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Abstract: Widespread infestation of pests and pathogens during winter wheat’s heading stage poses significant risks to yield
loss. In this study, an assessment model of health degree (HD) of winter wheat under field conditions was established by using
unmanned aerial vehicle remote sensing (UAV RS) imagery. Firstly, non-photosynthetic features were identified from the UAV
RS  imagery  based  on  different  machine  learning  methods,  including  Minimum  Distance  (MD),  Maximum  Likelihood
Estimation  (MLE),  and  Support  Vector  Machine  (SVM).  Classification  results  indicated  that  MD  demonstrates  the  best
performance, according to the values of Overall Accuracy (0.898), Kappa Coefficient (0.863), and Precision (0.856). Therefore,
the inversion model between the proportion of pixels classified as non-photosynthetic features and the corresponding ground
truth  of  the  incidence  of  non-photosynthetic  features  was  established.  Coefficient  of  determination  (R2),  RMSE  (root  mean
square error), and RRMSE (Relative RMSE) of the inversion model are 0.73, 4.86%, and 19.81%, respectively, demonstrating
strong correlation and high accuracy. Subsequently, an assessment model for HD of the wheat field was generated based on the
predicted  incidence  of  the  non-photosynthetic  features,  and  the  conclusion  was  reached  that  HD1  (pre-symptoms  of  the
infestation of pests and pathogens) dominated in the wheat field, with the proportion of area as 56.16%, while HD4 and HD5
(severe  infestation  of  pests  and  pathogens)  were  negligible,  with  proportions  of  area  of  2.29%  and  17.75%.  Finally,  the
assessment  model  of  HD  was  used  to  simulate  the  precision  OSMP  (One-Spray-Multiple-Protection),  and  the  agricultural
chemical  could  be  reduced  to  69.11% of  the  conventional  OSMP  operation,  which  provides  theoretical  and  methodological
support for the reduction of agricultural chemicals in the domain of precision agriculture.
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1    Introduction
Wheat  is  one  of  the  most  important  staple  cereals  in  the

world[1]. The cultivation acreage of winter wheat (Triticum aestivum
L.) is about 22 million hm2 in China, representing 92.5% of the total
wheat cultivation[2-4]. During the heading stage of winter wheat, high
humidity  and  increased  temperature  often  lead  to  infestation  of
various kinds of pests and pathogens such as wheat aphids (Sitobion
avenae)[5],  stripe  rust  (Puccinia  Striiformis  F.  Sp.  Tritici.)[6,7],
fusarium head  blight[8-10],  and  other  plant  diseases[11-15],  which  poses
significant  risks  to  yield  and  grain  quality[16-19].  Researchers  have
found  that  diseases  can  decrease  annual  wheat  yields  by
approximately  5%[20],  and  Zhang  et  al.  demonstrated  that  overall
wheat yield losses caused by pests and pathogens in the main wheat
planting  region  of  the  Yellow  and  Huai  River  Region  was  up  to

16.29% of the regional yield and has been on the rise[21].
For  comprehensive  control  of  pests  and  pathogens  during

winter  wheat’s  heading  stage,  the  most  common  and  conventional
plant  protection  practice  known  as  One-Spray-Multiple-Protection
(OSMP)  is  implemented  by  mixing  several  kinds  of  insecticides,
fungicides, and growth regulators[22]. Proper conduction of OSMP is
based  on  accurate  knowledge  of  the  exact  location,  extent,  and
severity  of  the  infestation  of  pests  and  pathogens.  Traditionally,
acquisition  of  information  on  pests  and  pathogens  of  field  crops
heavily relied on field surveys through manual rating, which is time-
consuming, labor-intensive, and subject to human error[23].

On the other hand, remote sensing (RS) techniques are utilized
to  monitor  crops’ growth  status  by  using  satellite  and  airborne  RS
imagery[24,25].  Studies  and  applications  of  RS  on  pest  and  disease
infestations  have  traversed  over  30  years  of  history,  since  Riley[26]

pointed out  that  plant  damage could  be  identified  from RS images
by detecting the changes of the appearance of plant foliage. During
the last four decades, a large number of agricultural RS applications
have  been  put  forward,  encompassing  visual  interpretation  and
quantitative  analysis  of  RS  imagery[27-31],  as  spectral  reflectance
properties  of  non-photosynthetic  features  caused  by  pests  and
diseases are significantly different from healthy plants[32].

