information fusion

In this study, the spectral wavelength datasets for both the rice
stem and canopy were fused by concatenating with each other to
create a comprehensive dataset. This fused dataset, represented in a
matrix format, was subsequently utilized as the basis for selecting
sensitive wavelengths and developing models aimed at classifying
the BPH hazard levels.
2.5 Modeling
2.5.1 Broad Learning System (BLS) algorithm model

BLS (Broad Learning System) algorithm was employed to
build models for BPH hazard level classification. BLS is a machine
learning algorithm proposed by Chen et al."'” The essence of BLS is
a kind of random vector functional link neutral network
(RVFLNN). Compared with deep BLS
significantly reduces the training time. The algorithm structure of
BLS is shown in Figure 4.

learning methods,
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Figure 4 An illustration of the BLS algorithm

The processing steps of BLS are as follows:

(1) Input Layer. The input layer of BLS typically consists of
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raw data. These data are sent into the mapping nodes of BLS. In this
study, the BLS input layer consists of spectral reflectance of
sensitive wavelengths datasets.

(2) Mapping Nodes. The mapping nodes are the first hidden
layer in BLS, composed of numerous nodes. Each mapping node
contains a simple linear function that performs a linear
transformation on the input data using weights and biases, and
passes the result as input to the next layer of enhance nodes.

(3) Enhance Nodes. The enhance nodes are the second hidden
layer in BLS, also composed of numerous nodes. Each enhance
node contains a non-linear function that performs a non-linear
transformation on the output of the mapping nodes, and passes the
result to the next layer of the output layer.

(4) Output Layer. The output layer consists of a group of nodes,
with each node corresponding to an output of the BLS model, such
as classification, regression, etc. The computation in the output
layer follows the same way as traditional neural networks. In this
study, the output layer consists of BPH hazard level classification
results.

The core of BLS is to calculate the pseudo-inverse of the
enhance nodes to the target value. The result of the computation
corresponds to the weight of traditional neural network. The process
of BLS mainly contains three steps: (1) Generating the Mapping
Nodes, the input spectra are mapped to create a feature node matrix.
(2) The enhanced node matrix is formed by the enhanced
transformation of the feature node matrix, and the pseudo-inverse
matrices are calculated. (3) Served the feature mapping node and
the enhancement node together as the input of the hidden layer.
(4) The pseudo-inverse is used to solve the weight matrix between
the hidden layer and the output layer.

Suppose the input data: X = [xT,T, ..., xT]"eR¥*™, the output
5 yE]TeRN‘C, X = (X, X, ooy X)) ERY, yi=[yy,
Yias - » Yie JERC. Where, n is the total number of data samples; M is
the sample dimension, and C is the number of categories of data
samples; Z,,2,,...,Z, are feature nodes; H,,H,,...,H, are enhance

matrix Y=[y[,y], ...

nodes, which are calculated by feature nodes; and W is output
weight matrix, which is calculated by the ridge regression
algorithm. In addition, due to the network structure of BLS, when
adding new enhanced nodes, new weights can be obtained quickly
by solving the pseudo-inverse of the block matrix, which makes
BLS greatly efficient in incremental learning.

Compared with the traditional deep learning method, BLS has a
simpler structure and higher computation velocity. This also
improves the robustness of the classification model.

In this study, twenty-six spectral sensitive wavelengths were
selected from canopy spectral wavelengths, and fourteen spectral
wavelengths selected from stem spectral
wavelengths. These spectral sensitive wavelengths were unified

sensitive were
dimension and concatenated with tabs into a 41-dimensional dataset
as input H,, and H, was incremented. Then 100 mapping nodes
were generated for each feature window. The details are described
as follows: (1) Firstly, a random weight matrix with a size of
40x100 was generated and denoted asw¢’and then a new matrix

“A"was calculated by A, =H, Xwe, after A, was normalized,
mapping matrix Wfrom H, to 4, was calculated by the equation

W = argmin ||ZW—H1||§+/1| |[W||;. Then the mapping node of this
feature map was calculated by the equation T, = normal(H, X W),
and finally, all mapping nodes were obtained by this equation.
(2) Secondly, the enhancement node for each feature window was
obtained. The details are as follows: a) Random size matrix with a
size of 16x100x100 was orthogonally normalized and denoted as

Wh’b) After the feature nodes matrices were concatenated, they

were normalized and incremented to be a new matrix which was
H,XwhxXs .

