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Assessing the health degree of winter wheat under field conditions for
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Abstract: Widespread infestation of pests and pathogens during winter wheat’s heading stage poses significant risks to yield
loss. In this study, an assessment model of health degree (HD) of winter wheat under field conditions was established by using
unmanned aerial vehicle remote sensing (UAV RS) imagery. Firstly, non-photosynthetic features were identified from the UAV
RS imagery based on different machine learning methods, including Minimum Distance (MD), Maximum Likelihood
Estimation (MLE), and Support Vector Machine (SVM). Classification results indicated that MD demonstrates the best
performance, according to the values of Overall Accuracy (0.898), Kappa Coefficient (0.863), and Precision (0.856). Therefore,
the inversion model between the proportion of pixels classified as non-photosynthetic features and the corresponding ground
truth of the incidence of non-photosynthetic features was established. Coefficient of determination (R*), RMSE (root mean
square error), and RRMSE (Relative RMSE) of the inversion model are 0.73, 4.86%, and 19.81%, respectively, demonstrating
strong correlation and high accuracy. Subsequently, an assessment model for HD of the wheat field was generated based on the
predicted incidence of the non-photosynthetic features, and the conclusion was reached that HD1 (pre-symptoms of the
infestation of pests and pathogens) dominated in the wheat field, with the proportion of area as 56.16%, while HD4 and HDS
(severe infestation of pests and pathogens) were negligible, with proportions of area of 2.29% and 17.75%. Finally, the
assessment model of HD was used to simulate the precision OSMP (One-Spray-Multiple-Protection), and the agricultural
chemical could be reduced to 69.11% of the conventional OSMP operation, which provides theoretical and methodological

support for the reduction of agricultural chemicals in the domain of precision agriculture.
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1 Introduction

Wheat is one of the most important staple cereals in the
world!".. The cultivation acreage of winter wheat (Triticum aestivum
L.) is about 22 million hm* in China, representing 92.5% of the total
wheat cultivation”. During the heading stage of winter wheat, high
humidity and increased temperature often lead to infestation of
various kinds of pests and pathogens such as wheat aphids (Sitobion
avenae)?, stripe rust (Puccinia Striiformis F. Sp. Tritici.)®",
fusarium head blight®'”, and other plant diseases!'"”, which poses
significant risks to yield and grain quality!"*". Researchers have
found that diseases can decrease annual wheat yields by
approximately 5%, and Zhang et al. demonstrated that overall
wheat yield losses caused by pests and pathogens in the main wheat
planting region of the Yellow and Huai River Region was up to
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16.29% of the regional yield and has been on the rise®".

For comprehensive control of pests and pathogens during
winter wheat’s heading stage, the most common and conventional
plant protection practice known as One-Spray-Multiple-Protection
(OSMP) is implemented by mixing several kinds of insecticides,
fungicides, and growth regulators'®. Proper conduction of OSMP is
based on accurate knowledge of the exact location, extent, and
severity of the infestation of pests and pathogens. Traditionally,
acquisition of information on pests and pathogens of field crops
heavily relied on field surveys through manual rating, which is time-
consuming, labor-intensive, and subject to human error'!.

On the other hand, remote sensing (RS) techniques are utilized
to monitor crops’ growth status by using satellite and airborne RS
imagery™*!. Studies and applications of RS on pest and disease
infestations have traversed over 30 years of history, since Riley™!
pointed out that plant damage could be identified from RS images
by detecting the changes of the appearance of plant foliage. During
the last four decades, a large number of agricultural RS applications
have been put forward, encompassing visual interpretation and
quantitative analysis of RS imagery”', as spectral reflectance
properties of non-photosynthetic features caused by pests and
diseases are significantly different from healthy plants®.