Mirik  et  al.[33]  identified  wheat  plants  with  streak  mosaic  virus
from  multispectral  satellite  RS  images  by  using  maximum
likelihood  classifier  at  regional  level  (two  adjacent  counties),  and
the  overall  accuracies  were  between  89.47  and  99.07%.  Römer  et
al.[34] collected hyperspectral fluorescence data (370-800 nm) of pre-
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symptomatic  wheat  leaf  rust  and  healthy  plants  in  a  controlled-
environment  cabinet,  and  support  vector  machines  were  used  for
classification  with  high  accuracy  of  93%.  Zhang  et  al.[35]  detected
powdery  mildew  of  winter  wheat  by  measuring  hyperspectral
reflectance of  normal  and infected leaves with a  spectroradiometer
in a laboratory, and associated 32 spectral features with the disease
severity by using partial least square regression (R2=0.80). Zhang et
al.[36] investigated the accuracy of detecting wheat yellow rust based
on continuous wavelet analysis on hyperspectral data of healthy and
infected  plants  in  a  laboratory,  and  results  showed  that  relatively
high  accuracy  levels  (R2=0.72)  were  maintained  at  the  spectral
interval  of  16 nm.  There  have been a  handful  of  other  studies  that
investigated  the  spectral  signatures  of  wheat  plants  infected  with
pests  and  pathogens,  which  revealed  a  great  potential  of  RS
techniques in monitoring of wheat growth status[37-42].

Based  on  the  literature  review,  it  seems  feasible  for  most
studies to recognize each specific disease by analyzing multispectral
or hyperspectral data acquired by using proximal or in-door devices.
However,  there  are  also  some  limitations  to  using
multispectral/hyperspectral  devices  in  monitoring  infestations  of
pests and diseases under field condition. Firstly, hyperspectral data,
with  hundreds  of  narrow  spectral  bands,  demand  advanced
computational resources and expertise for calibration, stitching, and
analysis[43].  Deploying  UAV  (Unmanned  Aerial  Vehicle)  RS
systems  with  these  sensors  requires  trained  personnel  for  flight
planning  and  data  capture,  which  complicates  real-time  field
applications.  Furthermore,  the  measurement  of  hyperspectral
reflectance  data  requires  devices  to  be  held  close-range  to  plants,
which thus  limits  the  field  of  view of  cameras  and efficiency over
vast areas. Besides, the aerodynamic downwash generated by UAV
RS  systems  during  low-altitude  flight  operations  induces  airflow
interactions  with  vegetation  surfaces,  resulting  in  transient
modifications  to  the  structural  configuration  of  plant  canopy
elements and systematic artifacts in hyperspectral reflectance data.

Although  Zhang  et  al.[44]  and  Qi  et  al.[45]  proposed  innovative
methods of assessing the severity of fusarium head blight of wheat
ears (R2=0.98) and yellow-leaf disease of rubber trees (R2=0.82) by
using  high-resolution  digital  imagery,  to  date  there  have  been  few
studies  on  the  overall  severity  of  pests  and  pathogens  of  winter
wheat  under  field  condition  by  using  UAV  RS  digital  imagery,
which features high efficiency, low cost, and easy deployment.

Therefore,  to  address  the  challenges  of  acquiring  information
on infestation of pests and pathogens of winter wheat accurately and
efficiently,  this  study  explores  the  utilization  of  a  consumer-level
drone of DJI mini 2 to collect digital images of winter wheat at field
scale.  This  study  introduces  the  conception  of  non-photosynthetic
features  usually  caused  by  the  infestation  of  pests  and  diseases
during winter wheat’s heading stage, and hypothesizes that they can
be accurately identified in the UAV RS imagery based on machine
learning  methods.  The  main  objective  is  to  calculate  and  evaluate
the  accuracy  of  the  incidence  of  non-photosynthetic  features  from
the  UAV  RS  imagery.  Subsequently,  an  assessment  model  for
health degree (HD) of the wheat field can be generated to facilitate
the  precise  implementation  of  the  OSMP.  The  implementation  of
the non-contact, high-efficiency, and low-cost UAV RS approach of
detecting  plant  pests  and  diseases  at  field  scale  could  greatly
advance the progress of the precise OSMP application. 

2    Material and methods
 

2.1    Experimental field
The  wheat  field  under  study  was  located  in  Luoyang  City,

Henan province, China, shown in Figure 1. This region has a semi-
arid  continental  monsoon  climate,  and  the  average  annual
precipitation,  effective  accumulated  temperature,  and  frost-free
period are about 578 mm, 4654°C, and 210 days, respectively. The
parental  soil  material  is  alluvium  of  the  Yellow  River,  mainly
composed  of  tidal  soil  with  medium  fertility.  Alkali-hydrolyzable
nitrogen  content,  available  phosphorus  content,  and  available
potassium  content  were  measured  as  57  mg/kg,  13  mg/kg,  and
72  mg/kg,  respectively,  by  using  a  portable  soil  nutrient  meter
(Zhengda, Wenzhou, China).
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Figure 1    Location of wheat field and distribution of
ground truth data

 

The tested variety of winter wheat was AK-58, and peanut was
the previous crop. On 11 October 2023, wheat was sowed with the
seeding  volume  of  165  kg/hm2  by  using  an  eight-row  seeder
(Nonghaha, Shijiazhuang, China), of which the row spacing was set
to 20 cm. Urea of 46% purity, ammonium phosphate of 61% purity,
and  potassium  chloride  of  60%  purity  were  uniformly  mixed  and
used  as  basal  fertilizers  at  the  rate  of  225  kg/hm2  prior  to  wheat
seeding via rotary tillage. 