27) where " is

max(H, X wh)

y

2
and was used in network. (3) Finally, the pseudo-inverse of T was

obtained in order to obtain the final weight.

denoted as Hy’ T, = tansig (

scaling of enhancement node. Then the T = [ } was calculated

Table 4 Parameters for BLS modeling, including the main
parameters of input dimension, mapping node, enhancement
node, number of layers, feature window size, and enhanced
node scaling

Network structure parameters Variable parameters

Hyper- . Feature Enhanced
Input  Mapping Enhanced Number .
arameters
P dimension  node  serve node of layers w1r?dow noc_ie
size scaling
Numbers 41 100 100 2 16 1

Scikit-learn was employed for data processing. The proportion
of training sets to test sets was 4:1, and the network model proposed
in this study was tested by training set. Confusion matrix was
plotted, and the indices of accuracy, precision, recall, k-value, and
F-value were calculated for model effects evaluation®. Each test
was repeated ten times, and the arithmetic mean values were served
as results.

2.5.2 Confusion matrix for models effects evaluation

The issue of learning the reliability of predictors is of great
importance in multiclass classification®. The effectiveness of the
BPH hazard classification model was evaluated by confusion
matrix®), kappa coefficient (k-value), accuracy, precision, recall,
and F-score®. The confusion matrix is also known as the error
matrix, and it is widely used in determination of the behavior of
accuracy evaluation in multiclass classification models®™. In the
confusion matrix, four measures, namely, tfue positive’(TP),

tfue negative’(TN), false positive’(FP), and false negative”
(FN), respectively, have been reported as very important indices for
model accuracy analysis®".

Table S Specifications of confusion matrix

. . True Value
Confusion Matrix — -
Positive Negative
. Positive TP FP
Predicted value .
Negative FN TN

Note: Four measures, namely,tfue positive{TP),tfue negative{TN),
false positive{FP), andfalse negativel{FN), respectively, have been
reported as very important indices for model accuracy analysis.

K-value is used to assess the classification ability of the
classification models. Generally, between 0<k<l, the greater the k-
value is, the better the classification ability of the models. The -
value is calculated by Equations (6)-(8):

_P,-P,

k= 6
1-P, ©)
TP+ TN
PO_TP+FN+FP+TN )
p _ (TPXFP)+ (TNXFN) + (TP xFN) + (TP x FP) ®)
‘T (TP +FN + FP + TN)?

where, P, is the observed proportional agreement between true
values and predicted values, and P, is the expected agreement by
chance.

The accuracy, precision, recall, and F-value can be obtained
by Equations (9)-(12):
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TP+TN
A =—— %1009
ceuraey = e NN P < 00 ©)
TP
Precision = ————— x 1009 10
recision = —m—mp X 00% (10)
TP o

Recall = mXIOOA (11)
F, — score = 2% Pre?c.ision X Recall (12)

Precision + Recall

The square structure of a confusion matrix is represented
through rows and columns, where rows are the true classes of the
instances, and columns are the predicted classes®™. The confusion
matrix shows the numbers of similarities and differences between

0.4

Level 0
Level 1
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ﬁ
3
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3
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~
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Wavelength/nm
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a. The original spectral wavebands of
BPH level 0, level 1, level 2 and level 3

true values and predicted values. For multi-class problems, a
concern fusion matrix with the n class has an nxn confusion
matrix®, where the size of nxn associated with a classifier shows
the true and predicted classification, and » represents the number of
different classes. Because four different classes of BPH hazard level
were set in this study, n=4 was set in the present study.

3 Results and discussion

3.1 Spectral wavebands smoothing

As shown in Figure 5, after S-G smoothing processing, the
noise information, including environmental information, illumination
influence, etc., was eliminated from original spectral wavebands,
which was beneficial for spectral sensitive wavelengths selection.

04r
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b. The spectral wavebands of BPH level 0,
level 1, level 2 and level 3 after S-G smoothing.