Mirik et al.?” identified wheat plants with streak mosaic virus
from multispectral satellite RS images by using maximum
likelihood classifier at regional level (two adjacent counties), and
the overall accuracies were between 89.47 and 99.07%. Romer et
al.’ collected hyperspectral fluorescence data (370-800 nm) of pre-
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symptomatic wheat leaf rust and healthy plants in a controlled-
environment cabinet, and support vector machines were used for
classification with high accuracy of 93%. Zhang et al.”” detected
powdery mildew of winter wheat by measuring hyperspectral
reflectance of normal and infected leaves with a spectroradiometer
in a laboratory, and associated 32 spectral features with the disease
severity by using partial least square regression (R*=0.80). Zhang et
al.’! investigated the accuracy of detecting wheat yellow rust based
on continuous wavelet analysis on hyperspectral data of healthy and
infected plants in a laboratory, and results showed that relatively
high accuracy levels (R=0.72) were maintained at the spectral
interval of 16 nm. There have been a handful of other studies that
investigated the spectral signatures of wheat plants infected with
pests and pathogens, which revealed a great potential of RS
techniques in monitoring of wheat growth status®’.

Based on the literature review, it seems feasible for most
studies to recognize each specific disease by analyzing multispectral
or hyperspectral data acquired by using proximal or in-door devices.
However, there are also some limitations to using
multispectral/hyperspectral devices in monitoring infestations of
pests and diseases under field condition. Firstly, hyperspectral data,
with hundreds of narrow spectral bands, demand advanced
computational resources and expertise for calibration, stitching, and
analysis'”.. Deploying UAV (Unmanned Aerial Vehicle) RS
systems with these sensors requires trained personnel for flight
planning and data capture, which complicates real-time field
applications. Furthermore, the measurement of hyperspectral
reflectance data requires devices to be held close-range to plants,
which thus limits the field of view of cameras and efficiency over
vast areas. Besides, the aerodynamic downwash generated by UAV
RS systems during low-altitude flight operations induces airflow
interactions with vegetation surfaces, resulting in transient
modifications to the structural configuration of plant canopy
elements and systematic artifacts in hyperspectral reflectance data.

Although Zhang et al.* and Qi et al."*! proposed innovative
methods of assessing the severity of fusarium head blight of wheat
ears (R=0.98) and yellow-leaf disease of rubber trees (R*=0.82) by
using high-resolution digital imagery, to date there have been few
studies on the overall severity of pests and pathogens of winter
wheat under field condition by using UAV RS digital imagery,
which features high efficiency, low cost, and easy deployment.

Therefore, to address the challenges of acquiring information
on infestation of pests and pathogens of winter wheat accurately and
efficiently, this study explores the utilization of a consumer-level
drone of DJI mini 2 to collect digital images of winter wheat at field
scale. This study introduces the conception of non-photosynthetic
features usually caused by the infestation of pests and diseases
during winter wheat’s heading stage, and hypothesizes that they can
be accurately identified in the UAV RS imagery based on machine
learning methods. The main objective is to calculate and evaluate
the accuracy of the incidence of non-photosynthetic features from
the UAV RS imagery. Subsequently, an assessment model for
health degree (HD) of the wheat ficld can be generated to facilitate
the precise implementation of the OSMP. The implementation of
the non-contact, high-efficiency, and low-cost UAV RS approach of
detecting plant pests and diseases at field scale could greatly
advance the progress of the precise OSMP application.

2 Material and methods

2.1 Experimental field
The wheat field under study was located in Luoyang City,

Henan province, China, shown in Figure 1. This region has a semi-
arid continental monsoon climate, and the average annual
precipitation, effective accumulated temperature, and frost-free
period are about 578 mm, 4654°C, and 210 days, respectively. The
parental soil material is alluvium of the Yellow River, mainly
composed of tidal soil with medium fertility. Alkali-hydrolyzable
nitrogen content, available phosphorus content, and available
potassium content were measured as 57 mg/kg, 13 mg/kg, and
72 mg/kg, respectively, by using a portable soil nutrient meter
(Zhengda, Wenzhou, China).
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Figure 1 Location of wheat field and distribution of

ground truth data

The tested variety of winter wheat was AK-58, and peanut was
the previous crop. On 11 October 2023, wheat was sowed with the
seeding volume of 165 kg/hm’ by using an eight-row seeder
(Nonghaha, Shijiazhuang, China), of which the row spacing was set
to 20 cm. Urea of 46% purity, ammonium phosphate of 61% purity,
and potassium chloride of 60% purity were uniformly mixed and
used as basal fertilizers at the rate of 225 kg/hm* prior to wheat
seeding via rotary tillage.