2.2    Acquisition of UAV RS imagery
The  UAV  RS  experiment  was  conducted  on  May  10,  2024

during  the  heading  period  of  winter  wheat.  UAV RS images  were
captured  around  local  noon  time  by  using  the  DJI  Mini  2  with  a
CMOS  [Complementary  Metal  Oxide  Semiconductor  (Dajiang
Innovation,  Shenzhen,  China)]  imaging  sensor.  Parameters  of  the
UAV  platform  as  well  as  the  CMOS  imaging  sensor  are  listed  in
Table 1.
 
 

Table 1    Parameters of the UAV platform and imaging sensor
Equipment Items Values

UAV platform
Overall size (mm×mm×mm) 245×289×56

Net weight/g 249
Flight altitude/m 30

Imaging sensor

Angle of view/(°) 83
Type of imager CMOS
Effective pixels 3000×4000

Equivalent focal length/mm 24
Exposure/s 1/100
ISO speed 100
Aperture 2.8

Image format JPEG
 

Flight altitude of UAV was set  to 30 m above ground level to
acquire  visible-band  images  with  high  spatial  resolution  of  about
6  mm,  which  provides  a  large  field-of-view  and  detailed  image
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features at the same time. The camera shutter speed and ISO value
were  set  to  1/100  s  and  100.  As  the  result,  16  pieces  of  effective
UAV RS images with a longitudinal and lateral overlapping rate of
about 70% were acquired in total, which were processed in Agisoft
Metashape  Professional  software  (Agisoft  LLC,  St.  Petersburg,
Russia) to generate an ortho-mosaic image, also shown in Figure 1,
so that the health degree of winter wheat can be assessed at the field
scale.  The  ortho-mosaic  image  was  geo-referenced  by  measuring
the  geological  coordinates  of  four  field  corners  as  ground
controlling  points  with  Real  Time  Kinematic  Global  Navigation
Satellite  System  (RTK-GNSS)  modules,  the  overall  positioning
accuracy of which is about 2 cm. 

2.3    Field inspection of non-photosynthetic features
On completion of the UAV RS experiment, wheat tiller number

(Tm)  within  the  “1-meter-double-row”  area  was  manually  counted.
The  geological  coordinates  of  each  sampling  point  were  also
measured  by  using  the  RTK-GNSS  module,  the  distribution  of
which are also shown in Figure 1 as red dots in five rows, from row
A to row E.

Since  symptoms  of  various  kinds  of  pests  and  diseases  on
infected  wheat  plants  are  commonly  characterized  by  chlorotic
streaking,  lesions,  or  pustules  (non-photosynthetic  features)  of
young  leaves[33],  the  number  of  young  wheat  cauline  leaves  with
such non-photosynthetic features (Nm) for each sampling point was
acquired  by  visually  inspecting  the  top  five  cauline  leaves  of  each
individual  wheat  plant,  i.e.  the  flag-leaf,  top  second  leaf,  top  third
leaf,  top  fourth  leaf,  and  top  fifth  leaf.  Due  to  the  constraints
imposed  by  manual  field  inspection  and  to  evaluate  the  overall
health  degree  of  winter  wheat  under  field  condition  for  the
facilitation of the OSMP operation, this study does not differentiate
the  size,  quantity,  or  types  of  the  non-photosynthetic  features
associated with various kinds of pests and pathogens. And as small
non-photosynthetic  features  are  prone  to  be  invisible  to  the  UAV
RS  system,  any  occurrence  of  a  mold  spot  or  disease  lesion
covering 50% or more of the individual wheat cauline leaf area was
considered as one counting event,  shown in Figure 2 as marked in
red lines.

Accordingly, incidence of non-photosynthetic features in wheat

plants (R) was calculated as Equation (1) and Equation (2).

R =
Nm

Lm

×100% (1)

Lm = Tm ×5 (2)

where, R, Nm, Lm,  and Tm are the ground truth of incidence of non-
photosynthetic  features,  the  numbers  of  wheat  cauline  leaves  with
non-photosynthetic  features,  total  number  of  wheat  cauline  leaves,
and  wheat  tiller  numbers  within  the  “1-meter-double-row”  area
around each sampling point, respectively.
  

Figure 2    Wheat cauline leaf (marked in red lines) with non-
photosynthetic features

  

2.4    Annotating endmembers in UAV RS imagery
In  remote  sensing  imagery,  pixels  containing  only  one

component are referred to as endmembers,  while others containing
two  or  more  components  are  designated  as  mixed  pixels[45-49].
Annotation  of  endmember  pixels  in  remote  sensing  imagery  is  a
prerequisite  for  extracting  image  features  based  on  supervised
machine learning algorithms.

Based  on  the  characteristics  and  distribution  of  different
features  in  the  UAV RS imagery  during  the  winter  wheat  heading
stage,  four  kinds  of  endmembers  were  manually  annotated,
including  shadow  features  formed  by  mutual  shading  between
wheat  plants,  bare  soil  features,  healthy  vegetation,  and  non-
photosynthetic features, shown in Figure 3.