Figure 5 Spectral wavebands smoothing processing

3.2 Spectral sensitive wavelength selection

The PCA algorithm was used to remove the collinearity
between multiple bands and reduce the data dimension, thus
effectively improving the effects of the models. The sensitive

wavelengths from spectral wavelengths of rice canopy wavelengths,
rice stem wavelengths, fusion information, and rice canopy spectral
images were selected based on the contribution rate and variance
percentage (Table 6).

Table 6 Variance percentage and contribution rate of each PCA variable for spectral wavelengths of rice canopy, rice stem, fusion
information, and rice canopy spectral images

Rice canopy spectral wavelengths

Rice stem spectral wavelengths

Fusion information Rice canopy spectral images

va]r)igﬁles Variance Contribution Variance Contribution Variance Contribution Variance Contribution

percentage/% rate/% percentage/% rate/% percentage/% rate/% percentage/% rate/%

PCl1 46.11 46.11 85.09 85.09 41.18 41.18 90.68 90.68

PC2 26.06 72.18 9.23 94.32 19.99 61.17 8.43 99.11

PC3 7.13 79.31 1.72 96.04 12.94 74.11 0.43 99.54

PC4 5.74 85.04 0.77 96.81 10.4 84.51 0.25 99.78

PC5 3.53 88.57 0.69 97.49 3.03 87.54 - -

PC6 2.89 91.46 0.57 98.06 2.49 90.03 - -

Based on the contribution rate in Table 6, PC1-PC4, PC1-PC3,
PC1- PCS5, and PC1 were utilized as the principal components for
sensitive wavelength selection from spectral wavelengths of rice
canopy, rice stem, fusion information, and rice canopy spectral
images, respectively. The principal component load denotes the
correlation coefficient between each principal component and the
wavelength position. The peak and valley point denotes the
maximum weight coefficient of a local area; the wavelengths of
these positions were determined as sensitive wavelengths. The load
curves of the principal component for different datasets are shown
in Figure 6.

Twenty-six, fourteen, forty, and five spectral sensitive
wavelengths on positions of the principal component load curves
were selected from spectral wavelengths of rice canopy, rice stem,
fusion information, and rice canopy spectral images, respectively.
These sensitive wavelengths are listed in Table 7.

These selected sensitive wavelengths were used for BPH

hazard level modeling. It is important to note that, in the sensitive
wavelength selection for stem spectral wavelengths, although PC1
explains about 85.09% of the data variation and contribution, PC2
and PC3 were also selected to improve the accuracy and precision
of BPH hazard level classification.
3.3 Effect evaluation of models
Spectral reflectance of sensitive wavelengths from rice canopy
spectral wavelength, rice stem spectral wavelength, and fusion
information were used for BPH hazard level classification modeling
by Back Propagation Neural Network (BPNN), Random Forest
(RF), and BLS. The optimum modeling algorithm was used to build
the BPH hazard level classification model for sensitive wavelength
The BPH hazard level
classification effects of different modeling algorithms and datasets
are listed in Table 8.
3.3.1
In this study, PCA and SPA were used for sensitive wavelength

from rice canopy spectral images.

Algorithm combination optimization
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Figure 6 Load curves of the principal component

Table 7 Sensitive wavelengths selected from different spectral

wavelength datasets

Number of
Dataset sensitive Sensitive wavelengths/nm

wavelengths
Canopy 518, 520, 571, 644, 698, 700, 726, 738, 743, 770,
spectral 26 809, 838, 893, 927, 931, 953, 960, 1000, 1115,
wavelengths 1123, 1125, 1132, 1139, 1140, 1146, 1154
Stem spectral 14 704,732,737, 813, 894, 931, 935, 962, 1027,
wavelengths 1119, 1130, 1134, 1141, 1129

518, 520, 571, 644, 698, 700, 726, 738, 743, 770,

Fusion 809, 838, 893, 927, 931, 953, 960, 1000, 1115,
usion 40 1123, 1125, 1132, 1139, 1140, 1146, 1154, 704,
information

Rice canopy
spectral
wavelengths

732,737, 813, 894, 931, 935, 962, 1027, 1119,
1130, 1134, 1141, 1129

472.117, 576.101, 651.992, 807.178, 930.622

Table 8 BPH hazard level classification effects evaluation
indices of different datasets and different modeling algorithms