2.2 Acquisition of UAV RS imagery

The UAV RS experiment was conducted on May 10, 2024
during the heading period of winter wheat. UAV RS images were
captured around local noon time by using the DJI Mini 2 with a
CMOS [Complementary Metal Oxide Semiconductor (Dajiang
Innovation, Shenzhen, China)] imaging sensor. Parameters of the
UAV platform as well as the CMOS imaging sensor are listed in
Table 1.

Table 1 Parameters of the UAV platform and imaging sensor

Equipment Items Values
Overall size (mmxmmxmm) 245%289%56
UAV platform Net weight/g 249
Flight altitude/m 30
Angle of view/(°) 83
Type of imager CMOS
Effective pixels 3000%4000
X Equivalent focal length/mm 24
Imaging sensor
Exposure/s 1/100
ISO speed 100
Aperture 2.8
Image format JPEG

Flight altitude of UAV was set to 30 m above ground level to
acquire visible-band images with high spatial resolution of about
6 mm, which provides a large field-of-view and detailed image
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features at the same time. The camera shutter speed and ISO value
were set to 1/100 s and 100. As the result, 16 pieces of effective
UAV RS images with a longitudinal and lateral overlapping rate of
about 70% were acquired in total, which were processed in Agisoft
Metashape Professional software (Agisoft LLC, St. Petersburg,
Russia) to generate an ortho-mosaic image, also shown in Figure 1,
so that the health degree of winter wheat can be assessed at the field
scale. The ortho-mosaic image was geo-referenced by measuring
the geological coordinates of four field corners as ground
controlling points with Real Time Kinematic Global Navigation
Satellite System (RTK-GNSS) modules, the overall positioning
accuracy of which is about 2 cm.

2.3 Field inspection of non-photosynthetic features

On completion of the UAV RS experiment, wheat tiller number
(T,) within the “l-meter-double-row” area was manually counted.
The geological coordinates of each sampling point were also
measured by using the RTK-GNSS module, the distribution of
which are also shown in Figure 1 as red dots in five rows, from row
A to row E.

Since symptoms of various kinds of pests and diseases on
infected wheat plants are commonly characterized by chlorotic
streaking, lesions, or pustules (non-photosynthetic features) of
young leaves®™, the number of young wheat cauline leaves with
such non-photosynthetic features (,,) for each sampling point was
acquired by visually inspecting the top five cauline leaves of each
individual wheat plant, i.e. the flag-leaf, top second leaf, top third
leaf, top fourth leaf, and top fifth leaf. Due to the constraints
imposed by manual field inspection and to evaluate the overall
health degree of winter wheat under field condition for the
facilitation of the OSMP operation, this study does not differentiate
the size, quantity, or types of the non-photosynthetic features
associated with various kinds of pests and pathogens. And as small
non-photosynthetic features are prone to be invisible to the UAV
RS system, any occurrence of a mold spot or disease lesion
covering 50% or more of the individual wheat cauline leaf area was
considered as one counting event, shown in Figure 2 as marked in
red lines.

Accordingly, incidence of non-photosynthetic features in wheat

a. Shadow b. Bare soil

plants (R) was calculated as Equation (1) and Equation (2).
N,
R= L—’" x 100% (1)

‘m

L,=T,x5 2

where, R, N,,, L,,, and T,, are the ground truth of incidence of non-
photosynthetic features, the numbers of wheat cauline leaves with
non-photosynthetic features, total number of wheat cauline leaves,
and wheat tiller numbers within the “l-meter-double-row” area
around each sampling point, respectively.

Figure 2 Wheat cauline leaf (marked in red lines) with non-
photosynthetic features

2.4 Annotating endmembers in UAV RS imagery

In remote sensing imagery, pixels containing only one
component are referred to as endmembers, while others containing
two or more components are designated as mixed pixels™**L
Annotation of endmember pixels in remote sensing imagery is a
prerequisite for extracting image features based on supervised
machine learning algorithms.