 
 

a. Shadow b. Bare soil c. Healthy vegetation d. Non-photosynthetic

features

Figure 3    Annotating endmembers
 

In  total,  300  endmembers  of  shadow,  bare  soil,  healthy
vegetation,  and  non-photosynthetic  features  were  annotated,

respectively,  which  were  uniformly  distributed  throughout  the
whole wheat field as shown in Figure 4.
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Figure 4    Distribution of annotated endmembers
  

2.5    Identification  and  evaluation  of  non-photosynthetic
features

Seventy percent of endmembers were randomly selected as the
training dataset and the remaining as the test dataset, and the UAV
RS imagery was classified into four categories of shadow, bare soil,
healthy  vegetation,  and  non-photosynthetic  features,  based  on
machine learning methods.

Supervised classification of remote sensing images refers to the
process  of  identifying  pixels  of  unknown  category  by  using  a
training  set  of  pixels  with  confirmed  categories.  In  this  study,
supervised  machine  learning  algorithms  including  Minimum
Distance  (MD),  Maximum  Likelihood  Estimation  (MLE),  and
Support Vector Machine (SVM) were employed to extract the non-
photosynthetic  features  in  the  UAV  RS  images,  based  on  the
training  datasets  of  endmembers  of  shadow,  bare  soil,  healthy
vegetation, and non-photosynthetic features.

Three parameters of Overall Accuracy (OA), Kappa Coefficient
(KC),  and  Precision  (P)  were  used  to  evaluate  the  accuracies  of
classification  results  based  on  MD,  MLE,  and  SVM  methods,
according  to  Equations  (3)  to  (6),  by  using  the  test  dataset  of
endmembers.

OA =
TP+TN

TP+FN+FP+TN
(3)

KC =
OA−Pe

1−Pe

(4)

Pe =

∑
(ai ×bi)

n2
(5)

P =
TP

TP+FP
(6)

where,  TP,  TN,  FN,  and  FP  denote  true  positive  samples,  true
negative  samples,  false  negative  samples,  and  false  positive
samples,  respectively;  Pe,  ai,  bi,  and  n  denote  an  intermediate
variable  for  calculating  KC  value,  the  number  of  pixels  for  each
category  in  the  test  set,  the  number  of  pixels  for  each  category  of
the classified results,  and the total  number of pixels in the test  set,
respectively. 

2.6    Health degree of winter wheat
As  the  wheat  stripe  rust  is  among  the  high-incidence  diseases

during winter wheat’s heading stage, according to Chinese Standard
GB/T 15795-2011 “Rules for monitoring and forecast of the wheat

stripe  rust  (Puccinia  striiformis  West)”,  health  degree  (HD)  of
winter  wheat  is  categorized  into  five  scales  according  to  the
incidence of non-photosynthetic features around each sampling area
(Table  2).  HD1  indicates  the  pre-symptoms  of  the  infestation  of
pests and pathogens, as the incidence of non-photosynthetic features
is very low; this is suggested to be sprayed with the least dosage of
agricultural chemicals.  HD5 represents the most severe scenario of
the  infestation  of  pests  and  pathogens,  and  increased  dosages  of
agricultural  chemicals  are  preferable  for  the  effective  control  of
pests and pathogens.
  

Table 2    Health degree of winter wheat
Health degree (HD) Incidence of non-photosynthetic features (x)

1 0.001%<x≤5%
2 5%<x≤10%
3 10%<x≤20%
4 20%<x≤30%
5 30%<x≤100%

  

2.7    Simulation of precision OSMP
Variable-rate  prescription  for  the  precision  OSMP  was

established  according  to  the  HD  model  of  the  wheat  field.  The
prescription  applied  the  conventional  dosage  of  the  OSMP  to  the
areas  of  HD3,  while  one-third,  two-thirds,  four-thirds,  and  five-
thirds of the conventional dosage were applied to the areas of HD1,
HD2,  HD4,  and  HD5,  respectively,  according  to  the  following
model:

Do =



1/3Doco, if I ∈ [0,0.1]

2/3Doco, if I ∈ [0.11,0.3]

Doco, if I ∈ [0.31,0.5]

4/3Doco, if I ∈ [0.51,0.7]

5/3Doco, if I ∈ [0.71,1]

(7)

Do Doco Iwhere,  ,  ,  and    indicate  the  variable-rate  dosage  for  the
precision OSMP, L; the conventional dosage used in the region, L;
and the incidence of non-photosynthetic features. 

3    Results and discussion
 

3.1    Ground truth of incidence for non-photosynthetic features
Wheat  tiller  numbers  within  the  “1-meter-double-row”  area

(Tm) were manually counted and listed in Table 3.
  