Dataset Modeling Accuracy/ Precision/ Recall/ F)- k-

algorithm % % %  score value

) BP 94.89 94.02 9593 095 0.93

Rice canopy spectral — pp 9509 9359 9678 095 0.93
wavelengths

BLS 98.05 98.91 97.17 098 0.97

) BP 89.20 87.69 90.77 0.89 0.85

Rice stem spectral RF 9137 9113 9208 092 0388
wavelengths

BLS 95.16 96.32 93.46 095 0.93

BP 97.96 97.97 97.97 098 097

Fusion information RF 98.30 97.81 98.84 098 0.98

BLS 99.08 99.31 98.83 099 0.99

Rice canopy spectral g ¢ 80.63 8028  77.03 079 0.74

images

Note: The model effects evaluation indices include accuracy, precision, recall, -

score, and kappa-value.

selection, and BPNN, RS, and BLS were used for BPH hazard level
classification modeling. Table 8 displays that: (1) PCA performed
better in sensitive wavelength selection compared with SPA, as the
spectral reflectance corresponding to the sensitive wavelengths
selected by PCA obtained greater BPH hazard level classification
effects (greater accuracy and precision, etc.). (2) BLS performed
better in BPH hazard level modeling compared with BPNN and RF,
as the BLS model obtained greater accuracy and precision in BPH
hazard level classification.

Based on the above results, the algorithm combination of S-G,
PCA, and BLS was optimized for wavebands smoothing, sensitive
wavelength selection, and modeling, respectively, in the present
study. However, it is important to note that these algorithms are just
some typical algorithms for sensitive wavelength selection and
modeling, and they cannot represent all of the algorithms for
sensitive wavelength selection and modeling. There are many other
optional algorithms, i.e., first-order differentiation (FD)® and
sequential forward selection® for sensitive wavelength selection,
and decision tree (DT)" and support vector machine (SVM)"" for
modeling.

3.3.2 Dataset optimization

1) Accuracy and precision analysis

Table 8 displays that: (1) The stem spectral reflectance can
contribute to improving the accuracy of BPH hazard classification
by fusing with the rice canopy spectral reflectance, as the rice
canopy and rice stem spectral wavelengths fusion information with
BLS model performed best in BPH hazard classification, with the
best accuracy (99.08%), precision (99.31%), recall (98.83%), F-
score (0.99), and kappa-value (0.99). (2) However, the rice stem
spectral wavelengths (with accuracy of 95.16%, precision of
96.32%, recall of 93.46%, F,-score of 0.95, and kappa-value of
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0.93) was not a better option compared with rice canopy spectral
wavelengths (with accuracy of 98.05%, precision of 98.91%, recall
of 97.17%, F,-score of 0.98, and kappa-value of 0.97) for BPH
hazard level classification. (3) Rice canopy spectral images (with
accuracy of 80.63%, precision of 80.28%, recall of 77.03%, F-
score of 0.79, and kappa-value of 0.74) showed potential in large
scale measurement of BPH hazard level classification, due to its

500
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200

100

Predicted label
a. Rice canopy spectral wavelengths

500
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300

True label

200

100

0 1 2 3
Predicted label

c. Fusion information of rice canopy
and rice stem spectral wavelengths

high efficiency in spectral data collection.

2) Confusion matrix analysis

The confusion matrices for BPH classification model analysis
based on different datasets are shown in Figures 7a-7d, where along
the x-axis are listed the true classes, and along the y-axis are the

predicted classes.

500
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b. Rice stem spectral wavelengths

70
60
50
40

30

True label

20

10

0 1 2 3
Predicted label

d. Rice canopy spectral images

Note: BPH hazard level classification based on spectral reflectance corresponding to sensitive wavelengths from the (a), (b), (c), and (d).

Figure 7 Confusion matrix of classification model based on different datasets

Figure 7 and Table 9 show that: (1) The spectral wavelengths
fusion information of rice canopy spectral reflectance and rice stem
obtained the best agreement between true classes and predicted
classes in class 1 (98.44%) and class 2 (97.91%), and the lowest
misclassified rate overall. (2) The rice canopy spectral sensitive
wavelengths obtained the best agreement between true classes and
predicted classes in class 0 (99.39%) and class 3 (98.83%). (3) Rice
stem spectral sensitive wavelengths obtained the lowest agreement
between true classes and predicted classes in class 0 (96.89%), class
1 (90.32%), class 2 (90.83%), and class 3 (96.92%), and the highest
misclassified rate. (4) The classification results of rice canopy
spectral images showed great potential in BPH hazard level
classification, with an agreement of 84.21% in class 0, 87.65% in
class 1, 79.51% in class 2, and 83.75% in class 3.