Based on the characteristics and distribution of different
features in the UAV RS imagery during the winter wheat heading
stage, four kinds of endmembers were manually annotated,
including shadow features formed by mutual shading between
wheat plants, bare soil features, healthy vegetation, and non-

photosynthetic features, shown in Figure 3.

B

c. Healthy vegetation

d. Non-photosynthetic
features

Figure 3  Annotating endmembers

In total, 300 endmembers of shadow, bare soil, healthy

vegetation, and non-photosynthetic features were annotated,

respectively, which were uniformly distributed throughout the

whole wheat field as shown in Figure 4.
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Figure 4 Distribution of annotated endmembers

2.5 Identification and evaluation

features

of non-photosynthetic

Seventy percent of endmembers were randomly selected as the
training dataset and the remaining as the test dataset, and the UAV
RS imagery was classified into four categories of shadow, bare soil,
healthy vegetation, and non-photosynthetic features, based on
machine learning methods.

Supervised classification of remote sensing images refers to the
process of identifying pixels of unknown category by using a
training set of pixels with confirmed categories. In this study,
supervised machine learning algorithms including Minimum
Distance (MD), Maximum Likelihood Estimation (MLE), and
Support Vector Machine (SVM) were employed to extract the non-
photosynthetic features in the UAV RS images, based on the
training datasets of endmembers of shadow, bare soil, healthy
vegetation, and non-photosynthetic features.

Three parameters of Overall Accuracy (OA), Kappa Coefficient
(KC), and Precision (P) were used to evaluate the accuracies of
classification results based on MD, MLE, and SVM methods,
according to Equations (3) to (6), by using the test dataset of
endmembers.

TP+ TN
OA_TP+FN+FP+TN 3)

OA-P,
Ke=T5 @

Z(ai xb;)
P.= o ®)

TP

P= TP + FP ©)

where, TP, TN, FN, and FP denote true positive samples, true
negative samples, false negative samples, and false positive
samples, respectively; P,, a;, b, and n denote an intermediate
variable for calculating KC value, the number of pixels for each
category in the test set, the number of pixels for each category of
the classified results, and the total number of pixels in the test set,
respectively.
2.6 Health degree of winter wheat

As the wheat stripe rust is among the high-incidence diseases
during winter wheat’s heading stage, according to Chinese Standard
GB/T 15795-2011 “Rules for monitoring and forecast of the wheat

incidence of non-photosynthetic features around each sampling area
(Table 2). HDI indicates the pre-symptoms of the infestation of
pests and pathogens, as the incidence of non-photosynthetic features
is very low; this is suggested to be sprayed with the least dosage of
agricultural chemicals. HDS5 represents the most severe scenario of
the infestation of pests and pathogens, and increased dosages of
agricultural chemicals are preferable for the effective control of
pests and pathogens.

Table 2 Health degree of winter wheat

Health degree (HD) Incidence of non-photosynthetic features (x)
1 0.001%<x<5%
2 5%<x<10%
3 10%<x<20%
4 20%<x<30%
5 30%<x<100%

2.7 Simulation of precision OSMP

Variable-rate prescription for the precision OSMP was
established according to the HD model of the wheat field. The
prescription applied the conventional dosage of the OSMP to the
areas of HD3, while one-third, two-thirds, four-thirds, and five-
thirds of the conventional dosage were applied to the areas of HDI1,
HD2, HD4, and HDS, respectively, according to the following
model:

1/3Do.,, if 1€[0,0.1]

2/3Do,,, if 1€[0.11,0.3]

Do,,, if I€[0.31,0.5] (7)
4/3Do,,, if 1€[0.51,0.7]

5/3Do,,, if 1€[0.71,1]

Do =

where, Do, Do,,, and I indicate the variable-rate dosage for the
precision OSMP, L; the conventional dosage used in the region, L;
and the incidence of non-photosynthetic features.