Table 3    Wheat tiller numbers within the
“1-meter-double-row” area

Serial No.
Row mark

A B C D E
1 16 21 21 19 31
2 18 21 27 38 16
3 11 22 15 23 22
4 10 12 18 15 36
5 11 12 14 10 45
6 5 73 22 7 56
7 17 55 45 21 79
8 40 43 38 47 102
9 36 40 36 45 108
10 40 67 31 73 103
11 56 67 31 20 79
12 56 49 34 23 65
13 67 65 51 18 58
14 80 31 35 47 31
15 22 4 6 22 20
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According  to  Equation  (2),  total  numbers  of  wheat  cauline
leaves (Lm) were calculated. Based on the numbers of wheat cauline
leaves  with  non-photosynthetic  features,  which  were  manually
inspected in the wheat field as mentioned in Section 2.3 and listed
in  Table  4,  the  intensities  of  non-photosynthetic  features’  ground
truth  data  around each  sampling  area  were  calculated  according  to
Equation (1) and are listed in Table 5.
  

Table 4    Numbers of wheat cauline leaves with non-
photosynthetic features

Serial No.
Row mark

A B C D E
1 23 19 59 23 90
2 26 15 39 62 7
3 14 22 6 16 17
4 6 12 13 9 10
5 9 11 24 4 25
6 6 36 42 6 18
7 16 68 80 34 29
8 49 56 23 108 90
9 34 115 73 120 78
10 132 140 68 132 54
11 125 82 49 37 139
12 35 19 18 38 58
13 68 52 36 24 42
14 83 38 34 86 14
15 20 6 10 14 49

  
Table 5    Intensity of non-photosynthetic features’

ground truth data

Serial No.
Row mark

A B C D E
1 28.75% 18.10% 56.19% 24.21% 58.06%
2 28.89% 14.29% 28.89% 32.63% 8.75%
3 25.45% 20.00% 8.00% 13.91% 15.45%
4 12.00% 20.00% 14.44% 12.00% 5.56%
5 16.36% 18.33% 34.29% 8.00% 11.11%
6 24.00% 9.86% 38.18% 17.14% 6.43%
7 18.82% 24.73% 35.56% 32.38% 7.34%
8 24.50% 26.05% 12.11% 45.96% 17.65%
9 18.89% 57.50% 40.56% 53.33% 14.44%
10 66.00% 41.79% 43.87% 36.16% 10.49%
11 44.64% 24.48% 31.61% 37.00% 35.19%
12 12.50% 7.76% 10.59% 33.04% 17.85%
13 20.30% 16.00% 14.12% 26.67% 14.48%
14 20.75% 24.52% 19.43% 36.60% 9.03%
15 18.18% 30.00% 33.33% 12.73% 49.00%

 

From  Table  5,  the  intensity  of  non-photosynthetic  features’
ground truth data varies from 5.56% to 66.00%, while the average
and  standard  deviations  are  24.76%  and  14.07%,  respectively.  It
could  be  concluded  that  the  health  degree  of  this  experimental
wheat  field  is  from  HD2  to  HD5,  indicating  slight  to  severe
symptoms.  However,  the  discrete  point-source  sampling  data  of
field  survey  cannot  truthfully  reflect  the  details  of  the  overall
infestation  of  pests  and  pathogens  in  the  wheat  field,  which  needs
further processing in combination with the UAV RS imagery. 

3.2    Classification results of UAV RS imagery
According  to  the  endmembers  of  shadow,  bare  soil,  healthy

vegetation,  and  non-photosynthetic  features  in  Section  2.4,  the
spectral  signatures  of  each  kind  of  endmember  were  extracted  and

are shown in Figure 5.
Figure 5 illustrates the spectral signatures of different kinds of

endmembers.  Non-photosynthetic  vegetation  features  showed  the
highest reflectance regardless of the blue, green, and red band in the
UAV  RS  imagery,  when  compared  with  bare  soil,  healthy
vegetation,  and  shadow.  The  result  complies  with  previous  studies
of Cheng et al.[50] and Feng et al[51], which demonstrated that infected
plants  showed  an  increase  in  the  corresponding  optical  reflectance
for  different  crops  and  diseases.  It  can  also  be  verified  in  the
previous  research  that  the  reflectance  of  healthy  vegetation  is  far
less  than that  of  the  bare  soil  in  each spectral  band[13].  However,  it
can also be noticed that the spectral responses of non-photosynthetic
features and bare soil are similar, which could pose a certain risk of
inaccuracy  in  differentiating  these  two  classes  by  using  machine
learning  methods.  On  the  other  hand,  healthy  vegetation  and  non-
photosynthetic  features  exhibit  significant  difference,  indicating
ideal  characteristics  of  features  to  be  separated,  which  provides
theoretical basis for implementing precise plant protection based on
the extraction of non-photosynthetic features.
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Figure 5    Spectral signatures of different kinds of endmembers
 

According  to  the  training  dataset  in  Section  2.4,  the  UAV RS
imagery  was  classified  into  four  categories  of  shadow,  bare  soil,
healthy  vegetation,  and  non-photosynthetic  features,  based  on  the
machine  learning  methods  of  MD,  MLE,  and  SVM,  respectively.
The classification results are shown in Figure 6.