The confusion matrix analysis results show that a very small
ratio of other class samples was misclassified to class 3. In this
study, the spectral reflectance of sensitive wavelengths was used for
BPH hazard level classification, and the spectral reflectance of
sensitive wavelengths decreased as the BPH density increased, as
shown in Figure 8.

Table 9 Classification results of prediction models based on
different datasets

Predicted class

Dataset True class

0 1 2 3

0 99.39%  923%  0.20% 0

Canopy spectral 1 1.79%  97.30%  0.99% 0
reflectance 2 0.92%  2.42%  96.10%  0.56%
3 0.59%  0.78%  0.39%  98.83%

0 96.89%  228%  0.83% 0
Stem spectral 1 6.30%  90.32%  3.02%  0.40%
reflectance 2 330%  532%  90.83%  0.55%
3 0.72%  1.09%  127%  96.92%

0 98.22%  139%  0.40% 0

Fusion 1 0.97%  98.44%  0.58% 0

information 2 0.95% 1.13%  97.91% 0
3 0.58%  039%  0.58%  98.44%
0 84.21%  1093%  395%  2.63%
Rice canopy 1 6.17%  87.65%  4.94%  1.23%
spectral images 2 241%  14.46%  79.51%  3.61%
3 625%  5.00%  5.00%  83.75%
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Figure 8 Spectral reflectance corresponding to the spectral wavelength

It is illustrated in Figure 8 that, when the BPH density
increased to level 3, the spectral reflectance of sensitive
wavelengths decreased significantly compared with BPH density of
class 2, which resulted in the significant difference of spectral
reflectance of sensitive wavelengths (which was used for BPH
hazard level classification) between class 3 and other classes. This
might explain the low misclassified rate of other classes as
compared to class 3.

4 Conclusions

The present study used three datasets including spectral
reflectance of sensitive wavelengths from rice canopy spectral
wavelengths, rice stem spectral wavelengths, and spectral
wavelengths fusion information of rice canopy and rice stem to
develop a BPH hazard level classification model with different
algorithms. Datasets and algorithm combinations were optimized by
the BPH hazard level classification effects. The optimum algorithm
combination was used to build the BPH hazard level classification
model for spectral corresponding  to
wavelengths from rice canopy spectral images. The specific
research conclusions are as follows:

(1) The most effective algorithm combination for BPH hazard
level classification was S-G for spectral bands smoothing, PCA for
sensitive wavelength selection, and BLS for modeling, as the best
accuracy and precision were obtained by this
combination.

reflectance sensitive

algorithm

(2) The fusion information was the most effective dataset for
BPH hazard level classification among the three datasets, with an
accuracy of 99.08% and precision of 99.31%. The dataset spectral
reflectance corresponding to sensitive wavelengths from rice
canopy spectral wavelength performed better in BPH hazard level

classification (with an accuracy of 98.05% and precision of 98.91%)
compared with that of rice stem (with an accuracy of 97.96% and
precision of 97.97%). It is observed that the rice stem spectral
reflectance can improve the accuracy and precision of BPH hazard
level classification when it is fused with canopy spectral
reflectance.

(3) The optimized algorithm combination was used for BPH
hazard level classification by using rice canopy spectral images,
with an accuracy of 80.63% and 80.28%. This shows the potential
of rice canopy spectral images in BPH hazard level classification.
However, in the present study, only a small volume of rice canopy
spectral images was collected, while in the future more rice canopy
spectral images should be collected for BPH hazard level
classification.

The results in this study provide a theoretical basis for
exploring BPH hazard level classification based on spectral
reflectance fusion information of rice stem and canopy spectral
reflectance, and rice canopy spectral images. Further research
should be undertaken to develop a robot which can detect the
spectral reflectance of rice canopy and rice stem, and then provide
fusion information for BPH hazard level classification, thereby
enhancing the effects of BPH hazard level classification by rice
canopy spectral images.
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