3 Results and discussion

3.1 Ground truth of incidence for non-photosynthetic features
Wheat tiller numbers within the “l-meter-double-row” area
(T,,) were manually counted and listed in Table 3.

Table 3 Wheat tiller numbers within the

“l-meter-double-row” area
Serial No. Row mark

A B C D E
1 16 21 21 19 31
2 18 21 27 38 16
3 11 22 15 23 22
4 10 12 18 15 36
5 11 12 14 10 45
6 5 73 22 7 56
7 17 55 45 21 79
8 40 43 38 47 102
9 36 40 36 45 108
10 40 67 31 73 103
11 56 67 31 20 79
12 56 49 34 23 65
13 67 65 51 18 58
14 80 31 35 47 31
15 22 4 6 22 20
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According to Equation (2), total numbers of wheat cauline
leaves (L,,) were calculated. Based on the numbers of wheat cauline
leaves with non-photosynthetic features, which were manually
inspected in the wheat field as mentioned in Section 2.3 and listed
in Table 4, the intensities of non-photosynthetic features’ ground
truth data around each sampling area were calculated according to
Equation (1) and are listed in Table 5.

Table 4 Numbers of wheat cauline leaves with non-
photosynthetic features

Serial No. Row mark

A B C D E
1 23 19 59 23 90
2 26 15 39 62 7
3 14 22 6 16 17
4 12 13 9 10
5 11 24 4 25
6 36 42 6 18
7 16 63 30 34 29
8 49 56 23 108 90
9 34 115 73 120 78
10 132 140 68 132 54
11 125 82 49 37 139
12 35 19 18 38 58
13 68 52 36 24 42
14 83 38 34 86 14
15 20 6 10 14 49

Table 5 Intensity of non-photosynthetic features’
ground truth data

Row mark
Serial No.
A B C D E
1 28.75% 18.10% 56.19% 24.21% 58.06%
2 28.89% 14.29% 28.89% 32.63% 8.75%
3 25.45% 20.00% 8.00% 13.91% 15.45%
4 12.00% 20.00% 14.44% 12.00% 5.56%
5 16.36% 18.33% 34.29% 8.00% 11.11%
6 24.00% 9.86% 38.18% 17.14% 6.43%
7 18.82% 24.73% 35.56% 32.38% 7.34%
8 24.50% 26.05% 12.11% 45.96% 17.65%
9 18.89% 57.50% 40.56% 53.33% 14.44%
10 66.00% 41.79% 43.87% 36.16% 10.49%
11 44.64% 24.48% 31.61% 37.00% 35.19%
12 12.50% 7.76% 10.59% 33.04% 17.85%
13 20.30% 16.00% 14.12% 26.67% 14.48%
14 20.75% 24.52% 19.43% 36.60% 9.03%
15 18.18% 30.00% 33.33% 12.73% 49.00%

From Table 5, the intensity of non-photosynthetic features’
ground truth data varies from 5.56% to 66.00%, while the average
and standard deviations are 24.76% and 14.07%, respectively. It
could be concluded that the health degree of this experimental
wheat field is from HD2 to HDS5, indicating slight to severe
symptoms. However, the discrete point-source sampling data of
field survey cannot truthfully reflect the details of the overall
infestation of pests and pathogens in the wheat field, which needs
further processing in combination with the UAV RS imagery.

3.2 Classification results of UAV RS imagery

According to the endmembers of shadow, bare soil, healthy
vegetation, and non-photosynthetic features in Section 2.4, the
spectral signatures of each kind of endmember were extracted and

are shown in Figure 5.