From  the  statistics  of  the  classification  results  in  Table  6,  it
could  be  concluded  that  the  proportion  of  pixels  classified  as
shadow  using  the  MD  method  is  significantly  higher  than  the
classification  results  obtained  by  MLE  and  SVM.  On  the  other
hand,  the  proportion  of  pixels  identified  as  non-photosynthetic
features is lower than the latter two. However, there is no significant
difference in the proportion of pixels belonging to the categories of
healthy  vegetation  and  bare  soil  features.  The  accuracy  of  the
classification results is to be validated in Section 3.3.
 
 

Table 6    Proportion of pixels classified as different categories

Categories
Percentage

MD MLE SVM
Shadow 12.31% 5.82% 7.57%
Bare soil 4.96% 4.95% 6.00%

Healthy vegetation 27.57% 28.21% 27.06%
Non-photosynthetic features 55.16% 61.02% 59.37%

Sum 100.00% 100.00% 100.00%
  

3.3    Validating classification accuracy of UAV RS imagery
To validate the classification accuracy, confusion matrices were

computed for  the supervised classification algorithms based on the
test dataset. The results are presented in Table 7.
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According to Equation (3) and Table 7, OA of the classification
results  based  on  MD,  MLE,  and  SVM  were  calculated  as  0.898,
0.83,  and  0.853,  respectively.  Besides,  KC  of  the  classification
results  based  on  MD,  MLE,  and  SVM  were  calculated  as  0.863,
0.773,  and  0.803,  respectively,  according  to  Equations  (4)-(5)  and
Table  5.  P  of  the  classification  results  based  on  MD,  MLE,  and
SVM  were  calculated  as  0.856,  0.711,  and  0.736,  respectively,
according to Equation (6) and Table 5. Therefore, MD demonstrates

the best performance in extracting non-photosynthetic features from
the UAV RS imagery of winter wheat at the heading stage, based on
the values of Overall Accuracy, Kappa Coefficient, and Precision.
  

Table 7    Confusion matrices of different supervised
classification methods

Categories

MD

Bare
soil

Healthy
vegetation Shadow

Non-
photosynthetic

features
Sum

Bare soil 88 6 1 14 109
Healthy vegetation 0 88 0 2 90

Shadow 0 4 99 0 103
Non-photosynthetic

features 12 2 0 84 98

Sum 100 100 100 100 400

Categories
MLE

Bare
soil

Healthy
vegetation Shadow Non-photosynthetic

features Sum

Bare soil 95 0 0 31 126
Healthy vegetation 0 84 0 15 99

Shadow 0 0 99 0 99
Non-photosynthetic

features 5 16 1 54 76

Sum 100 100 100 100 400

Categories
SVM

Bare
soil

Healthy
vegetation Shadow Non-photosynthetic

features Sum

Bare soil 94 0 0 34 128
Healthy vegetation 0 84 0 2 86

Shadow 0 0 99 0 99
Non-photosynthetic

features 6 16 1 64 87

Sum 100 100 100 100 400
 

The MD classifier  assigns  a  group of  pixels  to  the  pre-trained
class  whose  mean  vector  is  closest  in  the  feature  space  (spectral
response in  this  paper).  It  uses  Euclidean distance as  a  measure of
proximity  and  is  particularly  effective  when  the  distance  between
class  means  is  large,  such  as  distinguishing  objects  of  different
types  based  on  spectral  signatures[52].  By  analyzing  spectral
deviations,  the  MD  classifier  can  detect  anomalies  in  healthy
vegetation, which explains its high accuracy in differentiating non-
photosynthetic  features  from  healthy  vegetation  in  this  paper.
However,  it  should  also  be  acknowledged  that  classification
accuracy  is  highly  dependent  on  the  quality  of  prepared  training
data, which defines how classes are represented in the feature space.
Poor-quality data (e.g.,  mislabeled pixels,  few samples, incomplete
classes) distorts these representations, leading to biased models and
reduced performance. 

3.4    Inverting incidence of non-photosynthetic features
From  Section  3.3,  this  study  reached  the  conclusion  that  the

classification  result  of  the  MD  method  has  high  accuracy  in
identifying non-photosynthetic features from the UAV RS imagery.
Therefore,  the  incidence  of  non-photosynthetic  features  over  the
total  pixels  of  each  sampling  point  of  “1-meter-double-row”  area
was acquired,  based on the  classification result  of  the  MD method
(Figure 6a), listed in Table 8.

From the intensity of non-photosynthetic features’ ground truth
data  acquired by manual  inspection (Table  5)  and the incidence of
non-photosynthetic features in the UAV RS imagery, the inversion
model  was  established,  as  seen in Figure  7,  by randomly selecting
50  sets  of  data  from  Table  5  and  Table  8  as  training  data.  The
coefficient  of  determination  (R2)  is  0.73,  which  indicates  a  good
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c. Support vector machine method
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Figure 6    Classification results based on the three different
machine learning methods
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correlation between incidence of non-photosynthetic features in the
UAV RS imagery and the intensity of non-photosynthetic features’
ground truth data.
 