Figure 5 illustrates the spectral signatures of different kinds of
endmembers. Non-photosynthetic vegetation features showed the
highest reflectance regardless of the blue, green, and red band in the
UAV RS imagery, when compared with bare soil, healthy
vegetation, and shadow. The result complies with previous studies
of Cheng et al.”” and Feng et al®'!, which demonstrated that infected
plants showed an increase in the corresponding optical reflectance
for different crops and diseases. It can also be verified in the
previous research that the reflectance of healthy vegetation is far
less than that of the bare soil in each spectral band™!. However, it
can also be noticed that the spectral responses of non-photosynthetic
features and bare soil are similar, which could pose a certain risk of
inaccuracy in differentiating these two classes by using machine
learning methods. On the other hand, healthy vegetation and non-
photosynthetic features exhibit significant difference, indicating
ideal characteristics of features to be separated, which provides
theoretical basis for implementing precise plant protection based on
the extraction of non-photosynthetic features.
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Figure 5 Spectral signatures of different kinds of endmembers

According to the training dataset in Section 2.4, the UAV RS
imagery was classified into four categories of shadow, bare soil,
healthy vegetation, and non-photosynthetic features, based on the
machine learning methods of MD, MLE, and SVM, respectively.
The classification results are shown in Figure 6.

From the statistics of the classification results in Table 6, it
could be concluded that the proportion of pixels classified as
shadow using the MD method is significantly higher than the
classification results obtained by MLE and SVM. On the other
hand, the proportion of pixels identified as non-photosynthetic
features is lower than the latter two. However, there is no significant
difference in the proportion of pixels belonging to the categories of
healthy vegetation and bare soil features. The accuracy of the
classification results is to be validated in Section 3.3.

Table 6 Proportion of pixels classified as different categories

. Percentage
Categories

MD MLE SVM

Shadow 12.31% 5.82% 7.57%

Bare soil 4.96% 4.95% 6.00%
Healthy vegetation 27.57% 28.21% 27.06%
Non-photosynthetic features 55.16% 61.02% 59.37%
Sum 100.00% 100.00% 100.00%

3.3 Validating classification accuracy of UAV RS imagery

To validate the classification accuracy, confusion matrices were
computed for the supervised classification algorithms based on the
test dataset. The results are presented in Table 7.
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Figure 6 Classification results based on the three different
machine learning methods

According to Equation (3) and Table 7, OA of the classification
results based on MD, MLE, and SVM were calculated as 0.898,
0.83, and 0.853, respectively. Besides, KC of the classification
results based on MD, MLE, and SVM were calculated as 0.863,
0.773, and 0.803, respectively, according to Equations (4)-(5) and
Table 5. P of the classification results based on MD, MLE, and
SVM were calculated as 0.856, 0.711, and 0.736, respectively,
according to Equation (6) and Table 5. Therefore, MD demonstrates

classification result of the MD method has high accuracy in
identifying non-photosynthetic features from the UAV RS imagery.
Therefore, the incidence of non-photosynthetic features over the
total pixels of each sampling point of “l-meter-double-row” area
was acquired, based on the classification result of the MD method
(Figure 6a), listed in Table 8.

From the intensity of non-photosynthetic features’ ground truth
data acquired by manual inspection (Table 5) and the incidence of
non-photosynthetic features in the UAV RS imagery, the inversion
model was established, as seen in Figure 7, by randomly selecting
50 sets of data from Table 5 and Table 8 as training data. The
coefficient of determination (R?) is 0.73, which indicates a good
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correlation between incidence of non-photosynthetic features in the
UAV RS imagery and the intensity of non-photosynthetic features’
ground truth data.

Table 8 Incidence of non-photosynthetic features

Table 2 in Section 2.6, by averaging the predicted incidence of non-
photosynthetic features within the areas of about 1x1 meter (local
window of 165%165 pixels), as shown in Figure 8.