 

Table 8    Incidence of non-photosynthetic features

Serial No.
Row mark

A B C D E
1 1.18% 0.63% 2.16% 0.99% 3.25%
2 0.35% 0.54% 0.65% 0.89% 0.10%
3 1.05% 0.14% 0.27% 0.29% 0.17%
4 0.42% 0.73% 0.53% 0.38% 0.10%
5 0.60% 0.66% 0.64% 0.52% 0.11%
6 1.44% 0.88% 1.61% 0.68% 0.06%
7 0.72% 0.81% 1.55% 1.35% 0.01%
8 0.79% 0.82% 0.93% 1.80% 0.04%
9 0.75% 2.90% 1.39% 2.23% 0.04%
10 4.38% 1.47% 1.78% 2.46% 0.43%
11 1.97% 1.00% 1.15% 1.32% 1.02%
12 0.33% 0.11% 0.67% 1.45% 0.60%
13 0.50% 0.78% 0.45% 1.41% 0.40%
14 0.48% 0.68% 0.34% 1.24% 0.24%
15 0.68% 2.13% 1.32% 0.73% 1.90%
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Note: x and y denote the incidence of non-photosynthetic features in the UAV RS
imagery  and  the  intensity  of  non-photosynthetic  features’  ground  truth  data,

respectively; while R2 is the coefficient of determination.

Figure 7    Inversion model of incidence of
non-photosynthetic features

  
3.5    Evaluating accuracy of the inversion model

To evaluate  the accuracy of  the inversion model  mentioned in
Section 3.4, the remaining 25 sets of data from Table 5 and Table 8
were used as validating data, listed in Table 9.

The  predicted  incidence  of  non-photosynthetic  features  was
calculated  according  to  the  inversion  model  of  Section  3.4.  The
corresponding  intensities  of  non-photosynthetic  features’  ground
truth data are also listed in Table 9. Consequently, the RMSE (root
mean square error) and RRMSE (Relative RMSE) of the inversion
model  were  calculated  as  4.86%  and  19.81%,  respectively,  which
shows  high  accuracy  and  indicates  the  feasibility  of  predicting  the
incidence  of  non-photosynthetic  features  based  on  UAV  RS
imagery. 

3.6    Health degree model of winter wheat
According  to  the  classification  result  of  the  MD  method  in

Section 3.2 and the inversion model in Section 3.4, the incidence of
non-photosynthetic  features  was  predicted  for  the  experimental
field.  Subsequently,  to  facilitate  the  OSMP  operation,  the
assessment model of the HD of wheat field was generated based on

Table 2 in Section 2.6, by averaging the predicted incidence of non-
photosynthetic  features  within  the  areas  of  about  1×1  meter  (local
window of 165×165 pixels), as shown in Figure 8.
 
 

Table 9    Validating data used to evaluate the accuracy of the
inversion model

Serial No.
Incidence of non-
photosynthetic

features

Predicted incidence of
non-photosynthetic

features

Ground truth data of
intensity of non-

photosynthetic features
A5 0.60% 19.69% 16.36%
A6 1.44% 32.90% 24.00%
A9 0.75% 22.05% 18.89%
A12 0.33% 15.44% 12.50%
A13 0.50% 18.11% 20.30%
B1 0.63% 20.16% 18.10%
B4 0.73% 21.73% 20.00%
B9 2.90% 55.86% 57.50%
B13 0.78% 22.52% 16.00%
B15 2.13% 43.75% 30.00%
C4 0.53% 18.59% 14.44%
C6 1.61% 35.57% 38.18%
C7 1.55% 34.63% 35.56%
C11 1.15% 28.34% 31.61%
C14 0.34% 15.60% 19.43%
D3 0.29% 14.81% 13.91%
D4 0.38% 16.23% 12.00%
D6 0.68% 20.95% 17.14%
D9 2.23% 45.33% 53.33%
D12 1.45% 33.06% 33.04%
E1 3.25% 61.37% 58.06%
E5 0.11% 11.98% 11.11%
E8 0.04% 10.88% 17.65%
E13 0.40% 16.54% 14.48%
E14 0.24% 14.02% 9.03%

 
 

112.3011

HD1

HD2

HD3

HD4

HD5

112.3012 112.3013 112.3014

112.3011 112.3012 112.3013 112.3014

3
4
.6

7
0
8

3
4
.6

7
0
7

3
4
.6

7
0
6

3
4
.6

7
0
5

3
4
.6

7
0
8

3
4
.6

7
0
7

3
4
.6

7
0
6

3
4
.6

7
0
5

N0 5 10 15 20 m

Note:  HD1-5  indicates  each  scale  of  the  health  degree  (HD)  of  the  wheat  field,
where HD1, HD2, HD3, HD4, and HD5 represent the predicted incidence of non-
photosynthetic  features  of  0.001-5%,  5-10%,  10-20%,  20-30%,  and  30-100%,
respectively.

Figure 8    Health degree (HD) model of wheat field
From Figure  8,  the  percentages  of  each  of  the  areas  of  HD1,

HD2,  HD3,  HD4,  and  HD5  over  the  total  acreage  of  the
experimental  field  were  calculated  as  56.16%,  17.92%,  5.88%,
2.29%, and 17.75%, respectively. The conclusion could be reached
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that  the  areas  of  HD1  (pre-symptoms  of  infestation  of  pests  and
pathogens)  dominated  in  the  wheat  field,  which  need  less
agricultural  chemicals  in  the  perspective  of  precision  agriculture.
On  the  other  hand,  areas  of  HD4  and  HD5  (severe  infestation  of
pests  and  pathogens)  were  mostly  located  alongside  field
boundaries. As a result,  the agricultural chemical could be reduced
to  69.11% of  the  conventional  OSMP operation,  according  to  HD
model of the wheat field and the simulation model of the precision
OSMP.

The aim of this study was to evaluate the potential of machine
learning algorithms applied to detecting non-photosynthetic features
from UAV RS imagery.  The  performance  of  these  algorithms was
evaluated using parameters of Overall Accuracy, Kappa Coefficient,
and  Precision.  The  MD  algorithm  demonstrated  superior
performance,  with  an  Overall  Accuracy  of  0.898,  a  Kappa
Coefficient  of  0.863,  and  a  Precision  of  0.856.  This  highlights  the
importance  of  selecting  appropriate  machine  learning  models  for
remote sensing applications and suggests that the MD algorithm can
be  particularly  effective  in  identifying  non-photosynthetic  features
under field condition. This study also presented a practical approach
of  establishing  an  HD  model  at  field  level,  as  non-photosynthetic
features  usually  caused  by  the  infestation  of  pests  and  diseases
during  winter  wheat’s  heading  stage.  The  methodology  offers  a
rapid  and  effective  solution  for  precision  plant  protection  in
agriculture.

On the other hand, this study acknowledges that the similarities
of spectral signatures between non-photosynthetic features and bare
soil (Figure 5) may lead to classification errors. This highlights the
complexity  of  remote  sensing  applications  in  agriculture,  where
environmental factors and the physiological responses of plants can
vary  significantly.  Another  limitation  is  the  lack  of  differentiation
between the size, quantity, and type of non-photosynthetic features
during  manual  field  inspections.  This  simplification  could
potentially  affect  the  accuracy  of  the  regression  model  for
predicting the incidence of non-photosynthetic features. 

4    Conclusion
This  study  developed  a  rapid  approach  of  assessing  health

degree  (HD)  for  winter  wheat  under  field  conditions  for  precision
plant  protection.  The  approach  utilized  a  light-weight  unmanned
aerial  vehicle  (UAV)  to  collect  low-altitude  remote  sensing  (RS)
images of the wheat field, and machine learning models were used
to  identify  the  non-photosynthetic  features  from  the  UAV  RS
imagery. The main conclusions are summarized as follows:

1) Supervised machine learning algorithms including Minimum
Distance  (MD),  Maximum  Likelihood  Estimation  (MLE),  and
Support  Vector  Machine  (SVM)  were  employed  to  identify  non-
photosynthetic features in the UAV imagery. MD demonstrates the
best performance, based on the values of Overall Accuracy (0.898),
Kappa Coefficient (0.863), and Precision (0.856).

2) Based on the classification result of the UAV RS imagery by
using  MD  method,  the  proportion  of  pixels  classified  as  non-
photosynthetic  features  was  calculated.  Subsequently,  the  linear
inversion  model  between  it  and  the  corresponding  ground  truth  of
incidence  of  non-photosynthetic  features  was  established,  and  the
coefficient  of  determination  (R2)  is  0.73,  demonstrating  strong
correlation.  The  RMSE  (root  mean  square  error)  and  RRMSE
(Relative RMSE) of the inversion model were calculated as 4.86%
and  19.81%,  respectively,  which  guaranteed  high  accuracy  of
inverting  the  incidence  of  non-photosynthetic  features  from  the
UAV RS imagery.

3)  The  assessment  model  of  the  HD  for  wheat  field  was
established,  and  the  percentage  of  each  HD  scale  over  the  total
acreage  of  the  experimental  field  was  calculated.  The  conclusion
was  reached  that  HD1  (pre-symptoms  of  infestation  of  pests  and
pathogens) dominated in the wheat field, with the proportion of area
as 56.16%. Finally, simulation of the precision OSMP (One-Spray-
Multiple-Protection)  was conducted according to  the  HD model  of
the  wheat  field,  and  the  agricultural  chemical  could  be  reduced  to
69.11%  of  the  conventional  OSMP  operation.  Further  studies
should explore the applicability of this method to additional relevant
wheat  species,  and  verify  its  effectiveness  in  wheat  fields  where
different levels of infestation of pests and pathogens occur. 
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