Table 9 Validating data used to evaluate the accuracy of the

Row mark inversion model
Serial No. - - T
A B C D E Incidence of non- Predicted incidence of  Ground truth data of
Serial No.  photosynthetic non-photosynthetic intensity of non-
! 1.18% 0.63% 2.16% 0.99% 3.25% features features photosynthetic features
2 0.35% 0.54% 0.65% 0.89% 0.10% AS 0.60% 19.69% 16.36%
3 1.05% 0.14% 0.27% 0.29% 0.17% A6 1.44% 32.90% 24.00%
4 0.42% 0.73% 0.53% 0.38% 0.10% A9 0.75% 22.05% 18.89%
5 0.60% 0.66% 0.64% 0.52% 0.11% Al2 0.33% 15.44% 12.50%
6 1.44% 0.88% 1.61% 0.68% 0.06% Al3 0.50% 18.11% 20.30%
7 0.72% 0.81% 1.55% 1.35% 0.01% Bl 0.63% 20.16% 18.10%
8 0.79% 0.82% 0.93% 1.80% 0.04% B4 0.73% 21.73% 20.00%
9 0.75% 2.90% 1.39% 2.23% 0.04% B9 2.90% 55.86% 57.50%
10 4.38% 1.47% 1.78% 2.46% 0.43% B13 0.78% 22.52% 16.00%
11 1.97% 1.00% 1.15% 1.32% 1.02% B15 2.13% 43.75% 30.00%
12 0.33% 0.11% 0.67% 1.45% 0.60% C4 0.53% 18.59% 14.44%
13 0.50% 0.78% 0.45% 1.41% 0.40% c6 1.61% 35.57% 38.18%
14 0.48% 0.68% 0.34% 1.24% 0.24% 7 1.55% 34.63% 35.56%
15 0.68% 2.13% 1.32% 0.73% 1.90% Cl1 1.15% 28.34% 31.61%
Cl4 0.34% 15.60% 19.43%
] 90.00 D3 0.29% 14.81% 13.91%
£ 1=15.729x+0.1025 ° ° °
bS] 80.00 R=0.73 D4 0.38% 16.23% 12.00%
3 .
2 . 70.00 D6 0.68% 20.95% 17.14%
=3 o
;5; S 60.00 F D9 2.23% 45.33% 53.33%
<
Z2 s000f D12 1.45% 33.06% 33.04%
2 g 40.00 | El 3.25% 61.37% 58.06%
§ § 30.00 F E5 0.11% 11.98% 11.11%
E % 5000 e E8 0.04% 10.88% 17.65%
e 0, 0, 0,
Z 10.00 i .;:.. e E13 0.40% 16.54% 14.48%
g o . . . . . E14 0.24% 14.02% 9.03%
- 0 1.00 2.00 3.00 4.00 5.00
Proportion of pixels classified as non-photosynthetic features/% 112.3011 112.3012 112.3013 112.3014
Note: x and y denote the incidence of non-photosynthetic features in the UAV RS ) ) ) )
A o . , gl o 5 10 15 20m N &
imagery and the intensity of non-photosynthetic features’ ground truth data, sl 15
respectively; while R? is the coefficient of determination. I A 3
. . . . n
Figure 7 Inversion model of incidence of = HDI . 1.._
non-photosynthetic features = HD2 ="
photosy ~| =HD3 k -
3.5 Evaluating accuracy of the inversion model < = HD5 ..J.:J - c
o o
To evaluate the accuracy of the inversion model mentioned in - =
Section 3.4, the remaining 25 sets of data from Table 5 and Table 8 - |
were used as validating data, listed in Table 9. § 4 .. - §
The predicted incidence of non-photosynthetic features was 2T 13
o o
calculated according to the inversion model of Section 3.4. The # _f
corresponding intensities of non-photosynthetic features’ ground -|m' o
truth data are also listed in Table 9. Consequently, the RMSE (root ‘§ * §
mean square error) and RRMSE (Relative RMSE) of the inversion g1 . ’ . 13
o o
model were calculated as 4.86% and 19.81%, respectively, which 112.3011 112.3012 112.3013 112.3014

shows high accuracy and indicates the feasibility of predicting the
incidence of non-photosynthetic features based on UAV RS
imagery.
3.6 Health degree model of winter wheat

According to the classification result of the MD method in
Section 3.2 and the inversion model in Section 3.4, the incidence of
non-photosynthetic features was predicted for the experimental
field. Subsequently, to facilitate the OSMP operation, the
assessment model of the HD of wheat field was generated based on

Note: HD1-5 indicates each scale of the health degree (HD) of the wheat field,
where HD1, HD2, HD3, HD4, and HD5 represent the predicted incidence of non-
photosynthetic features of 0.001-5%, 5-10%, 10-20%, 20-30%, and 30-100%,
respectively.
Figure 8 Health degree (HD) model of wheat field

From Figure 8, the percentages of each of the areas of HDI,
HD2, HD3, HD4, and HDS5 over the total acreage of the
experimental field were calculated as 56.16%, 17.92%, 5.88%,
2.29%, and 17.75%, respectively. The conclusion could be reached
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that the areas of HD1 (pre-symptoms of infestation of pests and
pathogens) dominated in the wheat field, which need less
agricultural chemicals in the perspective of precision agriculture.
On the other hand, areas of HD4 and HDS5 (severe infestation of
pests and pathogens) were mostly located alongside field
boundaries. As a result, the agricultural chemical could be reduced
to 69.11% of the conventional OSMP operation, according to HD
model of the wheat field and the simulation model of the precision
OSMP.

The aim of this study was to evaluate the potential of machine
learning algorithms applied to detecting non-photosynthetic features
from UAV RS imagery. The performance of these algorithms was
evaluated using parameters of Overall Accuracy, Kappa Coefficient,
and Precision. The MD algorithm demonstrated superior
performance, with an Overall Accuracy of 0.898, a Kappa
Coefficient of 0.863, and a Precision of 0.856. This highlights the
importance of selecting appropriate machine learning models for
remote sensing applications and suggests that the MD algorithm can
be particularly effective in identifying non-photosynthetic features
under field condition. This study also presented a practical approach
of establishing an HD model at field level, as non-photosynthetic
features usually caused by the infestation of pests and diseases
during winter wheat’s heading stage. The methodology offers a
rapid and effective solution for precision plant protection in
agriculture.

On the other hand, this study acknowledges that the similarities
of spectral signatures between non-photosynthetic features and bare
soil (Figure 5) may lead to classification errors. This highlights the
complexity of remote sensing applications in agriculture, where
environmental factors and the physiological responses of plants can
vary significantly. Another limitation is the lack of differentiation
between the size, quantity, and type of non-photosynthetic features
during manual field inspections. This simplification could
potentially affect the accuracy of the regression model for
predicting the incidence of non-photosynthetic features.

4 Conclusion

This study developed a rapid approach of assessing health
degree (HD) for winter wheat under field conditions for precision
plant protection. The approach utilized a light-weight unmanned
aerial vehicle (UAV) to collect low-altitude remote sensing (RS)
images of the wheat field, and machine learning models were used
to identify the non-photosynthetic features from the UAV RS
imagery. The main conclusions are summarized as follows:

1) Supervised machine learning algorithms including Minimum
Distance (MD), Maximum Likelihood Estimation (MLE), and
Support Vector Machine (SVM) were employed to identify non-
photosynthetic features in the UAV imagery. MD demonstrates the
best performance, based on the values of Overall Accuracy (0.898),
Kappa Coefficient (0.863), and Precision (0.856).

2) Based on the classification result of the UAV RS imagery by
using MD method, the proportion of pixels classified as non-
photosynthetic features was calculated. Subsequently, the linear
inversion model between it and the corresponding ground truth of
incidence of non-photosynthetic features was established, and the
coefficient of determination (R?) is 0.73, demonstrating strong
correlation. The RMSE (root mean square error) and RRMSE
(Relative RMSE) of the inversion model were calculated as 4.86%
and 19.81%, respectively, which guaranteed high accuracy of
inverting the incidence of non-photosynthetic features from the
UAV RS imagery.

3) The assessment model of the HD for wheat field was
established, and the percentage of each HD scale over the total
acreage of the experimental field was calculated. The conclusion
was reached that HD1 (pre-symptoms of infestation of pests and
pathogens) dominated in the wheat field, with the proportion of area
as 56.16%. Finally, simulation of the precision OSMP (One-Spray-
Multiple-Protection) was conducted according to the HD model of
the wheat field, and the agricultural chemical could be reduced to
69.11% of the conventional OSMP operation. Further studies
should explore the applicability of this method to additional relevant
wheat species, and verify its effectiveness in wheat fields where
different levels of infestation of pests and pathogens occur.
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